Paper:
Modeling, Simulation, and Optimization of Machining Polymer Infiltrated Calcium Polyphosphate
Theodoros Vasilopoulos*, Kaan Erkorkmaz*, Fathy Ismail*,
and Robert M. Pilliar**
*Department of Mechanical & Mechatronics Engineering, University of Waterloo, 200 University Ave West, Waterloo, Ontario, N2L 3G1, Canada
**Faculty of Dentistry, University of Toronto, 124 Edward Street, Toronto, Ontario, M5G 1G6, Canada
- [1] R. C. Ropp, “Inorganic Polymeric Glasses,” Elsevier, Amsterdam, 1992.
- [2] M. Filiaggi, R. M. Pilliar, and J. Hong, “On the Sintering Characteristics of Calcium Polyphosphates,” Key Engineering Materials, Vols.192-195, pp. 171-174, 2001.
- [3] R. M. Pilliar, M. J. Filiaggi, J. D. Wells, M. D. Grynpas, and R. A. Kandel, “Porous Calcium Polyphosphate Scaffolds for Bone Substitute Applications – In Vitro Characterization,” Biomaterials, 22, pp. 963-972, 2001.
- [4] M. D. Grynpas, R. M. Pilliar, M. J. Filiaggi, and R. A. Kandel, “Porous Calcium Polyphosphate Scaffolds for Bone Substitute Applications – In Vivo Characterization,” Biomaterials, 23, pp. 2063-2070, 2002.
- [5] D. Shi, “Biomaterials and Tissue Engineering,” Springer, Berlin-Heidelberg, 2004.
- [6] R. A. Kandel, M. D. Grynpas, R. M. Pilliar, J. Lee, S. D.Waldman, P. Zalzal, and M. Hurtig, “Repair of Osteochondral Defects with Biphasic Cartilage-Calcium Polyphosphate Constructs In a Sheep Model,” Biomaterials, 27, pp. 4120-4131, 2006.
- [7] L. Gan, C. Tse, R. M. Pilliar, and R. A. Kandel, “Low-Power Laser Stimulation of Tissue Engineered Cartilage Tissue Formed on a Porous Calcium Polyphosphate Scaffold,” Lasers Surg Med., Vol.39, pp. 286-293, 2007.
- [8] S. D. Waldman, D. C. Couto, M. D. Grynpas, R. M. Pilliar, and R. A. Kandel, “Multi-Axial Mechanical Stimulation of Tissue Engineered Cartilage,” Eur Cell Mater, Vol.13, pp. 66-73, 2007.
- [9] K. Allan, R. M. Pilliar, J. Wang, M. D. Grynpas, and R. A. Kandel, “Formation of Biphasic Constructs Containing Cartilage with a Calcified Zone Interface,” Tissue Engineering, Vol.13, pp. 167-77, 2007.
- [10] C. Wei, “Rapid Fabrication Techniques for Anatomically-Shaped Calcium Polyphosphate Substrates for Implants to Repair Osteochondral Focal Defects,” M.A.Sc. Thesis, University of Waterloo, Waterloo, Canada, 2007.
- [11] Y. Shanjani, J. N. A. De Croos, R. M. Pilliar, R. A. Kandel, and E. Toyserkani, “Solid Freeform Fabrication and Characterization of Porous Calcium Polyphosphate Structures for Tissue Engineering Purposes,” J. of Biomedical Materials, Vol.93B/2, pp. 510-519, 2010.
- [12] A. Rouzrokh, C. Y. H. Wei, K. Erkorkmaz, and R. M. Pilliar, “Machining Porous Calcium Polyphosphate Implants for Tissue Engineering Applications,” Int. J. of Automation Technology – Special Issue on Modeling and Simulation of Cutting Processes, Vol.4, No.3, pp. 291-301, 2010.
- [13] T. Kasuga, M. Terada, and M. Nogami, “Machinable Calcium Pyrophosphate Glass-Ceramics,” J. of Materials Research, Vol.16, Issue 3, pp. 876-880, 2001.
- [14] T. Kasuga, M. Nogami, and M. Niinomi, “Novel Machinable Calcium Phosphate Glass-Ceramics for Biomedical Use,” Materials Science Forum, Vols.426-432, pp. 3183-3188, 2003.
- [15] K. L. Chelulea, T. J. Cooleb, and D. G. Cheshire, “An Investigation into the Machinability of Hydroxyapatite for Bone Restoration Implants,” J. of Materials Processing Technology, Vol.135, Issues 2-3, pp. 242-246, 2002.
- [16] Y. B. Guo and M. Salahshoor, “Process mechanics and surface integrity by high-speed dry milling of biodegradable magnesiumcalcium implant alloys,” Annals of CIRP, Vol.59, No.1, pp. 151-154, 2010.
- [17] R. M. Pilliar, R. A. Kandel, and M. D. Grynpas, “Porous Calcium Polyphosphates for Musculoskeletal Repair and Regeneration,” Invited Plenary Presentation, Bioceramics 22, Daegu, Korea, Oct 26-29, 2009.
- [18] A. Dudi and M. Papini, “Design of a Prototype Bioresorbable Tibial Implant in a Sheep Model,” Proc. of the 21st Canadian Congress of Applied Mechanics (CANCAM’07), Toronto, June 3-7, 2007.
- [19] M. Effgen, F. Pusavec, and I. S. Jawahir, “An Investigation of Sustained Machining Performance for Controlled Surface Quality Requirements in Porous Tungsten,” Proc. of IEEE Vacuum Electronics Conf., Monterey 22-24 April, pp. 293-294, 2008.
- [20] J. R. Kelly and J.M. Antonucci, “Processing and Properties of Interpenetrating Phase Composites,” Polymer Preprints, Vol.38, pp. 125-126, 1997.
- [21] D. R. Clark, “Interpenetrating Phase Composites,” J. of the American Ceramic Society, Vol.75, Issue 4, pp. 739-759, 1992.
- [22] L. Yang, J. Wang, J. Hong, J. P. Santerre, and R. M. Pilliar, “Synthesis and Characterization of a Novel Polymer-Ceramic System for Biodegradable Composite Applications,” J. of Biomedical Materials Research, Vol.66A, Issue 3, pp. 622-632, 2003.
- [23] M. S. Phadke, “Quality Engineering Using Robust Design,” Prentice-Hall, New Jersey, 1995.
- [24] Y. Altintas, “Manufacturing Automation: Principles of Metal Cutting and Machine Tool Control,” Cambridge University Press, UK, 2000.
- [25] E. Budak, Y. Altintas, and E. J. A. Armarego, “Prediction ofMilling Force Coefficients from Orthogonal Cutting Data,” ASME J. Manufacturing Science and Engineering, Vol.118, pp. 216-224, 1996.
- [26] T. Vasilopoulos, “High Productivity Milling of Calcium Polyphosphate,” M.A.Sc. Thesis, University of Waterloo, Waterloo, Canada, 2012.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.