IJAT Vol.14 No.2 pp. 229-237
doi: 10.20965/ijat.2020.p0229


Chemical Lift-Off Process Using Acetone Ink for Easy Fabrication of Metallic Nano/Microstructures

Potejana Potejanasak*1, Truong Duc Phuc*2, Motoki Terano*3, Takatoki Yamamoto*4, and Masahiko Yoshino*4,†

*1University of Phayao
19 Moo. 2, T. Maeka, A. Muang, Phayao 56000, Thailand

*2Hanoi University of Science and Technology, Hanoi, Vietnam

*3Okayama University of Science, Okayama, Japan

*4Tokyo Institute of Technology, Tokyo, Japan

Corresponding author

July 29, 2019
November 6, 2019
March 5, 2020
stamping, Au coating, plastic mold, acetone

In this paper, a chemical lift-off process using acetone ink was examined to attain the easy fabrication of metallic nano/microstructures. This process consists of five steps: cleaning of the substrate, chemical stamping, metal film deposition, coating with glue, and selective peeling. Details of the hot embossing process for the cycloolefin polymer (COP) film mold fabrication and the selection of the organic solvent ink for the chemical stamping are also explained. The fabrication of several kinds of metallic nano/microstructures, such as Au line and space structures, Au square film arrays, and Au dot arrays, is demonstrated. It is shown that metal films coated on the stamped region peeled off with the glue, and a metal film shaped in the stamp’s negative pattern remained on the substrate. Acetone is effective for reducing the surface energy of the substrate and the bonding strength, resulting in selective peeling of the coated metal film.

Cite this article as:
P. Potejanasak, T. Phuc, M. Terano, T. Yamamoto, and M. Yoshino, “Chemical Lift-Off Process Using Acetone Ink for Easy Fabrication of Metallic Nano/Microstructures,” Int. J. Automation Technol., Vol.14 No.2, pp. 229-237, 2020.
Data files:
  1. [1] Y. B. Zheng, B. Kiraly, P. S. Weiss, and T. J. Huang, “Molecular plasmonics for biology and nanomedicine,” Nanomedicine, Vol.7, No.5, pp. 751-770, 2012.
  2. [2] H. M. Chen and R.-S. Liu, “Architecture of metallic nanostructures: Synthesis strategy and specific applications,” J. Phys. Chem. C, Vol.115, No.9, pp. 3513-3527, 2011.
  3. [3] S. Suresh, “Semiconductor nanomaterials, methods and applications: a review,” J. Nanosci. Nanotechnol., Vol.3, No.3, pp. 62-74, 2013.
  4. [4] I. Matsui, “Nanoparticles for electronic device application: a brief review,” J. Chem. Eng. Jpn., Vol.38, No.8, pp. 535-546, 2005.
  5. [5] C. W. Hsu, B. Zhen, W. Qiu, O. Shapira, B. G. DeLacy, J. D. Joannopoulos, and M. Soljacĭć, “Transparent displays enabled by resonant nanoparticle scattering,” Nature Communications, Vol.5, 3152, 2014.
  6. [6] Y. Liu, J. F. Flores, and J. Q. Lu, “Tailoring 1D ZnO nanostructure using engineered catalyst enabled by Poly(4-vinylpyridine),” J. Phys. Chem. C, Vol.118, No.33, pp. 19387-19395, 2014.
  7. [7] Y. Ding, P. X. Gao, and Z. L. Wang, “Catalyst-nanostructure interfacial lattice mismatch in determining the shape of VLS grown nano wires and nanobelts: a case of Sn/ZnO,” J. Am. Chem. Soc., Vol.126, No.7, pp. 2066-2072, 2004.
  8. [8] C. L. Haynes, A. J. Haes, A. D. McFarland, and R. P. Van Duyne, “Nanoparticles with tunable localized surface plasmon resonances,” C. D. Geddes and J. R. Lakowicz (Eds.), “Radiative Decay Engineering,” pp. 47-99, 2005.
  9. [9] A. Bansal and S. S. Verma, “Optical response of noble metal alloy nanostructures,” Phys. Lett. A, Vol.379, No.3, pp. 163-169, 2015.
  10. [10] W. Hermoso, T. V. Alves, C. C. S. de Oliveira, E. G. Moriya, F. R. Ornellas, and P. H. C. Camargo, “Triangular metal nanoprisms of Ag, Au, and Cu: Modeling the influence of size, composition, and excitation wavelength on the optical properties,” Chem. Phys., Vol.423, No.23, pp. 142-150, 2013.
  11. [11] H. Chen, L. Zhao, D. Chen, and W. Hu, “Stabilization of gold nanoparticles on glass surface with polydopamine thin film for reliable LSPR sensing,” J. Colloid Interface Sci., Vol.460, No.15, pp. 258-263, 2015.
  12. [12] Z. Lu, D. M. Frey, T. Merkh, R. Lord, M. A. Washington, and T.-M. Lu, “Resistivity of epitaxial copper nanolines with trapezoidal cross-section,” Thin Solid Films, Vol.599, No.29, pp. 187-193, 2016.
  13. [13] K. M. Byun, S. J. Kim, and D. Kim, “Profile effect on the feasibility of extinction-based localized surface plasmon resonance biosensors with metallic nano wires,” Applied Optics, Vol.45, No.14, pp. 3382-3389, 2006.
  14. [14] J. Siegel, J. Heitz, and V. Švorčík, “Self-organized gold nanostructures on laser patterned,” PET Surf. Coat. Technol., Vol.206, Issues 2-3, pp. 517-521, 2011.
  15. [15] S. Olliges, S. Frank, P. A. Gruber, V. Auzelyte, K. Kunze, H. H. Solak, and R. Spolenak, “Thermomechanical properties of gold nano wires supported on a flexible substrate,” Scripta Mater., Vol.60, No.5, pp. 273-276, 2009.
  16. [16] J. Siegel, J. Heitz, A. Řezníčková, and V. Švorčík, “Preparation and characterization of fully separated gold nano wire arrays,” Appl. Surf. Sci., Vol.264, No.1, pp. 443-447, 2013.
  17. [17] M. Yoshino, H. Ohsawa, and A. Yamanaka, “Rapid fabrication of an ordered nano-dot array by the combination of nano-plastic forming and annealing methods,” J. Micromech. Microeng., Vol.21, No.12, 125017, 2011.
  18. [18] Z. Li, M. Yoshino, and A. Yamanaka, “Fabrication of three dimensional ordered nanodots array structures by a thermal dewetting method,” Nanotechnology, Vol.23, No.48, 485303, 2012.
  19. [19] T. D. Phuc, A. Yamanaka, and M. Yoshino, “High throughput method to fabricate ordered nano dot array on various plastic films,” Key Engineering Materials, Vols.523-524, pp. 633-638, 2012.
  20. [20] T. D. Phuc, M. Terano, and M. Yoshino, “Fabrication of an ordered nano dot array by thermal dewetting on a patterned substrate,” Manufacturing Letter, Vol.2, No.2, pp. 60-63, 2014.
  21. [21] T. D. Phuc, M. Yoshino, A. Yamanaka, and T. Yamamoto, “Fabrication of gold nano dots on plastic films for bio-sensing,” Procedia CIRP, Vol.5, pp. 47-52, 2013.
  22. [22] T. D. Phuc, M. Yoshino, A. Yamanaka, and T. Yamamoto, “Effects of morphology of nano dots on localized surface plasmon resonance property,” Int. J. Automation Technol., Vol.8, No.1, pp. 74-82, 2014.
  23. [23] Q. Wang, Q. Shi, S. Li, D. Zhang, and W. Wang, “Influence of fluorescence of Eu(dbm)3phen doped films by gold nanorods,” J. Lumin., Vol.177, pp. 295-258, 2016.
  24. [24] S. Biswas, P. Tripathi, N. Kumar, and S. Nara, “Gold nanorods as peroxidase mimetics and its application for colorimetric biosensing of malathion Sens,” Sensors and Actuators B: Chemical, Vol.231, No.C, pp. 584-592, 2016.
  25. [25] J. Wang, H. Z. Zhang, R. S. Li, and C. Z. Huang, “Localized surface plasmon resonance of gold nanorods and assemblies in the view of biomedical analysis,” TrAC Trends in Analytical Chemistry, Vol.80, pp. 429-443, 2016.
  26. [26] K. M. Pondman, A. W. Maijenburg, F. B. Celikkol, A. A. Pathan, U. Kishore, B. ten Haken, and J. E. ten Elshof, “Au coated Ni nano wires with tuneable dimensions for biomedical applications,” J. Mater. Chem. B, Vol.1, Issue 44, pp. 6129-6136, 2013.
  27. [27] Y. P. Ivanov, A. Alfadhel, M. Alnassar, J. E. Perez, M. Vazquez, A. Chuvilin, and J. Kosel, “Tunable magnetic nano wires for biomedical and harsh environment applications,” Sci. Rep., Vol.6, 24198, 2016.
  28. [28] B. Tian and C. M. Lieber, “Design, synthesis, and characterization of novel nano wire structures for photovoltaics and intracellular probes,” Pure Appl. Chem., Vol.83, No.12, pp. 2153-2169, 2011.
  29. [29] T.-E. Bae, H.-J. Jang, J.-H. Yang, and W.-J. Cho, “High Performance of silicon nano wire-based biosensors using a high-k stacked sensing thin film ACS,” Appl. Mater. Interfaces, Vol.5, No.11, pp. 5214-5218, 2013.
  30. [30] A. M. Contreras, J. Grunes, X.-M. Yan, A. Liddle, and G. A. Somorjai, “Fabrication of platinum nanoparticles and nano wires by electron beam lithography (EBL) and nanoimprint lithography (NIL): comparison of ethylene hydrogenation kinetics,” Catal. Lett., Vol.100, pp. 115-124, 2005.
  31. [31] Y. Lin, Y. Zou, Y. Mo, J. Guo, and R. G. Lindquist, “E-beam patterned gold nanodots arrays on optical fiber tips for localized surface plasmon resonance biochemical sensing,” Sensors, Vol.10, No.10, pp. 9397-9406, 2010.
  32. [32] M. H. Lee, H. M. Kim, S. Y. Cho, K. Lim, S. Y. Park, J. J. Lee, and K. B. Kim, “Fabrication of ultra-high-density nanodots array patterns (∼ 3 Tbits/in2) using electron-beam lithography,” J. Vac. Sci. Technol. B, Vol.29. No.6, 061602, 2011.
  33. [33] S. Strobel, C. Kirkendall, J. B. Chang, and K. K. Berggren, “Sub-10 nm Structures on Silicon by Thermal Dewetting of Platinum,” Nanotechnology, Vol.21, 505301, 2010.
  34. [34] R. Yang, C. Sui, J. Gong, and L. Qua, “Silver nano wires prepared by modified AAO template method,” Mater. Lett., Vol.61, No.3, pp. 900-903, 2007.
  35. [35] N. K. Kwon and N. K. Kim, “Fabrication of ordered Au nanodot arrays utilizing anodic aluminum oxide templates formed on Si substrate,” J. Vac. Sci. Technol. B, Vol.29, 031805, 2011.
  36. [36] S. Thongmee, H. L. Pang, J. Ding, and J. Y. Lin, “Fabrication and magnetic properties of metallic nanowires via AAO templates,” J. Magn. Magn. Mater., Vol.321, Issue 18, pp. 2712-2716, 2009.
  37. [37] W-S. Liao, S. Cheunkar, H. H. Cao, H. R. Bednar, P. S. Weiss, and A. M. Andrews, “Subtractive Patterning via Chemical Lift-Off Lithography,” Science, Vol.337, No.6101, pp. 1517-1521, 2012.
  38. [38] X. Xu, Q. Yang, K. M. Cheung, C. Zhao, N. Wattanatorn, J. N. Belling, J. M. Abendroth, L. S. Slaughter, C. A. Mirkin, A. M. Andrews, and P. S. Weiss, “Polymer-Pen Chemical Lift-Off Lithography,” Nano Letters, Vol.17, No.5, pp. 3302-3311, 2017.
  39. [39] M. Yoshino, Z. Li, and M. Terano, “Theoretical and experimental study of metallic dot agglomeration induced by thermal dewetting,” ASME J. of Micro and Nano-Manufacturing, Vol.3, Issue 2, 021004, 2015.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on May. 19, 2024