Paper:
RBF Networks Ensemble Construction based on Evolutionary Multi-objective Optimization
Nobuhiko Kondo*, Toshiharu Hatanaka*, and Katsuji Uosaki**
*Department of Information and Physical Sciences, Osaka University, Osaka, Japan
**Department of Management and Information Sciences, Fukui University of Technology, Fukui, Japan
- [1] H. Aso, K. Tsuda, and N. Murata, “Statistics of Pattern Recognition and Learning,” Iwanami Shoten, 2003.
- [2] A. J. C. Sharkey, “On Combining Artificial Neural Nets,” Connection Science, Vol.8, pp. 299-313, 1996.
- [3] O. Nelles, “Nonlinear System Identification,” Springer, 2001.
- [4] T. Hatanaka, K. Uosaki, and T. Kuroda, “Structure Selection of RBF Neural Network Using Information Criteria,” Proc. of Fifth Int. Conf. on Knowledge-Based Intelligent Information Engineering Systems and Allied Technologies, pp. 167-171, 2001.
- [5] H. A. Abbass, “A Memetic Pareto Evolutionary Approach to Artificial Neural Networks,” Australian Joint Conf. on Artificial Intelligence 2001, pp. 1-12, 2001.
- [6] G. G. Yen and H. Lu, “Hierarchical Rank Density Genetic Algorithm for Radial-Basis Function Neural Network Design,” Int. Journal of Computational Intelligence and Applications, Vol.3, No.3, pp. 213-232, 2003.
- [7] N. Kondo, T. Hatanaka, and K. Uosaki, “Pattern Classification by Evolutionary RBF Networks Ensemble Based on Multi-objective Optimization,” Proc. of Int. Joint Conf. on Neural Networks ’06, pp. 2919-2925, 2006.
- [8] N. Kondo, T. Hatanaka, and K. Uosaki, “Pattern Classification via Multi-objective Evolutionary RBF Networks Ensemble,” Proc. of SICE-ICASE Int. Joint Conf., pp. 137-142, 2006.
- [9] T. G. Dietterich, “Ensemble Methods in Machine Learning,” Proc. of the First Int. Workshop on Multiple Classifier Systems 2000, pp. 1-15, 2000.
- [10] I. Kumazawa, “Learning and Neural Networks,” Morikita Publishing, 1998.
- [11] X. Yao, “Evolving Artificial Neural Networks,” Proc. of the IEEE, Vol.87, No.9, pp. 1423-1447, 1999.
- [12] Y. Bai and L. Zhang, “Genetic Algorithm Based Self-Growing Training for RBF Neural Networks,” Proc. of Int. Joint Conf. on Neural Networks 2002, pp. 840-845, 2002.
- [13] W. Zhao, D. S. Huang, and G. Yunjian, “The Structure Optimization of Radial Basis Probabilistic Neural Networks Based on Genetic Algorithms,” Proc. of Int. Joint Conf. on Neural Networks 2002, pp. 1086-1091, 2002.
- [14] Y. Jin, T. Okabe, and B. Sendhoff, “Neural Network Regularization and Ensembling Using Multi-objective Evolutionary Algorithms,” Proc. of Congress on Evolutionary Computation, pp. 1-8, 2004.
- [15] N. Kondo, T. Hatanaka, and K. Uosaki, “Pareto RBF Networks Based on Multiobjective Evolutionary Computation,” SICE Annual Conf. in Sapporo, pp. 2177-2182, 2004.
- [16] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II,” IEEE Transactions on Evolutionary Computation, Vol.6, No.2, pp. 182-197, 2002.
- [17] J. Moody and C. J. Darken, “Fast learning in networks of locallytuned processing units,” Neural Computation, Vol.1, pp. 281-294, 1989.
- [18] L. I. Kuncheva and C. J. Whitaker, “Measures of Diversity in Classifier Ensembles and Their Relationship with the Ensemble Accuracy,” Machine Learning, Vol.51, pp. 181-207, 2003.
- [19] http://www.ics.uci.edu/˜mlearn/
- [20] H. A. Abbass, “Pareto Neuro-Evolution: Constructing Ensemble of Neural Networks Using Multi-objective Optimization,” The IEEE Congress on Evolutionary Computation 2003, Vol.3, pp. 2074-2080, 2003.
- [21] Y. Liu, X. Yao, and T. Higuchi, “Evolutionary Ensembles with Negative Correlation Learning,” IEEE Transactions on Evolutionary Computation, Vol.4, No.4, pp. 380-387, 2000.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.