Paper:

# Bias of Standard Errors in Latent Class Model Applications Using Newton-Raphson and EM Algorithms

## Liberato Camilleri

Department of Statistics and Operations Research, University of Malta

Msida (MSD 06) Malta

*J. Adv. Comput. Intell. Intell. Inform.*, Vol.13 No.5, pp. 537-541, 2009.

- [1] T. A. Louis, “Finding the Observed Information Matrix when using the EM algorithm,” Journal of the Royal Statistical Society, 44, pp. 226-233, 1982.
- [2] R. A. Fisher, “Theory of Statistical Estimation,” Proc. Camb. Phil. Society, 22, pp. 700-725, 1925.
- [3] I. Meilijson, “A Fast Improvement to the EM algorithm on its Own Term,” Journal of the Royal Statistical Society, 51, pp. 127-138, 1989.
- [4] X. L. Meng and D. B. Rubin, “Using EM to obtain asymptotic variance-covariance matrices: the SEM algorithm,” Journal of American Statistical Association, 86, pp. 899-909, 1991.
- [5] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum Likelihood from Incomplete Data via the EM algorithm,” Journal of the Royal Statistical Society, B, 39, pp. 1-38, 1977.
- [6] M. R. Segal, P. Bacchetti, and N. P. Jewell, “Variance for Maximum Penalized Likelihood estimates obtained via the EM algorithm,” Journal of the Royal Statistical Society, B, 56, pp. 345-352, 1994.
- [7] C. E. McCulloch, “Maximum Likelihood Variance components estimation for Binary Data,” Journal of the American Statistical Association, 89, pp. 330-335, 1998.
- [8] M. Jamshidian and R. I. Jennrich, “Standard Errors for EM Estimation,” Journal of the Royal Statistical Society, B, pp. 257-270, 2000.
- [9] A. Agresti, “Categorical Data Analysis,” A Wiley-Interscience Publication, 2002.
- [10] P. McCullagh, “Regression Models for Ordinal Data,” J.R. Statistical. Soc, B, 42, pp. 109-142, 1980.

This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.