Paper:
Accuracy of Synchrony Judgment and its Relation to the Auditory Brainstem Response: the Difference Between Pianists and Non-Pianists
Eriko Aiba*1, Koji Kazai*1, Takayuki Shimotomai*2,
Toshie Matsui*3, Minoru Tsuzaki*4, and Noriko Nagata*1
*1Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
*2Brain Science Institute, Tamagawa University, Japan
*3Nara Medical University, Japan
*4Kyoto City University of Arts, Japan
- [1] A. S. Bregman, “Auditory scene analysis,” MIT Press, 1990.
- [2] C. J. Darwin, “Perceiving vowels in the presence of another sound: constraints on formant perception,” J. Acoust Soc Am, Vol.76, No.6, pp. 1636-1647, 1984.
- [3] C. J. Darwin and V. Ciocca, “Grouping in pitch perception: effects of onset asynchrony and ear of presentation of a mistuned component,” J. Acoust Soc Am, Vol.91, Vol.6, pp. 3381-3390, 1992.
- [4] R. W. Hukin and C. J. Darwin, “Comparison of the effect of onset asynchrony on auditory grouping in pitch matching and vowel identification,” Percept Psychophys, Vol.57, No.2, pp. 191-196, 1995.
- [5] J. A. Sloboda, “Generative processes in music: The psychology of performance, improvization, and composition,” Oxford University Press, Oxford, pp. 72-90, 1988.
- [6] R. A. Rasch, “The perception of simultaneous notes such as in polyphonic music,” Acustica, Vol.40, pp. 22-33, 1978.
- [7] S. Sadie and J. Tyrrell, “The New Grove Dictionary of Music and Musicians,” Oxford University Press, USA, 2004.
- [8] G. von Békésy, “Experiments in hearing,” McGraw-Hill, New York, 1960.
- [9] S. Uppenkamp, S. Fobel, and R. D. Patterson, “The effects of temporal asymmetry on the detection and perception of short chirps,” Hearing Research, Vol.158, No.1-2, pp. 71-83, 2001.
- [10] E. Aiba and M. Tsuzaki, “Perceptual judgment in synchronization of two complex tones : Relation to the cochlear delays,” Acoustical science and technology, Vol.28, No.5, pp. 357-359, 2007.
- [11] E. Aiba, M. Tsuzaki, S. Tanaka, and M. Unoki, “Judgment of perceptual synchrony between two pulses and verification of its relation to cochlear delay by an auditory model,” Japanese Psychological Research, Vol.50, No.4, pp. 204-213, 2008.
- [12] T. Dau, O. Wegner, V. Mellert, and B. Kollmeier, “Auditory brainstem responses (ABR) with optimized chirp signals compensating basilar membrane dispersion,” J. Acoust Soc Am, Vol.107, No.3, pp. 1530-1540, 2000.
- [13] E. de Boer, “Auditory physics: Physical principles in hearing theory I,” Physics Report, Vol.62, pp. 87-174, 1980.
- [14] G. M. Bidelman and A. Krishnan, “Effects of reverberation on brainstem representation of speech in musicians and nonmusicians,” Brain Research, Vol.1355, pp. 112-125, 2010.
- [15] G. M. Bidelman, A. Krishnan, and J. T. Gandour, “Enhanced brainstem encoding predicts musicians’ perceptual advantages with pitch,” Eur J. Neurosci, Vol.33, No.3, pp. 530-538, 2011.
- [16] G. Musacchia, D. Strait, and N. Kraus, “Relationships between behavior, brainstem and cortical encoding of seen and heard speech in musicians and non-musicians,” Hearing Research, Vol.241, No.1-2, pp. 34-42, 2008.
- [17] D. L. Strait, N. Kraus, E. Skoe, and R. Ashley, “Musical experience and neural efficiency? effects of training on subcortical processing of vocal expressions of emotion,” European J. of Neuroscience, Vol.29, No.3, pp. 661-668, 2009.
- [18] M. Don and J. J. Eggermont, “Analysis of the click-evoked brainstem potentials in man using high-pass noise masking,” J. Acoust Soc Am, Vol.63, No.4, pp. 1084-1092, 1978.
- [19] E. Aiba, ““Unification” and “Separation” of Overlapped Sounds,” Doctral Thesis, Graduate School of Kyoto City University of Arts, 2009.
- [20] J. O. Pickles, “An introduction to the physiology of hearing,” Emerald (3rd), United Kingdom, 2008.
- [21] A. R. Moller, “Hearing : anatomy, physiology, and disorders of the auditory system,” Elsevier Academic, Amsterdam ; Oxford (2nd), 2006.
- [22] Y. Murakami and M. Unoki, “A study on the input-output function of a nonlinear cochlear transmission-line model with the function of an outer hair cells model,” J. Acoust Soc Am (151st Meeting of the Acoustical Society of America, New Orleans, Louisiana, USA), Vol.122, p. 3061, 2007.
- [23] T. Tzounopoulos and N. Kraus, “Learning to encode timing: mechanisms of plasticity in the auditory brainstem,” Neuron, Vol.62, No.4, pp. 463-469, 2009.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.