Paper:
Object Categorization Using Biologically Inspired Nodemaps and the HITEC Categorization System
Adam Csapo, Barna Resko, Domonkos Tikk, and Peter Baranyi
Budapest Univ. of Technology and Economics, H-1111, Budapest, Muegyetem Rkp. 3-9, Hungary
Computer and Automation Research Institute, Hungarian Academy of Sciences, H-1111, Budapest, Kende u. 13-17, Hungary
- [1] I. Biederman, “Recognition-by-Components: A Theory of Human Image Understanding,” Psychological Review, 94, pp. 115-147, 1987.
- [2] D. Lowe, “Object Recognition from Local Scale-Invariant Features,” In Proc. of the Int. Conf. on Computer Vision, pp. 1150-1157, 1999.
- [3] A. Berg and J. Malik, “Geometric Blur for Template Matching,” In IEEE Conf. on Computer Vision and Pattern Recognition, pp. 607-614, 2001.
- [4] M. Riesenhuber and T. Poggio, “Robust Object Recognition with Cortex-Like Mechanisms,” Nature, 11, pp. 1019-1025, 1999.
- [5] T. Serre, L. Wolf, S. Bileschi, M. Riesenhuber, and T. Poggio, “Robust Object Recognition with Cortex-Like Mechanisms,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 29, pp. 411-426, 2007.
- [6] D. Tikk, G. Biro, and J. Yang, “Applied Research in Uncertainty Modeling and Analysis,” chapter Experiments with a hierarchical text categorization method on WIPO patent collections, pp. 283-302, Int. Series in Intelligent Technologies, No.20, Springer-Verlag, 2005.
- [7] A. Csapo, P. Baranyi, and D. Tikk, “Object Categorization Using VFA-generated Nodemaps and Hierarchical Temporal Memories,” In Proc. of IEEE Int. Conf. on Computational Cybernetics, pp. 257-262, 2007.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.