Paper:
Compensation of Thermo-Dependent Machine Tool Deformations Due to Spindle Load Based on Reduced Modeling Effort
Christian Brecher and Adam Wissmann
Laboratory for Machine Tools and Production Engineering, RWTH Aachen University, Manfred-Weck Haus, 19 Steinbachstrasse, Aachen 52074, Germany
- [1] C. Brecher, F. Hoffmann, T. Gerrath, L. Schapp, M. Weck, and P. Hirsch, “Messtechnische Untersuchung von Prozess und Maschine, Beurteilung und Abnahme von Werkzeugmaschinen (ab 1960),” in: M. Weck (Ed.) 100 Jahre Produktionstechnik, Springer-Verlag, Berlin Heidelberg, pp. 437-448, 2006.
- [2] G. Spur, E. Hoffmann, Z. Palunicic, K. Benzinger, and H. Nymoen, “Thermal Behaviour Optimization ofMachine Tools,” Annals of the CIRP Manufacturing Technology, Vol.37, pp. 401-405, 1988.
- [3] K. Großmann and G. Jungnickel, “Prozessgerechte Bewertung des thermischen Verhaltens von Werkzeugmaschinen,” first (Ed.) Technische Universität Dresden, Dresden, 2006.
- [4] R. Ichimiya, K. Yokoyama, and Y. Watanabe, “Experimental Study on Thermal Deformations of Machine Tool,” first (Ed.) Niigita University, Niigita, 1976.
- [5] U. Heisel, “Ausgleich thermischer Deformationen an Werkzeugmaschinen,” first (Ed.) Technische Universität Berlin, Berlin, 1980.
- [6] J. Yang, “Thermal Error Mode Analysis and Robust Modelling for Error Compensation on a CNC Turning Centre,” Int. J. of Machine Tools & Manufacture, Vol.39, pp. 1367-1381, 1999.
- [7] D. S. Lee, J. Y. Choi, and D. H. Choi, “ICA Based Thermal Source Extraction and Thermal Distortion Compensation Method for a Machine Tool,” Int. J. of Machine Tools & Manufacture, Vol.43, pp. 589-597, 2003.
- [8] S. R. Postlethwaite, “The Use of Thermal Imaging, Temperature and Distortion Models for Machine Tool Thermal Error Correction,” Proc. of the institution of mechanical engineers, Vol.212, pp. 671-679, 1998.
- [9] C. Lo, J. Yuan, and J. Ni, “Optimal Temperature Variable Selection by Grouping Approach for Thermal Error Modelling and Compensation International,” J. of Machine Tools and Manufacture, Vol.39, pp. 1383-1396, 1999.
- [10] J. S. Chen, “Neural network-based modelling and error compensation of thermally-induced spindle errors,” The Int. J. of Advanced Manufacturing Technology, Vol.12, pp. 303-308, 1996.
- [11] M. Mitsuishi, T. Okumura, T. Nagao, and Y. Hatamura, “Active Thermal Deformation Compensation Based on Internal Monitoring and a Neural Network,” Advancement of intelligent production, pp. 215-220, 1994.
- [12] C. D. Mize and J. C. Ziegert, “Neural network thermal error compensation of a machining center,” Precision engineering, Vol.24, pp. 338-346, 2000.
- [13] N. Srinivasa and J. C. Ziegert, “Automated measurement and compensation of thermally induced error maps in machine tools,” Precision engineering, Vol.19, pp. 112-132, 1996.
- [14] U. Heisel and T. Stehle, “Fuzzy-Logik zur Bestimmung des thermischen Verhaltens. Berechnung thermischer Verlagerungen an Werkzeugmaschinen und Möglichkeiten zur Kompensation Teil 2,” Die Maschine, 51, pp. 52-56, 1997.
- [15] J.-H. Lee and S.-H. Yang, “Thermal ErrorModeling of a Horizontal Machining Center Using Fuzzy Logic Strategy,” J. of Manufacturing Processes, Vol.3, pp. 120-127, 2001.
- [16] K.-C. Wang, P.-C. Tseng, and K.-M. Lin, “Thermal Error Modeling of a Machining Center Using Grey System Theory and Adaptive Network-Based Fuzzy Inference System,” Int. J. Series C Mechanical Systems, Machine Elements and Manufacturing, Vol.49, pp. 1179-1187, 2006.
- [17] T. Moriwaki and E. Shamoto, “Analysis of Thermal Deformation of an Ultra Precision Air Spindle System,” CIRP Annals, Vol.47, pp. 283-286, 1996.
- [18] C. Brecher, P. Hirsch, and M. Weck, “Compensation of Thermoelastic Machine Tool Deformation Based on Control internal Data,” CIRP Annals, Vol.53, pp. 299-304, 2004.
- [19] O. Horejs, M. Mares, P. Kohut, P. Barta, and J. Hornych, “Compensation of Machine Tool Thermal Errors Based on Transfer Functions,” MM Science J., pp. 162-165, 2010.
- [20] S. Fraser, M. Attia, and M. Osman, “Modelling, Identification and Control of Thermal Deformation of Machine Tool Structure, Part 1: Concept of Generalized Modelling,” J. of Manufacturing Science and Engineering, Vol.120, pp. 623-631, 1998.
- [21] T. Moriwaki, “Thermal Deformation and Its On-Line Compensation of Hydrostatically Supported Precision Spindle,” Annals of the CIRP, Vol.37, pp. 393-396, 1988.
- [22] J. S. Chen, J. X. Yuan, J. Ni, S. M. Wu, “Real-time compensation for time-variant volumetric errors on a machining center,” J. of Engineering for Industry, Vol.115, pp. 472-479, 1993.
- [23] K. Grosmann and G. Jungnickel, “Genauigkeitssteigerung an Werkzeugmaschinen,” ZWF, 94, pp. 320-323, 1999.
- [24] C. Brecher and A. Wissmann, “Stressing Unit for Modelling of Thermal Behaviour of a Milling Machine,” Proc. of the 12th CIRP Conf. on Modelling of Machining Operations, pp. 727-730, 2009.
- [25] C. Brecher and A.Wissmann, “Modelling of Thermal Behaviour of a Milling Machine Due to Spindle Load,” Proc. of the 12th CIRP Conf. on Modelling of Machining Operations, pp. 673-678, 2009.
- [26] C. Brecher and A. Wissmann, “Optimierung des thermischen Verhaltens von Fräsmaschinen,” Zeitschrift für wirtschaftlichen Fabrikbetrieb, Vol.6, pp. 437-441, 2009.
- [27] D. Abel, “Regelungstechnik,” 33th (Ed.) Verlag Mainz, Aachen, 2009.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.