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The perception of the surrounding circumstances is an
essential task for fully autonomous driving systems,
but its high computational and network loads typi-
cally impede a single host machine from taking charge
of the systems. Decentralized processing is a candi-
date to decrease such loads; however, it has not been
clear that this approach fulfills the requirements of on-
board systems, including low latency and low power
consumption. Embedded oriented graphics process-
ing units (GPUs) are attracting great interest because
they provide massively parallel computation capac-
ity with lower power consumption compared to tradi-
tional GPUs. This study explored the effects of decen-
tralized processing on autonomous driving using em-
bedded oriented GPUs as decentralized units. We im-
plemented a prototype system that off-loaded image-
based object detection tasks onto embedded oriented
GPUs to clarify the effects of decentralized processing.
The results of experimental evaluation demonstrated
that decentralized processing and network quantiza-
tion achieved approximately 27 ms delay between the
feeding of an image and the arrival of detection results
to the host as well as approximately 7 W power con-
sumption on each GPU and network load degradation
in orders of magnitude. Judging from these results,
we concluded that decentralized processing could be
a promising approach to decrease processing latency,
network load, and power consumption toward the de-
ployment of autonomous driving systems.

Keywords: decentralized processing, autonomous vehi-
cles, graphics processing unit (GPU), image processing
1. Introduction

Autonomous driving is attracting considerable interest

owing to its potential as a promising solution to trans-
portation problems, including serious traffic accidents and
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declining quality of life caused by the lack of means for
personal transportation in aging societies. Typically, au-
tonomous driving systems mainly consist of three kinds of
tasks: perception, planning, and control. Society of Auto-
motive Engineers (SAE) International in the U.S.A. pub-
lished “Levels of Driving Automation” (SAE J3016) [1]
in 2016, and various counterparts have been defined in
many nations (e.g., Society of Automotive Engineers of
Japan (JSAE) established “Taxonomy and definitions for
terms related to driving automation systems for On-Road
Motor Vehicles” [2] in 2018). In such definitions, systems
classified into level three and above primarily account for
driving operations. Perception tasks receive data captured
by external sensors, including cameras as well as light
detection and ranging (LiDAR) units, as input and per-
form semantic understanding regarding the surrounding
circumstances of ego vehicles. Although typical percep-
tion tasks are computationally intensive and receive large
quantities of data as input, the long processing time for
them is not tolerated by systems classified into level three
and above, because the output of the tasks becomes input
for following planning and control tasks. When consid-
ering the actual deployment of autonomous driving sys-
tems, a vehicle mounted system that performs online pro-
cessing has severe limitations, including low power and
computation resource consumption. Perception tasks suf-
fer from these limitations, and the trade-off between the
limitation and processing speed is concerned. Moreover,
the system scaling should also be concerned. To ensure
the safety of autonomous driving by sensing the surround-
ing circumstances of ego vehicles, multiple external sen-
sors should be used. As the number of external sensors
increases to eliminate blind spots, data quantity to be pro-
cessed increases drastically, and the required computation
resources increase as well. To realize safety autonomous
driving systems, tolerance against this data quantity scal-
ing is essential.

Embedded oriented graphics processing units (GPUs),
including Jetson series [a—d] supplied by NVIDIA Corp.
and Mali series [e] designed by ARM Ltd., have received
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Table 1. Comparison of several Jetson series.

Vision-Based Sensing Systems for Autonomous Driving

1

TX1 TX2 AGX Xavier Nano
Release 2016 2017 2018 2019
Number of GPU core 256 256 512 128
Number of tensor cores - - 64 -
GPU architecture Maxwell Pascal Volta Maxwell
Memory amount 4GB 8 GB 16 GB 4GB
Power Under 10 W T5W/15W I0OW/15W/30W SW/10W
Deep learning accelerator = - 2x NVDLA Engines -

much attention because they provide massively paral-
lel computation capacity with lower power consumption
compared to traditional GPUs. In particular, Jetson se-
ries have been developed as embedded platforms for au-
tonomous machines. Although Jetson series are powerful
devices, no single Jetson is supposed to be sufficient to
deal with all tasks composing autonomous driving sys-
tems, because huge quantities of data and computational
resources are required for the whole system and they may
exceed the capacity of a single Jetson. However, data and
computation resources that should be consumed by a host
machine can be suppressed by constructing a decentral-
ized system that off-loads parts of perception tasks onto
edge devices, such as Jetson, and feeds solely processed
results to the host. Although there have been works [3—
6] regarding the processing performance on edge devices,
they are focused solely on processing time, which is a de-
lay on the internal edge (i.e., many studies tend to focus on
non-system-wide performance). Therefore, there is still
need for discussing problems that may occur when intro-
ducing decentralized processing into autonomous driving,
including the delay caused by data transfer, the through-
put of the whole system, and the tolerance against system
scaling.

To this end, we constructed a prototype of a decentral-
ized processing system that off-loaded parts of perception
tasks for autonomous driving onto edge devices and ex-
plored the processing performance of the whole system,
including the delay caused by introducing decentralized
processing. Based on evaluation results, we discussed the
validity of decentralized processing for autonomous driv-
ing systems. As mentioned above, typical autonomous
driving systems consist of perception, planning, and con-
trol tasks. If the computational burden of all tasks concen-
trates on a specific unit (i.e., centralized unit) in a system,
it may degrade the whole system throughput that causes
serious traffic accidents in the autonomous driving con-
text. Especially, typical perception tasks tend to consume
a large amount of computational resources since they are
computationally intensive. Therefore, the main aim of our
decentralized processing system is to avoid concentrating
computational burden to a specific location in a whole au-
tonomous driving system.

The main contributions of our study are:
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« We measured the system-wide-delay of an object de-
tection task with and without decentralized process-
ing and discussed the validity of the decentralized
processing for the perception tasks of autonomous
driving systems.

« We measured various factors that are concerned for
autonomous driving systems, including the resource
consumption and the processing speed of the object
detection task on edge devices.

« We evaluated the effect of network quantization on
multiple embedded oriented GPU series. The re-
sults demonstrated that network quantization with
lower operation precision did not always achieve bet-
ter performance in some cases.

This study makes a novel contribution to the literature
by exploring the benefits and effects of introducing de-
centralized processing to autonomous driving systems by
constructing a prototype system. We believe that the pre-
sented results could be helpful for considering decentral-
ized processing on the actual deployment of autonomous
driving systems.

The remainder of this paper is organized as follows.
Section 2 examines previous related research on applica-
tions using Jetson. Section 3 describes the system model
and assumptions of this study. Section 4 presents the im-
plementation details, including the implementation plat-
forms and techniques for network quantization, of this
study. The evaluation regarding the above contributions
is discussed in Section 5, and the conclusion and sugges-
tions for future work are presented in Section 6.

2. Related Works

NVIDIA Corp. provides the Jetson series to meet vari-
ous requirements, including computing performance and
power consumption limitation. Table 1 shows the com-
parison of the specification summaries of several Jetson
series. The Jetson series have attracted attention as de-
vices that accomplish high computing performance and

1. Partially cited from https://developer.nvidia.com/embedded/develop/
hardware [Accessed January 24, 2021] and modified.
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low power consumption simultaneously, and some stud-
ies have been published.

In [4], the authors studied porting deep learning (DL)
approaches to a small and power efficient device. They fo-
cused on pedestrian detection using DL and analyzed the
suitability of the Jetson TX1 mounted on a mobile robot in
comparison with a high performance GPU. They also in-
vestigated the effect of changing the operation precision
utilized in the convolutional neural network (CNN) for
pedestrian detection from typical 32-bit floating point to
16-bit floating point, thereby resulting in 15 times acceler-
ation on processing. [5] proposed an unmanned aerial ve-
hicle warning system using onboard and real-time object
detection. To fulfill the requirements of the system, such
as minimal power consumption, limited onboard process-
ing power, and minimal weight, the authors of [5] em-
ployed Jetson TX2. The authors of [6] evaluated various
algorithms of visual simultaneous localization and map-
ping, which estimate the self-localization of mobile robots
by using Jetson TX2. They reported that, by employing
the embedded GPU, the CPU load decreases and the pro-
cessing speed improves.

Including these related works, many evaluation results
and onboard processing systems for perception tasks us-
ing Jetsons have been reported. Many of them focus on
the processing time of a single task executed on a Jetson.
In other words, they treat embedded oriented GPU units
as the host processors of the systems, not edge devices.
As mentioned in Section 1, such units are not sufficient
enough to be the hosts of fully autonomous driving sys-
tems. However, we may leverage embedded oriented
GPU units when applying them to autonomous driving
systems as edge devices, whereas the influence regard-
ing system integration, including the delay caused by in-
troducing them as decentralized processing platforms, re-
mains unclear. Furthermore, few previous works imple-
menting Jetson AGX Xavier have been conducted because
it is an emerging device relative to the other Jetson se-
ries. In this study, we explored the influence of intro-
ducing Jetson AGX Xavier as a decentralized processing
platform and discussed the validity of decentralized pro-
cessing on perception for autonomous driving systems.

3. Model and Assumptions

In this section, we present the model and assumptions
of our study. We consider it is improper to apply decen-
tralized processing to all perception tasks that arise in au-
tonomous driving systems since its validity depends on
processing contents. The target types of perception tasks
in this study are assumed to have some attributes: “all di-
rection sensing” and “tasks divisible into subtasks,” which
are frequently emerged ones in the context of autonomous
driving. This is because we employed an architecture that
divided perception tasks for surrounding circumstances
(i.e., all direction) into subtasks and off-loaded them onto
decentralized units.

As a target of evaluation, we assumed a model that con-
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Fig. 1. System model of our study.

sisted of one host PC and multiple Jetsons connected to
cameras individually. Every Jetson performed object de-
tection on images captured by the connected cameras, and
all the detection results were concentrated at the host PC
via network. Fig. 1 depicts an overview of the model. As
shown in Fig. 1, the host PC is connected to the Jetsons
via a hub, and every Jetson is solely in charge of pro-
cessing for the one specified camera. We consider this
configuration is a typical one for a decentralized process-
ing system for perception. By evaluating the performance
of this configuration, we explore the validity of decen-
tralized processing. Image-based object detection is one
of the perception tasks that are suited to acceleration us-
ing GPU. One-stage detectors presented in recent years,
including Single Shot MultiBox Detector (SSD) [7] and
You Look Only Once (YOLO)v3 [8], perform bounding
box proposal and classification in one network and make
an object detection task run in almost real time. These
CNNs contain computationally intensive operations, and
the massively parallel computation capability of GPU un-
derlays the fast processing of such operations. We em-
ployed YOLOvV3-416 [8] written in TensorRT [f] as an
object detection task that is executed on every Jetson. For
decentralized processing, it would be common to assign
tasks according to the processing capacity and network
bandwidth of each decentralized processing unit. How-
ever, if we divided the perception of surrounding circum-
stances into subtasks perceiving a small region and after-
ward distributed those subtasks onto decentralized units,
each unit would theoretically own equal load. Addi-
tionally, the processing capacity and network bandwidth
of each decentralized unit should be equal since we as-
sumed uniform series (i.e., Jetson) as the units. Hence, in
our model, we distributed uniform subtasks of perception
onto all decentralized units and did not consider compli-
cated task assignments.

We utilized Jetson AGX Xavier [c] as decentralized
processing platforms. The Jetson series consists of the
CPU, GPU, dynamic random access memory (DRAM),
and power management integrated circuit (PMIC), and
they are intended to run various applications fast with
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Table 2. Part of the power mode preset for Jetson AGX
Xavier.2 Mode “15 W is the factory default.

Property Mode name

EDP 1I0W 15W
Power budget n/a I0W 15W
Mode ID 0 1 2
Online CPU 8 2 4
CPU max freq. [MHz] 2265.6 1200 1200
GPU TPC? 4 2 4
GPU max freq. [MHz] 1377 520 670
DLA* cores 2 2 2
DLA max freq. [MHz] 13952 550 750
VA? cores 2 0 1
VA max freq. [MHz] 1088 0 550

Memory max freq. [MHz] 2133 1066 1333

low power consumption. In addition to the massively
parallel computation capacity of GPUs, the combination
with TensorRT [f] is effective, especially to accelerate in-
ference processing with deep neural networks (DNNs).
TensorRT is a software development kit (SDK) that is
provided by NVIDIA Corp. and maximizes the through-
put using network quantization, which is an emerging
technique to accelerate the inference speed of DNNS.
The Jetson series can configure system settings, includ-
ing the operating frequency and the number of online
cores, through software. Although users can set their
values for those configurations, some presets are avail-
able; this function is called power mode. These pre-
sets are useful to balance between computation power
and power consumption, because the power consumed by
Jetson can be roughly estimated according to each mode.
This estimated power consumption is also referred to as
power budget. Seven presets are available for Jetson AGX
Xavier, and Table 2 presents some of them.

4. Implementation

This section presents schemes for the decentralized
processing system. First, we describe the platforms and
their features to build the decentralized processing sys-
tem. Second, we explain the techniques regarding DL
inference on GPUs to provide how we accelerate infer-
ence to achieve real-time object detection. The rest of
this section presents the configurations of the decentral-
ized processing platform to explore the performance of
the system.

2. Cited  from  https://github.com/dusty-nv/jetson-presentations/blob/
master/20181004 _Jetson_ AGX _Xavier_New_Era_Autonomous_
Machines.pdf [Accessed January 24, 2021]

. TPC: Texture Processor Cluster.

. DLA: Deep Learning Accelerator.

. VA: Vision Accelerator.

[T SOV}
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4.1. Robot Operating System (ROS)
Implementation

We deployed ROS [9] and Autoware [10,g] as plat-
forms to implement the decentralized processing system.
ROS is a middleware that provides useful tools and li-
braries to develop robot applications. It is well suited to
decentralized processing because it employs a publisher-
subscriber model to implement interprocess communica-
tion. Owing to this characteristic, functions consisting of
a system such as camera drivers and object detectors can
be developed as modules and easily connected to each
other to work cooperatively. Autoware is open-source
software for autonomous driving based on ROS. It con-
tains modules that implement functions for perception,
planning, and control for autonomous driving, including
driver programs for various types of cameras. We em-
ployed a camera driver module provided by Autoware to
acquire images from each camera.

In the field of ROS, the term “node” refers to an indi-
vidual component module that constructs a system and the
term “topic” refers to actual data that are published (i.e.,
transmitted) by nodes. Users can attach a timestamp to a
topic programmatically. In our proposed system, camera
drivers attach the current time at every publishing to im-
age topics. Object detection nodes inherit the timestamp
of subscribed (i.e., received) image topics and attach them
to the corresponding output topics. To notice the commu-
nication and processing delays, we compared the times-
tamps of the topic published by the detection nodes and
the instantaneous times at which an evaluation node re-
ceived the topics. By subtracting these timestamps from
the receiving times, we obtained the delays from image
acquisition to the arrival of detection result to the host.
In addition, to synchronize time between the host and
the Jetsons, we installed a network time protocol (NTP)
server on the host and NTP clients on each Jetson.

4.2. DL Inference Using TensorRT and Network
Quantization

As mentioned in Section 3, we employed YOLOV3
written in TensorRT for the proposed system. TensorRT
is an SDK for high performance DL inference provided
by NVIDIA Corp. To improve inference performance,
this SDK adjusts existing trained models against GPUs on
which the models will be run. Changing operation preci-
sion is one of the adjustments performed by TensorRT. Al-
though all the calculations on inference are performed in
single float precision (FP32) by default, some of the cal-
culations can be replaced by half float precision (FP16) or
8-bit integer precision (INT8) by explicitly specifying on
execution. If operation precision is changed to FP16 or
INTS, TensorRT generates an inference engine adjusted
for the specified precision. By using the generated en-
gine for inference, it is expected to improve the through-
put and decrease the resource consumption [f]. Since
NVIDIA Corp. has recently released some GPUs that con-
tain exclusive cores to process INT8 operations, the oper-
ation throughput may be significantly improved and the
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resource consumption may be degraded solely by shifting
the operation precision to INT8. Because the available
value range and granularity are quite different between
single float precision and 8-bit integer precision, calibra-
tion is required to generate an INTS inference engine. In
the calibration process, TensorRT executes an FP32 in-
ference engine for multiple inputs to explore the value
range that the FP32 engine has actually taken internally
and scales the range value into the 8-bit integer range.
We also evaluated the amount of resource consumption
and detection performance in each case of using FP32 and
INTS inference engines. To generate the INT8 inference
engine, we used the 2017 validation image set [h] in MS
COCO [11] for calibration.

4.3. Jetson Settings

To explore the potential capability of our system, we
measured the minimum delays that could be achieved
when Jetsons ran at full capacity. Additionally, we mea-
sured pure changes in power consumption when the oper-
ation precision was changed. To this end, we set the power
budget of Jetsons to “n/a” (i.e., mode name “EDP” in Ta-
ble 2). We will demonstrate the effects of power budget
settings on the performance of the object detection task in
Section 5.5.

5. Evaluation

To quantify the performance of the proposed system,
which is a decentralized processing system for the envi-
ronment perception of autonomous driving, we evaluated
the following items:

1. Delays depending on the presence of decentralized
processing.

2. Effects of network quantization on resource and
power consumption.

3. Limitation of centralized processing.

4. Effects of network quantization on detection perfor-
mance using different series of the edge device.

5.1. Experimental Setup
We deployed the following setups to evaluate our sys-
tem.
Host PC (centralized environment)

o CPU: Intel core i7-8750H @ 2.20 GHz (12 core /
24 thread)

e Memory: 16 GB

e GPU: NVIDIA GeForce GTX 1060M (1280
CUDA Cores, 6 GB Memory)

Jetson AGX Xavier (decentralized environment)
o CPU: ARM v8.2 64-Bit
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Fig. 2. Connection diagram for evaluating data delays on
decentralized processing. In each case, we oft-loaded cam-
era driver and object detection modules to the edge devices
to measure the effect of decentralized processing.

e Memory: 16 GB
« GPU: NVIDIA Volta GPU (512 CUDA Cores
with 64 Tensor Cores)

Jetson Nano (for comparison)

« CPU: ARM A57 64-Bit

« Memory: 4 GB

o GPU: NVIDIA Maxwell GPU (128 CUDA Cores)

Cameras

o FLIR Systems, Inc. Blackfly S GigE
o Frame rate: 20 fps
« Image size: 1280 (W) x 960 (H) x 3 (byte/pixel)

Hub

« NETGEAR GS108PEv3

« Number of 10/100/1000 Base-T RJ45 ports: 8
(4 PoE 802.3af Ports included)

Object detection result

« Self-defined ROS topic

« Approximately 1 KB per detected object, includ-
ing bounding box, detection score, and detected
object’s category

5.2. Delays Depending on the Presence of
Decentralized Processing

Figure 2 depicts a connection diagram of the evalua-
tions. Measured delays are as follows:
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processing.

e Case I:
Elapsed time until the host PC subscribed the images
published by a camera driver node running on the
same host.

e Case 2:
Elapsed time until the host PC subscribed the ob-
ject detection results published by an object detec-
tion node running on the same host. A camera driver
node was also running on the same host in this case.

e Case 3:
Elapsed time until the host PC subscribed the images
published by a camera driver node running on the
edge device.

o Case 4:
Elapsed time until the host PC subscribed the ob-
ject detection results published by an object detec-
tion node running on the edge device. A camera
driver node was running on the edge device in this
case.

In that evaluation, we set the capture rate of every cam-
era to 20 fps. We assumed that this capture rate was
enough for autonomous driving systems, because some
kinds of sensor devices, such as 360° LiDAR units, work
at 10 fps, and the systems must work in synchrony with
these devices. To measure each delay, we took subtrac-
tions between the timestamps of target topics (i.e., the
time at which the image data were fed to the system by
the driver node) and the moment at which the host PC re-
ceived these topics, as described in Section 4.1. Since we
implemented the system through ROS, image data were
not available to the other functions (i.e., the other ROS
nodes) until the camera driver node fed the data to the
ROS network. Hence, the delays we measured represent
the elapsed time between the moment when the image
data were available and the moment when the desired data
reached the host. Fig. 3 indicates the delays measured in
each case of Fig. 2. In Case 1, in which image data were
published and subscribed inside the host, the delay was
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Fig. 4. GPU computational resource utilization in different
operation precisions, in cases which object detections are ex-
ecuted on the host (left) and on the edge device (right).

approximately 1.47 ms on average. In Case 3, in which
image data were published by the edge device and sub-
scribed by the host, the delay was approximately 10.4 ms
on average. This corresponds to the delay of image trans-
fer when solely the camera driver was off-loaded to the
edge device (i.e., decentralized unit). We observed that
the simple off-loading of the camera driver increased the
delay by approximately ten times. Since systems using
decentralized processing sometimes suffer from this kind
of delay, system-wide evaluation should be considered to
benefit from decentralized processing. When publishing
images and object detection were performed on a single
host, which corresponds to Case 2, the measured aver-
age delay was approximately 21.0 ms. We can assume
that this delay roughly corresponds to the elapsed time for
the object detection task. However, as the exact elapsed
time for the object detection task should vary depending
on the GPUs, we measured Case 4 to derive the total de-
lay when the camera driver and object detection modules
were off-loaded to the edge device. When publishing im-
ages and object detection were performed on the edge de-
vice (Case 4), it took approximately 27.0 ms to reach the
detection results to the host. Although the largest delay
was observed in Case 4, the measurements revealed that
the results of object detection could reach the host with-
out frame drop even though it was off-loaded to the de-
centralized edge devices if the capture rate of the camera
was 20 fps (= 50 ms/frame).

5.3. Effects of Network Quantization on Resource
and Power Consumption

Figure 4 depicts the consumption of GPU computa-
tional resources on each platform when FP32 and INTS8
inference engines were exploited. The left side of the
figure indicates the measurement results for GPU on the
host, and the right side is for GPU on the edge device.
Regarding the host, although approximately 46.8% of the
resources were occupied when the FP32 inference engine
was in operation, it decreased to approximately 27.8%
when the INT8 inference engine was in operation. Re-

691



Hirabayashi, M. et al.

—_—
5000 + —1
o [ae]
S =3
2 4000 o
(o2} [
© %2}
g =
> _—
g. 3000 4 é_
: :
£ 2000 £
o] 9]
& g
1000 2
T T T T
FP32 INT8 FP32 INT8
Host Edge

Fig. 5. GPU memory utilization in different operation pre-
cisions measured during the same experiments in Fig. 4.

garding the edge device, it was approximately 86.3% and
34.4% on average for the FP32 and INT8 inference en-
gines, respectively. As shown in Fig. 4, the quantized net-
work led to the decreased consumption of the GPU com-
putational resources during inference at both the host and
the edge device. Especially at the edge device, the average
of GPU computational resources consumed by the INT8
inference engine was approximately 2.51 times lower than
that consumed by the FP32 inference engine. The con-
sumption rate was different between the host and the edge
device. This might partially result from the difference in
the number of cores contained in each GPU; however, it
suggests that TensorRT performed different adjustments
for each GPU on the host and the edge device to generate
inference engines.

Figure 5 indicates the memory consumption during the
same experiments in Fig. 4. Note that the measurement
for the host (left side of the figure) indicates the consump-
tion of GPU memory, whereas the measurement for the
edge device (right side of the figure) indicates the con-
sumption of the whole system memory. This is because
there is no available interface to measure solely GPU
memory consumption on the edge device. Reusing GPU
memory region once allocated is generally recommended
to maximize performance, because the allocation of GPU
memory is an expensive operation [i]. The standard devi-
ations of memory consumption observed for both GPUs
were nearly zero. A possible reason is that the memory
region was reused in the engines generated by TensorRT.
Similar to the computational resource, the memory con-
sumption was degraded on both GPUs when the network
was quantized. Especially on the edge device, the con-
sumption was degraded by approximately 1.77 times on
average.

The power consumption of the GPUs on the same ex-
periments in Fig. 4 is illustrated in Fig. 6. We observed
the same trends of the effect of network quantization for
power consumption; it decreased on both GPUs. The low-
est power consumption was 7.31 W on average, which
was achieved by the combination of edge processing and
INTS8 inference engine.
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5.4. Limitation of Centralized Processing

To discover the limitation of centralized processing, we
measured the ROS topic (i.e., object detection results) rate
when we assigned the number of running object detection
nodes from one to six on the host. This measurement was
performed with the setting of Case 2 of Fig. 2. To sim-
ulate a situation where a single host processed data from
multiple cameras, the multiple object detection nodes sub-
scribed images published by a single camera driver node
in this measurement. Fig. 7 indicates the measurement
results. When the number of object detection nodes ex-
ceeded three, the topic rate was lower than 20 fps. Be-
cause we set cameras capture rate to 20 fps, frame drop-
ping occurred. Fig. 8 demonstrates the consumption of
GPU computational resources in this experiment. As
shown in Fig. 7, frame dropping is observed when running
nodes are 4-6, and the average consumptions of GPU re-
sources are over 80% of those situations. This result sug-
gests that centralized processing could decrease the per-
formance of perception tasks if it is in charge of multiple
Sensors.
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Fig. 8. Utilization of GPU computational resource on the host with different number of tasks.

Table 3. Precision and recall comparison of different operation precisions for six specific categories on MS COCO val 2014.

Metrics IoU® range Area’ maxDets® | FP32  INTS8
0.50 All 100 0.552  0.498

0.75 All 100 0.373  0.353

Average precision  0.50:0.95 Small 100 0.098  0.069
0.50:0.95 Medium 100 0.343  0.304

0.50:0.95 Large 100 0.587  0.583

0.50:0.95 All 1 0.237  0.226

0.50:0.95 All 10 0372  0.342

Average recall 0.50:0.95 All 100 0.375 0.344
0.50:0.95 Small 100 0.114 0.077

0.50:0.95 Medium 100 0.381 0.335

0.50:0.95 Large 100 0.645 0.635

5.5. Effects of Network Quantization on Detection
Performance Using Different Series of the
Edge Device

The effects on detection accuracy and speed by chang-
ing the operation precision of the network are evaluated
in this section. Additionally, we compare the execution
time of object detection using different series of Jetson in
the latter part of this section. Although Jetson Nano has a
smaller body and lower power consumption, Jetson AGX
Xavier is superior in terms of the computation power as-
pect. By comparing these two, we explore a more appro-
priate one for the edge devices of our model.

Table 3 indicates the average precisions and average re-
calls of object detection achieved by FP32 and INTS infer-
ence engines. We employed MS COCO 2014 validation
image set [j] to calculate average precisions and recalls.
To simulate the environment perception of autonomous
driving, we utilized data that belong to solely six cate-

6. IoU: Intersection over union.
7. According to https://cocodataset.org//#detection-eval [Accessed January
24,2021], the definition of object area sizes are as follows:

small: area < 322 pixel
medium: 322 < area < 967 pixel

large: 967 pixel < area.
8. maxDets: thresholds on max detections per image.
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gories (car, pedestrian, bus, truck, bicycle,
motorcycle) contained in the dataset to calculate these
metrics. The value of each item was slightly lowered af-
ter changing the operation precision from FP32 to INTS.
SSD512 [7], which is another state-of-the-art detector,
achieved mAP-50 = 0.485 on MS COCO 2015 test im-
age set. Although the direct comparison is not fair be-
cause the used dataset was different, the INT8 inference
engine achieved a detection accuracy comparable to the
other state-of-the-art detector.

Figure 9 illustrates the inference times of object de-
tection achieved by each power mode preset using infer-
ence engines with different operation precisions. With
the help of Tensor cores and deep learning accelerators
(DLAS), which can process FP16 and INTS operation fast,
the execution times for every power mode preset were
significantly improved by changing the operation preci-
sion. Furthermore, the execution time difference between
power mode presets was also significant. Therefore, the
difference of the maximum frequencies of GPUs and
DLAs between each power mode preset mainly caused the
performance difference. The power budget “n/a” with the
INTS inference engine achieved approximately 24.5 ms
(=~ 40.8 fps) for average inference time. For compar-
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Fig. 9. Execution time comparison regarding power budget
and operation precision on Jetson AGX Xavier.
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Fig. 10. Execution time comparison regarding power budget
and operation precision on Jetson Nano.

ison, we conducted similar measurements using Jetson
Nano [d]. The results are demonstrated in Fig. 10. Two
power mode presets are provided for Jetson Nano, and
the power budgets for the presets are 5 W and 10 W, re-
spectively (10 W is the factory default). Because Jetson
Nano contains CUDA cores that are four times fewer than
Jetson AGX Xavier, the overall trend of processing speed
was slower compared to Jetson AGX Xavier. Moreover,
changing the operation precision did not improve the in-
ference speed significantly. This is because the genera-
tion of GPUs equipped on Jetson Nano is Maxwell, which
does not contain any Tensor cores and DLAs. From the
point of autonomous driving view, approximately 260 ms
execution time (== 3.8 fps), which is the highest process-
ing speed achieved by Jetson Nano, is hard to accept
as onboard processing delay. Through this comparison,
we concluded that Jetson AGX Xavier was preferable to
Nano until that point.

5.6. Discussion

Here, we discuss the validity of the decentralized pro-
cessing for environment perception tasks for autonomous
driving.
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Table 4. Comparison of network traffic amount w/ and w/o
decentralized processing under our experimental setting.

Approx.
Processing type Breakdown total
[MB/s]
Height Width  byte/
wio [pixgel] [pilxel] p?le fps
decentralized 70
(i.e., centralized) 960 1280 3 20
data-size/ ;
ata-s1ze objects/ fps
y object [KB] frame
w.
decentralized | N 20 0.02N

As shown in the experimental setup, we set the image
size to 1280 (W) x 960 (H) and frame rate to 20 fps as
the camera configuration. We also deployed a self-defined
ROS topic to transfer the object detection results, which
was approximately 1 KB per object. Simplified think-
ing, the amount of data fed to the system by one cam-
era was 1280 (W) x 960 (H) x 3 byte/pixel x 20 fps
= 73728000 ~ 70 MB/s under this configuration. In con-
trast, provided that solely object detection results were
transferred, the amount of transferred data decreased in
orders of magnitude and was 1 X N [objects/frame] X
20 fps =~ 20N [KB/s]. The comparison of the amount of
data transferred is summarized in Table 4. Considering
the network load of the host machine, decentralized pro-
cessing was more tolerant against system scaling because
this data amount increased linearly according to the num-
ber of external sensors.

To recognize the surrounding circumstances of the ego-
vehicle, we assumed a system using multiple cameras that
equipped a standard field of view (FOV) lens and de-
tected objects by processing captured images. Typically,
a standard FOV camera lens has a 25°-50° view angle.
In such a case, at least six to seven cameras are required
to capture all directions. Wide FOV cameras, including
fisheye cameras, may be the alternatives to capture sur-
rounding circumstances using fewer cameras. In [12], the
authors published a dataset for autonomous driving that
includes images captured by fisheye cameras. They re-
ported that they conducted a baseline experiment of ob-
ject detection, which used Faster R-CNN [13] on fisheye-
camera images, and the detection accuracy was signifi-
cantly lower than that achieved in other datasets. They
expect that the accurate object detection on fisheye cam-
era images is difficult owing to large lens distortion (“the
orientation of objects in the periphery of images being
very different from central region”). For the perception
systems of autonomous driving, one-stage detectors, in-
cluding YOLOV3, are preferable to two-stage detectors,
including Faster R-CNN, because fast and online object
detection is required. On the other hand, one-stage de-
tectors typically suffer from the lower accuracy of bound-
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ing box regression compared to two-stage detectors [14].
Considering these facts, it is suggested that the detection
accuracy of one-stage detectors may degrade if the detec-
tors receive wide FOV images with large distortion as in-
put. For this reason, processing images captured by mul-
tiple cameras with small distortion is promising to detect
objects on surrounding circumstances accurately.

If a single machine is in charge of all those cameras,
there are concerns for the frame dropping because of the
heavy burden of transferring data and computation. If we
assume a centralized system consisting of a single host
machine that is in charge of six cameras set to the same
configuration of our experimental setup, the transferred
image data theoretically occupy the network of the sys-
tem 420 MB/s constantly. Such a system will suffer from
frame dropping, as shown in Fig. 7, as well as from the
high occupancy rate of the network. On the other hand,
if we introduce decentralized units to each camera, the
network burden decreases to 0.12N [MB/s]. Here, N is
the number of detected objects per frame and is typically
under 100, even for images captured while driving in a
complicated urban area. Even if we put an additional as-
sumption of N = 100 objects/frame, the network burden is
12 MB/s, which is 35 times lower than that of the central-
ized system. Regarding the host machine, it involves little
computational burden for object detection as the burden
is off-loaded to decentralized units, and other tasks can
safely utilize the resources of the host. When it comes
to autonomous driving, the frame dropping and the re-
source occupation by single task prevent the proper oper-
ation of the whole system and lead to serious accidents.
Therefore, using multiple cameras to capture surrounding
circumstances and processing images not on a single ma-
chine but on decentralized computational resources might
be the proper practice; moreover, it could be a realistic
solution for the actual deployment of autonomous driving
systems.

Increasing power consumption by decentralizing com-
putational resources remains a concern. As shown in
Fig. 6, the power consumption of the GPU is decreased
by embedded GPU and network quantization. It should
be noted that the presented values indicate the power con-
sumption of GPU exclusively and do not include large
power consumers, such as DRAM memory. As described
in Section 4.3, we did not set any limitations on the
power budget of the edge device on the experiments of
Section 5.2. The power consumption of the whole sys-
tem is assumed to be decreased when setting limitations
to the power budget. For example, as shown in Fig. 9,
the average inference time was approximately 46.1 ms
(= 21.7 fps) in the case of the combination of 15 W power
budget (factory default for Jetson AGX Xavier) and INTS
inference engine. Thus, we assume that the inference pro-
cess itself is possible to run over 20 fps even with the lim-
itation of the power budget. Furthermore, as shown in
Figs. 4-6, using the INTS inference engine decreased the
consumption of computational resources, memory, and
power; moreover, the running was approximately 40 fps
at best. Besides setting limitations of power budget, pro-
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cessing a few cameras using a single edge device might
also suppress the total power consumption per camera.

Increasing system complexity is another concern for
decentralized processing. In general, introducing decen-
tralized processing makes the system more complex; it
sometimes brings the system reliability (i.e., the ability of
the system to function without failure) to be decreased.
The software complexity of the proposed system did not
increase drastically when we introduce decentralized pro-
cessing because of the ROS functionality, however, hard-
ware complexity increased indeed. This increase in the
hardware complexity caused by introducing decentralized
processing is inevitable. On the other hand, the system’s
robustness against failure should also be considered. At
the high-level (four and above) autonomous driving sys-
tems, system failure during driving operations must be
treated by the system itself properly (e.g., stop the car at
the safe place) since such systems do not suppose driving
tasks’ fallback on the drivers [1]. On centralized process-
ing systems, margins of the computational resources to
treat the failure are estimated to be limited because the
single computation unit should address all computation
processing. In contrast, the resource margins are consid-
ered to be relatively enough if we employ a decentralized
processing fashion because the fashion can avoid concen-
trating computation burden to a specific location of the
systems. From this point of view, we consider that de-
centralized systems have higher safety against failure than
centralized ones.

As a limitation on the application of this study, we did
not assume high velocity driving such as driving on high-
ways with no velocity limit. Since we suppose enough
velocity to drive in an urban area, such as 60 km/h, we set
the camera frame rate to 20 fps as the experimental setup;
this configuration is not enough to drive at high veloc-
ity. More detail, including camera frame rate, network
protocol, and ROS topic (i.e., transferred data) format,
should be reconsidered from the perspective of process-
ing speed to relax this limitation. However, we believe
the advantage of decentralized processing, including de-
creasing power consumption and avoiding concentration
of computation burden, remains to construct autonomous
driving systems.

6. Conclusions

In this paper, we explored the validity of decentralized
processing for the perception tasks of autonomous driving
systems to decrease the computational and network load
of a host computer. To clarify the effect of introducing de-
centralized processing, including the delay caused by data
transfer and the throughput of the whole system, we con-
structed a prototype of a system that performed an object
detection task on embedded oriented GPUs and evaluated
it.

The results of our quantitative evaluations revealed that
it was approximately 27 ms on average from the moment
at which an image was fed to the system to the moment at
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which the object detection results of the image reached the
host. This indicates that, although the measured delay in-
cluded the overhead caused by decentralized processing,
no frame dropping occurred in the detection task when
the capture rate of cameras was around 20 fps. In ad-
dition to the computational off-loading, our experimental
evaluations demonstrate that the network load of the host
was also decreased in orders of magnitude. We also con-
firmed that the embedded oriented GPUs and the quanti-
zation of inference networks were effective to implement
fast object detection. Their combination achieved, at best,
40.8 fps for image-based object detection as well as low
consumption of computational resources, memory, and
power. Furthermore, the evaluation results suggest that
the degradation of detection accuracy caused by the quan-
tization of the inference network was insignificant, and
the accuracy was comparable with other state-of-the-art
object detectors. From these facts, we conclude that au-
tonomous driving systems could benefit from decentral-
ized processing, even after considering the delay caused
by its introduction.

To apply decentralized processing to onboard systems,
there is still room for further consideration regarding
power consumption. We proved that the network quanti-
zation decreased the power consumption by 3.3 times on
embedded GPUs, and the object detection inference ran
with approximately 7.3 W per camera on average. How-
ever, since the result indicated the power consumption
of GPU exclusively, the whole system should consume
more power because of large power consumers, such as
memory devices on decentralized units. As countermea-
sures for this problem, changing the power mode (i.e.,
setting limitation of power consumption) of decentralized
units or processing several cameras using one decentral-
ized unit could be promising. Future work needs to de-
sign the decentralized system in more detail. Considering
other factors, including camera fps and required process-
ing speed for object detection, the balance of the num-
ber of decentralized units and total power consumption
should be designed for the actual deployment of the sys-
tem.
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