Paper:
Kernel Canonical Discriminant Analysis Based on Variable Selection
Seiichi Ikeda and Yoshiharu Sato
Graduate School of Information Science and Technology, Hokkaido University
Kita 9, Nishi 14, Kita-ku, Sapporo 060-0814, Japan
- [1] H. Akaike, “Information theory and an extension of the maximum likelihood principle,” B. N. Petrov and F. Csaki (Eds.), 2nd Int. Symposium on Information Theory, Akademisi Kiado, Budapest, pp. 267-281, 1973.
- [2] R. A. Fisher, “The use of multiple measurements in taxonomic problems,” Annals of Eugenics, Vol.7, pp. 179-188, 1936.
- [3] Y. Fujikoshi, “A test for additional information in Canonical correlation analysis,” Ann. Inst. Statist. Math., Vol.34, pp. 137-144, 1982.
- [4] D. G. Hartig, “The Riesz representation theorem revisited,”American Mathematical Monthly, Vol.90(4), pp. 277-280, 1990.
- [5] S. Ikeda, J. Tsuchiya, and Y. Sato, “Kernel Regression and Variable Selection Problem,” Proc. of The Ninth Japan-China Symposium on Statistics, pp. 75-80, 2007.
- [6] S. Konishi and G. Kitagawa, “Information Criterion and Statistical Modeling,” Springer Series in Statistics, Springer, 2008.
- [7] S. Mika, G. Ratsch, J. Weston, B. Scholkopf, and K. R. Mullers, “Fisher Discriminant Analysis with Kernels,” Proc. of the 1999 IEEE Signal Processing Society Workshop, pp. 41-48, 1999.
- [8] C. R. Rao, “Test of significance in multivariate analysis,”Biometrika, Vol.35, pp. 58-79, 1948.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.