Paper:
Hybrid Ensemble Construction with Selected Neural Networks
M. A. H. Akhand*, Pintu Chandra Shill**,
and Kazuyuki Murase**
*Dept. of Computer Science and Engineering, Khulna University of Engineering & Technology (KUET), Khulna 9203, Bangladesh
**Dept. of Human and Artificial Intelligence Systems, Graduate School of Engineering, University of Fukui
- [1] A. J. C. Sharkey, “On combining artificial neural nets,” Connection Science, Vol.8, No.3-4, pp. 299-314, 1996.
- [2] A. J. C. Sharkey and N. E. Sharkey, “Combining Diverse Neural Nets,” Knowledge Engineering Review, Vol.12, No.3, pp. 299-314,1997.
- [3] D. W. Opitz and R. Maclin, “Popular ensemble methods: An empirical study,” J. of Artificial Intelligence Research, Vol.11, pp. 169-198, 1999.
- [4] M. A. H. Akhand, Md. Monirul Islam, and K. Murase, “A Comparative Study of Data Sampling Techniques for Constructing Neural Network Ensembles,” Int. J. of Neural Systems, Vol.19, No.2, pp. 67-89, 2009.
- [5] G. Brown, J. Wyatt, R. Harris, and X. Yao, “Diversity Creation Methods: A Survey and Categorization,” Information Fusion, Vol.6, pp. 99-111, 2005.
- [6] E. Bauter and R. Kohavi, “An Empirical Comparison of Voting Classification Algorithms: Bagging, Boosting, and Variants,” Machine Learning, Vol.36, 105-142, 1999.
- [7] Md. Monirul Islam, X. Yao, and K. Murase, “A constructive algorithm for training cooperative neural network ensembles,” IEEE Trans. Neural Networks, Vol.14, No.4, pp. 820-834, 2003.
- [8] T. K. Ho, “The random subspace method for constructing decision forests,” IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol.20, pp. 832-844, 1998.
- [9] G. Martínez-Muñoz, A. Sánchez-Martínez, D. Hernández-Lobatoand, and A. Suárez, Class-switching neural network ensembles, Neurocomputing, Vol.71, pp. 2521-2528, 2008.
- [10] P. Melville and R. J. Mooney, “Creating diversity in ensembles using artificial data,” Information Fusion, Vol.6, pp. 99-111, 2005.
- [11] D. J. Newman, S. Hettich, C. L. Blake, and C. J.Merz, “UCI Repository of Machine Learning Databases,” Dept. of Information and Computer Sciences, University of California, Irvine, 1998.
http://www.ics.uci.edu/˜mlearn/MLRepository.html - [12] Md.Monirul Islam, X. Yao, S.M. Shahriar Nirjon, M. A. Islam, and K. Murase, “Bagging and Boosting Negatively Correlated Neural Networks,” IEEE Trans. On Systems, Man, and Cybernetics (B), Vol.38, No.3, pp. 771-784, 2008.
- [13] M. A. H. Akhand, Md. Monirul Islam, and K. Murase, “Progressive Interactive Training: A Sequential Neural Network Ensemble Learning Method,” Neurocomputing, Vol.73, pp. 260-273, 2009.
- [14] L. Breiman, “Bagging predictors,” Machine Learning, Vol.24, pp. 123-140, 1996.
- [15] Y. Freund and R. E. Schapire, “Experiments with a new boosting algorithm,” Proc. of the 13th Int. Conf. onMachine Learning, Morgan kaufmann, pp. 148-156, 1996.
- [16] Y. Liu and X. Yao, “Ensemble learning via negative correlation,” Neural Networks, Vol.12, pp. 1399-1404, 1999.
- [17] Y. Liu and X. Yao, “Simultaneous Training of Negatively Correlated Neural Networks in an Ensemble,” IEEE Trans. on Systems, Man, and Cybernetics, Part B: Cybernetics, Vol.29, No.6, pp. 716-725, 1999.
- [18] Y. Liu, “How to generate different neural networks,” Studies in Computational Intelligence (SCI), Vol.35, pp. 225-240, 2007.
- [19] D. E. Goldberg, “Genetic Algorithms,” Addison-wesley, 1998.
- [20] Z. Zhou, J.Wu, andW. Tang, “Ensembling Neural Networks: Many Could Be Better Than All,” Artificial Intelligence, Vol.137, pp. 239-263, 2002.
- [21] Z. Zhou, J. Wu , W. Tang, and Z. Chen, “Selectively Ensembling Neural Classifiers,” Proc. of the 2002 International Joint Conference on Neural Networks (IJCNN2002), Honolulu, HI, USA, pp. 1411-1415, 2002.
- [22] L. Prechelt, “Proben1- A Set of Benchmarks and Benching Rules for Neural Network Training Algorithms,” Tech. Rep. 21/94, Fakultat fur Informatik, University of Karlsruhe, Germany, 1994.
- [23] S. Haykin, “Neural Networks – A Comprehensive Foundation,” Prentice Hall, 2nd edition, 1999.
- [24] A. Tsymbal, M. Pechenizkiy, and P. Cunningham, “Diversity in Search Strategies for Ensemble Feature Selection,” Information Fusion, Vol.6, pp. 83-98, 2005.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.