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In this study, we investigated the relationship between
the activity rhythms of Camponotus japonicus worker
ants and their interactions. Specifically, one or two
workers collected from either inside or outside the nest
in a breeding colony were placed in a measurement
system under a constant dark condition, and their ac-
tivity rhythms were measured for 14 days. We thereby
examined the relationship between the activity rhythm
in the system and the experimental conditions, which
consisted of four different combinations of working lo-
cations during breeding (in/outside the nest) and sin-
gle/double workers (one ant / two ants) in the mea-
surement system, over a total of 96 samples. A large
number of the sampled ants (about 90% of the total)
showed circadian activity rhythms. The proportion of
circadian activity rhythm was lower and the disper-
sion of the period was larger in the circadian activ-
ity rhythm observed in single workers collected from
within the nest than in the other three experimental
conditions. In all four experimental conditions, the
amplitude of the circadian activity rhythm decayed
on an approximate 5-day scale. These results provide
quantitative evidence that the activity rhythm of ants
is determined by the location of labor and individual
interactions during breeding.
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1. Introduction

Social insects, such as ants, maintain high productiv-
ity and a stable social structure as a colony via the com-
plex division of labor to various roles among workers [1,
2]. The sophisticated organization of social insects has
been applied to robotics in the form of the idea of swarm
robotics or swarm intelligence. In swarm robotics, the
aim is to construct a system with high productivity be-
yond the simple sum of the functions of each element

(robot) through a process whereby relatively simple el-
ements gather and interact appropriately according to the
situation. Another goal of swarm robotics is to build arti-
ficial systems that realize the characteristics of social in-
sects: i) robustness to damage of some elements, ii) ex-
pression of equivalent functions independent of the num-
ber of elements, and iii) flexibility to respond to various
environmental factors and task demands [3]. In this sense,
elucidation of the mechanisms of organization formation
and maintenance in social insects is closely related to the
progress of robotics. In particular, the mechanism of au-
tonomous role sharing within ant and bee colonies has
been applied to swarm robotics algorithms in combina-
tion with evolutionary algorithms [4, 5]. In an ant colony,
no specific small number of individuals shows leading be-
havior. Roles are autonomously assigned by direct con-
tact between individuals [6], mouth transfer of food [7],
and secretion and response to chemical substances com-
mon in the colony [8], enabling organizational behavior
of the colony as a whole [7]. In addition, the overlap
of activity time periods among multiple workers is also
an important factor for the emergence of organizational
behavior, and the activity rhythms of workers in envi-
ronments where light and dark fluctuate during the diur-
nal cycle or where light is maintained at a constant level
have recently attracted attention. For example, the spon-
taneous behavior of intermediate-size solitary workers of
Camponotus compressus, a species of carpenter ant, was
maintained in a 24-hour nocturnal or diurnal cycle in a
24-hour light-dark switching condition. However, after
transition to a constant dark condition, they underwent
various processes such as behavioral shortening, prolon-
gation, or phase shifts depending on whether they were
nocturnal or diurnal. In a colony of Camponotus rufipes,
a species of carpenter ant, foraging workers maintained
a circadian activity rhythm in the presence of food but
lost it in its absence. On the other hand, it was found
that brood-rearing workers that were forced to be con-
stantly active for 24 hours owing to the presence of im-
mature individuals and that did not show a circadian ac-
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tivity rhythm started to exhibit such a rhythm when iso-
lated [10]. The reason for this is that the social role of the
workers and the associated stimuli from the external envi-
ronment are known to regulate the activity rhythm, and it
has been suggested that the control of the activity rhythm
contributes to the optimization of activities throughout the
colony [10]. In addition, when young nurse workers of
Diacamma sp. worked alone, they exhibited a circadian
activity rhythm. However, they tended to be active con-
tinuously for 24 hours in the presence of immature indi-
viduals (e.g., larvae). This is a reasonable activity pattern
considering their role of constant caretaking of immature
individuals vulnerable to external stimuli [11]. As shown
above, the relationship between the working conditions of
individual workers and their activity rhythms is becoming
clearer, but there is still much room for progress in eluci-
dating the effects of individual interactions among multi-
ple workers on the activity rhythms of individual workers.

Recent studies showed that young workers of Dia-
camma sp. exhibited daily cyclical activity both alone and
in groups, while older workers exhibited cyclical activity
alone but lost periodicity of activity in groups [12]. In
an experimental system consisting of one or two work-
ers of Camponotus fellah isolated from the colony, it was
reported that the survival of the workers was longer in
the isolated experimental system with two workers [13].
Workers of Camponotus rufipes have been shown to have
different survival rates after being isolated, depending on
the task (brood-care/foraging) in the colony [10]. The au-
thors examined the daily frequency of foraging behavior
of Camponotus japonicus workers and showed that the
correlation in the frequency of participation in foraging
behavior among individuals in a population was main-
tained on a one-month scale [14]. There was a correla-
tion between the age in days of workers and their location
in the nest. As the age in days increased, the workers
were more likely to be located further out in the nest, and
the frequency of contact between younger individuals was
more frequent than that of contact between older individ-
uals [6]. In addition, when workers of Camponotus paris
working outside the nest came into contact with ants in-
side the nest, the circadian activity rhythm of the workers
inside the nest was synchronized. It has been reported that
the phase (daytime/night) of the circadian activity rhythm
of the workers in the nest differs depending on whether
the contact is made with only a single worker in the nest
or with multiple workers and queens in the nest [15]. To
examine the correlation of the activity rhythms among
multiple workers and the relationship between the activity
rhythms of each worker and its role in the colony, based
on these previous studies, we collected workers from in-
side and outside a nest of a Camponotus japonicus colony
with a 24-hour light and dark cycle. We also measured
daily activity rhythm, namely circadian activity rhythm,
under the constant dark condition.

2. Method

2.1. Species and Rearing Conditions
A colony of Camponotus japonicus was collected in the

Higashi-hiroshima Campus of Hiroshima University. The
collected colony was kept in a breeding container consist-
ing of a nest box (150 mm × 81 mm × 24 mm) and a
foraging space (242 mm × 306 mm × 103 mm). The
surface of the nest box was wrapped with duct tape to
block out light, and the bottom of the interior was cov-
ered with plaster. The nest box and the foraging space
were connected by rubber tubes to allow the ants to move
around. The colony consisted of more than 100 workers
and contained a queen ant. The breeding case was placed
in a dark room. In the dark room, illumination was pro-
vided using white LED lights from 8:00 to 20:00 every
day. The laboratory was maintained at a room tempera-
ture of 25◦C and humidity of at least 30%. In the foraging
space, 1 mol/L sugar water was supplied three times a
week, and six mealworms were given twice a week.

2.2. Experimental Set-Up
The measurement system for measuring the activity of

individuals consisted of two tubes of 2 cm in outer diam-
eter cut to a length of about 10 cm and a tube of 1 cm in
outer diameter cut to a length of about 5 cm, with an in-
frared sensor attached to the central tube of 1 cm in outer
diameter. The gaps between the tubes were filled with
Kimwipes, and one side of the tubing was plugged with
a Kimwipe immersed in a water tank to ensure a constant
supply of water, while the other was plugged with a dry
Kimwipe. For measurement, we used Arduino to record
the time when a worker passed under the infrared sensor.

A worker passing under the sensor was considered ac-
tive. This was called the activity measurement system,
and the measurement data were referred to as passage
time data. In the experiment, the activity measurement
system was placed in an incubator for 14-day measure-
ment. The temperature in the incubator was about 26◦C,
and the humidity was kept to 60%–80%.

2.3. Definition of Ants Used in the Experiment and
Experimental Method

To examine the correlation between different working
conditions and activity rhythms, workers were collected
from the nest box or the foraging spaces in the breed-
ing container and placed in the activity measurement sys-
tem described above to measure daily activity rhythms,
i.e., circadian activity rhythms, under constant dark con-
ditions. There were four patterns of placing workers in the
activity measurement system (hereinafter, “experimental
conditions”): a single worker collected from the nest box
(“single in nest”), a single worker collected from the for-
aging space (“single outside nest”), two workers collected
from the nest box (“pair in nest”), and two workers col-
lected from the foraging space (“pair outside nest”). The
number of samples in each experimental condition was
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27 for single in nest, 25 for single outside nest, 26 for pair
in nest, and 17 for pair outside nest. All samples were
taken from the same colony. However, the infrared sensor
only judged whether an ant passed the sensor and could
not identify individual ants. Therefore, in the pairs exper-
iment, we treated the entire passage time data for a pair
of ants as a single sample for the analysis. In this study,
workers were randomly sampled from inside and outside
the nests to collect experimental workers from the colony,
and the worker size was not taken into account.

2.4. Data Collection and Analysis
The obtained passage time data of the workers were

converted into the number of activity passages per unit
time, and this was defined as count data. The first 48 hours
after the workers were taken out of the breeding container
and started to be measured in the observation system were
excluded from the data analysis because of the extreme in-
crease in activity, which was considered to be caused by
the sudden environmental change. We used ActogramJ
(version 1.0) [16] to perform the periodicity analysis on
the count data using the chi-square periodogram method.
Autocorrelation function analysis was performed on the
count data with 1 hour as the unit time, and the peri-
odicity analysis was performed on the count data with
6 minutes (0.1 hour) as the unit time. Because the sur-
vival rate of workers isolated from a colony decays as the
period of isolation increases [13], as a prerequisite for the
periodicity analysis, we calculated the time constant of
decay to check whether there was any difference in the
decay of worker activity among the experimental condi-
tions. First, the count data were smoothed using a 24-hour
moving average and fitted with a two-parameter exponen-
tial function y = exp(ax + b) to calculate τ = 1/a, which
represents the time constant of decay. The autocorrela-
tion function was calculated to elucidate the basic state
of each data, and the temporal correlation of activity was
analyzed.

Next, we conducted a periodicity analysis to determine
whether the workers continued their cyclic activity after
the transition from the 24-hour light-dark cycle during
breeding to the activity measurement system under the
constant dark condition. In a periodicity analysis, the
strength of periodicity is defined as the maximum dif-
ference between the chi-square value of each frequency
obtained by the chi-square periodogram method with a
significance level of p = 0.05 [12], and the strength of pe-
riodicity is called “power.” The periodicity and power ob-
tained from the frequency analysis were compared among
the different experimental conditions to examine the influ-
ence of social roles and interactions on the circadian ac-
tivity rhythm of workers. Figs. 1–4 show the differences
between individuals with and without confirmed period-
icity.

2.5. Statistical Analysis
Feature time for activity decay was estimated by us-

ing the curve fit function of the scipy and optimize mod-

ules in Python 3 (version 3.8). Statistical tests were per-
formed on the Python 3 platform in the statsmodels mod-
ule (ver. 0.12.2), using the tukey hsd function for multi-
ple comparisons, the f oneway function for the one-way
analysis of variance (ANOVA), and the Bartlett function
for the F-test.

3. Experimental Results

3.1. Decay of Activity over Time
As a result of fitting the time constant of decay τ , we

found that a decay in activity was observed in many indi-
viduals (Fig. 5), although there were some cases (n = 2) in
which τ was negative due to small changes in activity. The
average value of τ was 4.61 days across all experimen-
tal conditions, indicating that the activity level decayed in
about 5 days. The results of multiple tests (Tukey HSD)
for different experimental conditions did not show any
significant difference between any of the experimental
conditions. The decay of activity after separation from
the colony was considered to be equally expressed in all
the experimental conditions.

3.2. Periodicity Analysis and Comparison Between
Experimental Conditions

The percentage of samples found to have significant pe-
riodicity (chi-square spectrogram, p < 0.05) in each ex-
perimental condition is shown in Table 1. In the single
in nest condition, 77.8% of the samples had a circadian
activity rhythm, and in the other three experimental con-
ditions, more than 90% of the samples had a circadian
activity rhythm. The one-way ANOVA for the estimated
period of the sample in each experimental condition found
to have periodicity (Fig. 6) revealed no significant differ-
ence among the experimental conditions (p = 0.66). In
addition, when the Tukey-Kramer method was used as a
paired comparison multiple test to compare the estimated
period and its power among the experimental condition
groups, no significantly different (p < 0.05) combinations
were noted. However, because the estimated period of the
single in nest had a wide distribution of values (Fig. 6),
the results of the F-test (Table 2) were relatively signifi-
cantly different (p < 0.05) for the single outside nest and
significantly different (p < 0.05) for the pair outside nest.
The results of the test between the single outside nest and
the pair in nest also showed a tendency to be different
(p = 0.0587). The other combinations of experimental
conditions did not produce values that showed significant
differences (Table 2). The percentage of samples judged
to have a periodicity was low (77.8%) only in the single
in nest condition, but the ANOVA for the estimated peri-
odicity of power (Fig. 7) showed no significant difference
(p = 0.66), indicating no difference in the percentage of
samples with periodicity among the experimental condi-
tions. Fig. 8 shows the relation between the estimated pe-
riod and its power. There was a tendency for many sam-
ples to show high power for the estimated period around
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Fig. 1. Single in nest: (a), (c), and (e) are data of individuals with periodicity, and (b), (d), and (f) are data of individuals without
periodicity. In (a) and (b), the black line is the count data, the gray line is the data with the trend subtracted, and the dash line is
the trend. The shading in the background indicates the 24-hour light-dark cycle (gray is light-on time, white is no-light time) in the
breeding environment prior to isolation in the constant dark condition. (c) and (d) are autocorrelation functions. (e) and (f) are the
values estimated by the chi-square spectrogram method. The straight dash line indicates the significance level of p = 0.05.

Fig. 2. Single outside nest: (a), (c), and (e) are data of individuals with periodicity, and (b), (d), and (f) are data of individuals
without periodicity. In (a) and (b), the black line is the count data, the gray line is the data with the trend subtracted, and the dash
line is the trend. The shading in the background shows the 24-hour light-dark cycle (gray is light-on time, white is no-light time) in
the breeding environment prior to isolation in the constant dark condition. (c) and (d) are autocorrelation functions. (e) and (f) are
the values estimated by the chi-square spectrogram method. The straight dash line indicates the significance level of p = 0.05.
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Fig. 3. Pair in nest: (a), (c), and (e) are data of individuals with periodicity, and (b), (d), and (f) are data of individuals without
periodicity. In (a) and (b), the black line is the count data, the gray line is the data with the trend subtracted, and the dash line is
the trend. The shading in the background shows the 24-hour light-dark cycle (gray is light-on time, white is no-light time) in the
breeding environment prior to isolation in the constant dark condition. (c) and (d) are autocorrelation functions. (e) and (f) are the
values estimated by the chi-square spectrogram method. The straight dash line indicates the significance level of p = 0.05.

Fig. 4. Pair outside nest: (a), (c), and (e) are data of individuals with periodicity, and (b), (d), and (f) are data of individuals without
periodicity. In (a) and (b), the black line is the count data, the gray line is the data with the trend subtracted, and the dash line is
the trend. The shading in the background shows the 24-hour light-dark cycle (gray is light-on time, white is no-light time) in the
breeding environment prior to isolation in the constant dark condition. (c) and (d) are autocorrelation functions. (e) and (f) are the
values estimated by the chi-square spectrogram method. The straight dash line indicates the significance level of p = 0.05.
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Fig. 5. Distribution of the time constant of decay τ under
each experimental condition, where the horizontal axis in-
dicates the experimental conditions, and the vertical axis is
the time constant of decay obtained by fitting an exponential
function to the moving average data of the count data. The
number of samples, from left to right, are 27 for single in
nest, 25 for single outside nest, 26 for pair in nest, and 17 for
pair outside nest.

Table 1. Percentage of individuals showing periodicity as a
circadian activity rhythm. The numerator of the fraction in
parentheses is the number of samples with periodicity, and
the denominator is the total number of samples.

Single
in nest

Single
outside
nest

Pair
in nest

Pair
outside
nest

Ratio of
77.8% 92.0% 96.2% 94.1%significant

(21/27) (23/25) (25/26) (16/17)peaks

24 hours in all experimental conditions. In the present
experiment, the circadian activity rhythm was relatively
stable in many samples.

4. Summary and Discussion

The activity rhythms of one or two Camponotus japoni-
cus workers collected inside or outside the nest in a breed-
ing colony were measured under a constant dark condi-
tion, and the presence or absence of a circadian activity
rhythm was investigated by a periodicity analysis using
the chi-square periodogram method. In all four experi-
mental conditions (single in nest / pair in nest / single out-
side nest / pair outside nest), most of the samples showed
a clear circadian activity rhythm, but the amplitude of
the activity rhythm tended to decay on a time scale of
about 5 days, in most cases, or 4.61 days, on average,
over all experiments. A previous study [13] analyzed the
time course and survival rate after isolation. However,

Fig. 6. Estimated period under each experimental condition,
where the horizontal axis indicates the experimental condi-
tions, and the vertical axis is the estimated period obtained
by estimating the period using the chi-square spectrogram
method. The number of samples, from left to right, are 21
for single in nest, 23 for single outside nest, 25 for pair in
nest, and 16 for pair outside nest.

Table 2. p-values of the two-group F-test of power and
period obtained via the periodicity analysis using the chi-
square spectrogram method under each experimental condi-
tion. ∗∗ and ∗ denote p ≤ 0.05 and 0.05 < p ≤ 0.1, respec-
tively.

Period Power

Single in nest –
Single outside nest 0.000729∗∗ 0.068472∗

Single in nest –
Pair in nest 0.091400∗ 0.202581

Single in nest –
Pair outside nest 0.001974∗∗ 0.110269

Single outside nest –
Pair in nest 0.058271∗ 0.573798

Single outside nest –
Pair outside nest 0.905733 0.932476

Pair in nest –
Pair outside nest 0.071175∗ 0.669340

few studies have reported changes in the amount of activ-
ity during worker survival, and the details are not known.
The results of this study showed that the circadian activity
rhythm itself can be maintained, even when the number of
activities declines over time.

The proportion of individuals without a circadian ac-
tivity rhythm tended to be higher in the experiment with
a single ant collected in the nest than in the other condi-
tions, and the variance of the period of circadian activity
rhythm was also larger than in the other experimental con-
ditions. These results suggest that the expression of circa-
dian activity rhythms in Camponotus japonicus is affected
by daily work locations (i.e., work locations in the pre-
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Fig. 7. Power of estimated period under each experimen-
tal condition, where the horizontal axis indicates the exper-
imental conditions, and the vertical axis shows the distance
between the spectral peak and the significance level of the
period estimated by the chi-square spectrogram method. The
number of samples, from left to right, are 21 for single in
nest, 23 for single outside nest, 25 for pair in nest, and 16 for
pair outside nest.

Fig. 8. The relation between the estimated period and its
power, where the horizontal axis is the estimated period by
the chi-square spectrogram method, and the vertical axis is
the power corresponding to the estimated period. The power
of the samples with values around the 22–26-hour period
was high, indicating that the circadian activity rhythm was
well represented.

experimental breeding environment) and by interactions
with nest mates during the experiment.

The remaining problem is as follows. In this experi-
ment, we did not account for polymorphism in the Cam-
ponotus japonicus worker’s body size. Therefore, it is
necessary to clarify the relationship between the size of
the worker’s body and the dependence of the worker’s
work location.

Similar to the results of the present experiment,
it has been confirmed in experiments with the Dia-
camma sp. that the circadian activity rhythm of work-
ers under constant light is influenced by their nest mates,
and, in particular, that phase entrainment of the circadian
activity rhythm occurs among multiple individuals [12].
The high frequency of expression of the circadian ac-
tivity rhythm in the present two ant study also suggests
mutual entrainment of activity rhythm between individu-
als. However, among the four experimental conditions de-
scribed above, the case of a single ant collected from the
inside of the nest was markedly different from the others,
and it is not possible to determine at this point in the anal-
ysis whether this peculiarity originated primarily from the
singularity of the population, depended on the work loca-
tion (work inside the nest) before the experiment, or de-
pended equally on both. In addition, although age in days
was not confirmed in the present experiment, it is widely
known that the location of work is also correlated with
age in days. For example, interaction among old indi-
viduals in Diacamma sp. has been reported [12], and the
measurement and analysis of circadian activity rhythm in
consideration of age in days should be addressed in future
research.
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