Paper:
Gas/Liquid Phase Change Actuator for Use in Extreme Temperature Environments
Hiroki Matsuoka and Koichi Suzumori
Okayama University, 3-1-1 Tsushima-naka, Okayama 700-8530, Japan
- [1] K. Suzumori, “Expectations about new actuators,” Trans. Jpn Soc. Mech. Eng. Ser. C, Vol.77, No.778, pp. 2412-2419, 2011. (in Japanese)
- [2] A. Aliev, et al., “Giant-stroke, superelastic carbon nanotube aerogel muscles,” Science, 20, Vol.323, #5921, pp. 413-424, 2009.
- [3] H. Takeda, E. Li, T. Nishida, T. Hoshina, and T. Tsurumi, “Development of environmentally friendly lead-free piezoelectric materials for actuator uses,” Next-Generation Actuators Leading Breakthroughs, pp. 425-438, 2010.
- [4] H. Hosoda, “Martensitic transformation of TiAu high temperature shape memory alloys,” Proc. Act., pp. 896-897, 2006.
- [5] D. Yamaguchi, T. Kanda, and K. Suzumori, “An ultrasonic motor for cryogenic temperature using bolt-clamped Langevin-type transducer,” Sensors and Actuators A, Vol.184, pp. 134-140, 2012.
- [6] D, Yamaguchi, T. Kanda, and K. Suzumori, et al., “An ultrasonic motor for use at ultralow temperature using lead magnesiumniobate-lead titanate single crystal,” Jpn J. Appl. Phys., 51, 07GE09, 2012.
- [7] D. Yamaguchi, A. Tonokai, T. Kanda, and K. Suzumori, “Light-Driven Actuator Using Hydrothermally Deposited PLZT Film,” IEEJ Trans. on Sensors and Micromachines, Vol.133, No.8, pp. 330-336, 2013.
- [8] A. Kitagawa, H. Wu, H. Tsukagoshi, and S.-H. Park, “Development of a portable pneumatic power source using phase transition at the triple point,” Trans. Jpn Fluid Power Sys. Soc., Vol.36, No.6, pp. 158-164, 2005. (in Japanese)
- [9] D. Majoe, et al., “Pneumatic air muscle and pneumatic source for light weight autonomous robots,” WeA209.2, pp. 3243-3250.
- [10] M. Ono, T. Izumi, and S. Kato, “Proposal of a gas-liquid phasechange microactuator and its applications,” Proc. of the ASPE 2005 Annual Meeting, pp. 138-141, 2005.
- [11] DR. Stull, “Vapor pressure of pure substances,” Organic and inorganic compounds. Ind. Eng. Chem., Vol.39, pp. 517-540, 1947.
- [12] AWC. Menzies, “The critical temperature of mercury,” J. Am. Chem. Soc., Vol.35, 1065, 1913.
- [13] HW. Ticks, “Evaluation of vapor-pressure data of mercury, lithium, sodium, and potassium,” J. Chem. Phys., Vol.38, No.8, pp. 1873-1880, 1963.
- [14] DR. Stull, “Inorganic compounds,” Ind. Eng. Chem., Vol.39, pp. 540-550, 1947.
- [15] P. Merardo and GT. Edejer, “Vapor pressures of liquid nitrogen between the triple and critical points,” J. Chem. Eng. Data., Vol.12, No.2, pp. 206-209, 1967.
- [16] AS. Friedman and D. White, “The vapor pressure of liquid nitrogen,” J. Am. Chem. Soc., Vol.72, No.9, pp. 3931-3932, 1950.
- [17] K. Suzumori, H. Matsuoka, and S. Wakimoto, “Novel actuator driven with phase transition of working fluid for uses in wide temperature range,” Proc. 2012 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 616-621, 2012.
- [18] K. Suzumori and D. Matsuoka, “New actuators working at high temperature,” Proc. of the 28TH Annual Conf. of the Robotics Society of Japan, 2010, RSJ2010AC1N1-1. (in Japanese)
- [19] K. Suzumori, H. Matsuoka, and Y. Yamada, “Working fluid phase change actuator for high temperature environment–1st report: proposing driving principle and basic experiment,” Proc. of the 29TH Annual Conf. of the Robotics Society of Japan. 2011, RSJ2011AC3K1-6. (in Japanese)
- [20] H. Matsuoka, K. Suzumori, and Y. Yamada, “Working fluid phase change actuator for high temperature environment–4th report: development of bellow type actuator,” Proc. of the 30TH Annual Conf. of the Robotics Society of Japan. 2012, RSJ2012AC2I2-3. (in Japanese)
- [21] H. Matsuoka and K. Suzumori, “Working fluid phase transition actuator for high temperature environment–3rd report: driving experiment under 180°C environment,” Proc. The 12th. Machine Design and Tribology Division Meeting in JSME. 2012, 65-66. (in Japanese)
- [22] H. Matsuoka and K. Suzumori, “Working fluid phase transition actuator for high temperature environment–2nd report: static property of actuator,” Proc. of the 2012 JSME Conf. on Robotics and Mechatronics. 2012, 2P1-F02. (in Japanese)
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.