single-au.php

IJAT Vol.13 No.6 pp. 817-824
doi: 10.20965/ijat.2019.p0817
(2019)

Paper:

Study on Infrared Transmittance of Si-Polymer Hybrid Structure Press Molded Using a Coupling Agent

Hibiki Ishide and Jiwang Yan

Department of Mechanical Engineering, Faculty of Science and Technology, Keio University
3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan

Corresponding author

Received:
June 27, 2019
Accepted:
September 3, 2019
Published:
November 5, 2019
Keywords:
infrared lens, silicon, polymer, press molding, hybrid optics
Abstract

Hybrid structures of single-crystal silicon and high-density polyethylene (HDPE) with high transmittance in the mid-to-far infrared region are used as infrared lens substrates. The hybrids are usually fabricated by high-precision press molding. The Si-HDPE hybrid lens previously fabricated had a low transmittance in the 9–10 μm wavelength region, thereby limiting its application for human body detection. In this study, a Si-polymer hybrid structure was fabricated using a new polymer without any silane coupling agent. Interfacial adhesion between the polymer and the Si substrate was realized with an extremely thin (a few micron thick) layer of an interfacial silane coupling agent. The press molding conditions that led to improved bonding strength and infrared transmittance of the hybrid substrate were investigated. A transmittance similar to that of a single-crystal Si substrate was achieved in the 9–10 μm wavelength range.

Cite this article as:
H. Ishide and J. Yan, “Study on Infrared Transmittance of Si-Polymer Hybrid Structure Press Molded Using a Coupling Agent,” Int. J. Automation Technol., Vol.13 No.6, pp. 817-824, 2019.
Data files:
References
  1. [1] A. R. A. Manaf and J. Yan, “Press molding of a Si-HDPE hybrid lens substrate and evaluation of its infrared optical properties,” Precision Engineering, Vol.43, pp. 429-438, 2016.
  2. [2] A. R. A. Manaf, T. Sugiyama, and J. Yan, “Design and fabrication of Si-HDPE hybrid Fresnel lenses for infrared imaging systems,” Optics Express, Vol.25, Issue 2, pp. 1202-1220, 2017.
  3. [3] R. A. Soref, S. J. Emelett, and W. R. Buchwald, “Silicon waveguided components for the long-wave infrared region,” J. of Optics A: Pure and Applied Optics, Vol.8, pp. 840-848, 2006.
  4. [4] L. Shen, N. Healy, C. J. Mitchell, J. S. Penades, M. Nedeljkovic, G. Z. Mashanovich, and A. C. Peacock, “Mid-infrared all-optical modulation in low-loss germanium-on-silicon waveguides,” Optics Letters, Vol.40, Issue 2, pp. 268-271, 2015.
  5. [5] T. Grulois, G. Druart, N. Guérineau, A. Crastes, H. Sauer, and P. Chavel, “Extra-thin infrared camera for low-cost surveillance applications,” Optics Letters, Vol.39, Issue 11, pp. 3169-3172, 2014.
  6. [6] N. E. Claytor and R. N. Claytor, “Polymer Imaging Optics for the Thermal Infrared,” Proc. of SPIE, Vol.5406, pp. 107-113, 2004.
  7. [7] Y. Murata and M. Kuramochi, “Development of Heating and Cooling Injection Mold with Far-Infrared Radiation Heater,” Int. J. Automation Technol., Vol.10, No.1, pp. 79-86, 2016.
  8. [8] Y. Xie, C. A. S. Hill, Z. Xiao, H. Militz, and C. Mai, “Silane coupling agents used for natural fiber/polymer composites,” Composites Part A: Applied Science and Manufacturing, Vol.41, pp. 806-819, 2010.
  9. [9] M. Hashizume, S. Fukagawa, S Mishima, T. Osuga, and K. Iijima, “Hot-Press-Assisted Adhesions between Polyimide Films and Titanium Plates Utilizing Coating Layers of Silane Coupling Agents,” Langmuir, Vol.32, No.47, pp. 12344-12351, 2016.
  10. [10] A. Valadez-Gonzalez, J. M. Cervantes-Uc, R. Olayo, and P. J. Herrera-Franco, “Chemical modification of henequén fibers with an organosilane coupling agent,” Composites Part B: Engineering, Vol.30, pp. 321-331, 1999.
  11. [11] D. I. Tee, M. Mariatti, A. Azizan, C. H. See, and K. F. Chong, “Effect of silane-based coupling agent on the properties of silver nanoparticles filled epoxy composites,” Composites Science and Technology, Vol.67, pp. 2584-2591, 2007.
  12. [12] J. Kim, D. Lee, T. Oh, and D. Lee, “Characteristics of Nitrile-Butadiene Rubber Layered Silicate Nanocomposites with Silane Coupling Agent,” J. of Applied Polymer Science, Vol.89, Issue 10, pp. 2633-2640, 2003.
  13. [13] J. P. Matinlinna, K. Laajalehto, T. Laiho, I. Kangasniemi, L. V. J. Lassila, and P. K. Vallittu, “Surface analysis of Co-Cr-Mo alloy and Ti substrates silanized with trialkoxysilanes and silane mixtures,” Surface and Interface Analysis, Vol.36, Issue 3, pp. 246-253, 2004.
  14. [14] G. S. Ahmed, M. Gilbert, S. Mainprize, and M. Rogerson, “FTIR analysis of silane grafted high density polyethylene,” Plastics, Rubber and Composites, Vol.38, No.1, pp. 13-20, 2009.
  15. [15] C. Rosales, R. Perera, M. Ichazo, J. Gonzalez, H. Rojas, A. Sanchez, and A. Díaz Barrios, “Grafting of Polyethylenes by Reactive Extrusion. I. Influence on the Molecular Structure,” J. of Applied Polymer Science, Vol.70, pp. 161-176, 1998.
  16. [16] Y. T. Shieh and T. H. Tsai, “Silane Grafting Reactions of Low-Density Polyethylene,” J. of Applied Polymer Science, Vol.69, pp. 255-261, 1998.
  17. [17] K. Sirisinha, M. Boonkongkaew, and S. Kositchaiyong, “The effect of silane carriers on silane grafting of high-density polyethylene and properties of crosslinked products,” Polymer Testing, Vol.29, Issue 8, pp. 958-965, 2010.
  18. [18] P. Sajkiewicz, A. Wasiak, A. Wozniak, and A. Woźniak, “Effects of cooling rate on crystallinity of i-polypropylene and polyethylene terephthalate crystallized in nonisothermal conditions,” J. of Polymer Science Part B: Polymer Physics, Vol.37, Issue 20, pp. 2821-2827, 1999.
  19. [19] T. Volke-Sepulveda, G. Saucedo-Casraneda, M. Gutierrez-Rojas, A. Manzur, and E. Favela-Torres, “Thermally Treated Low Density Polyethylene Biodegradation By Penicillium Pinophilum and Aspergillus Niger,” J. of Applied Polymer Science, Vol.83, Issue 2, pp. 305-314, 2001.
  20. [20] S. H. Han, Y. S. Yeom, J. G. Ko, H. C. Kang, and H. G. Yoon, “Effect of the degree of crystallinity on the electrical properties of MWCNT filled poly (ethylene-co-ethyl acrylate)/LDPE blend composites prepared by melt mixing,” Composites Science and Technology, Vol.117, pp. 351-356, 2015.
  21. [21] G. Trovati, E. A. Sanches, S. C. Neto, Y. P. Mascarenhas, and G. O. Chierice, “Characterization of Polyurethane Resins by FTIR, TGA, and XRD,” J. of Applied Polymer Science, Vol.115, pp. 263-268, 2010.
  22. [22] R. Ricciardi, F. Auriemma, C. D. Rosa, and F. Laupretre, “X-ray Diffraction Analysis of Poly(vinyl alcohol) Hydrogels, Obtained by Freezing and Thawing Techniques,” Macromolecules, Vol.37, Issue 5, pp. 1921-1927, 2004.
  23. [23] K. Toba, H. Yamamoto, and M. Yoshida, “Crystallization of cellulose microfibrils in wood cell wall by repeated dry-and-wet treatment, using X-ray diffraction technique,” Cellulose, Vol.20, Issue 2, pp. 633-643, 2013.
  24. [24] A. M. Youssef, A. El-Gendy, and S. Kamel, “Evaluation of corn husk fibers reinforced recycled low density polyethylene composites,” Materials Chemistry and Physics, Vol.152, pp. 26-33, 2015.
  25. [25] M. Munaro and L. Akcelrud, “Correlations between composition and crystallinity of LDPE/HDPE blends,” J. of Polymer Research, Vol.15, Issue 1, pp. 83-88, 2008.
  26. [26] G. Matsuba, K. Shimizu, H. Wang, Z. Wang, and C. C. Han, “Kinetics of phase separation and crystallization in poly(ethylene-ran-hexene) and poly(ethylene-ran-octene),” Polymer, Vol.44, Issue 24, pp. 7459-7465, 2003.
  27. [27] A. Larena, F. Millan, G. Perez, and G. Pinto, “Effect of surface roughness on the optical properties of multilayer polymer films,” Applied Surface Science, Vol.187, Issues 3-4, pp. 339-346, 2002.
  28. [28] H. Hassan, N. Regnier, C. Pujos, E. Arquis, and G. Defaye, “Modeling the effect of cooling system on the shrinkage and temperature of the polymer by injection molding,” Applied Thermal Engineering, Vol.30, Issue 13, pp. 1547-1557, 2010.
  29. [29] S. Fathi and A. H. Behravesh, “Visualization of in-mold shrinkage in injection molding process,” Polymer Engineering and Science, Vol.47, Issue 5, pp. 750-756, 2007.
  30. [30] Y. Liu and M. Gehde, “Effects of surface roughness and processing parameters on heat transfer coefficient between polymer and cavity wall during injection molding,” The Int. J. of Advanced Manufacturing Technology, Vol.84, Issues 5-8, pp. 1325-1333, 2016.
  31. [31] T. C. Chang, “Shrinkage behavior and optimization of injection molded parts stuided by the Taguchi method,” Polymer Engineering and Science, Vol.41, Issue 5, pp. 703-710, 2001.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Apr. 18, 2024