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We propose a pose estimation method using a National
Advisory Committee for Aeronautics (NACA) airfoil
model for fish schools. This method allows one to un-
derstand the state in which fish are swimming based
on their posture and dynamic variations. Moreover,
their collective behavior can be understood based on
their posture changes. Therefore, fish pose is a cru-
cial indicator for collective behavior analysis. We use
the NACA model to represent the fish posture; this en-
ables more accurate tracking and movement predic-
tion owing to the capability of the model in describ-
ing posture dynamics. To fit the model to video data,
we first adopt the DeepLabCut toolbox to detect body
parts (i.e., head, center, and tail fin) in an image se-
quence. Subsequently, we apply a particle filter to fit a
set of parameters from the NACA model. The results
from DeepLabCut, i.e., three points on a fish body,
are used to adjust the components of the state vector.
This enables more reliable estimation results to be ob-
tained when the speed and direction of the fish change
abruptly. Experimental results using both simulation
data and real video data demonstrate that the pro-
posed method provides good results, including when
rapid changes occur in the swimming direction.

Keywords: swimming fish, tracking, pose estimation,
collective behavior analysis

1. Introduction

The behavior of fish in schools is yet to be elucidated
completely [1–5]. For example, the location in which in-
dividual fish swim in a torus-like school or their commu-
nication mechanism is yet to be clarified. Fish positions
and movement trajectories provide essential data for un-
derstanding these mechanisms. From a practical perspec-
tive, movement information is useful for monitoring fish

growth in aquariums and aquaculture sites. However, ob-
serving a school of fish swimming in water by human eyes
is unrealistic owing to the significant amount of time re-
quired for the task. Therefore, researchers have proposed
methods that can automatically acquire fish movements
using video processing [6, 7].

Herein, we propose a method for estimating the posi-
tion and pose of swimming fish in a school. The pose of
swimming fish can provide important information for un-
derstanding their ecology as well as for the state in which
the fish are swimming. Moreover, their collective be-
havior can be understood based on their posture changes.
Therefore, fish pose is a crucial indicator for collective
behavior analysis.

We used the National Advisory Committee for Aero-
nautics (NACA) model [8] to represent the posture of the
fish; this enables more accurate tracking and movement
prediction because the NACA model can represent time-
series changes of the pose. To fit the NACA model to the
fish shown in video data, we used DeepLabCut (DLC) [9]
and a particle filter (PF) [10]. In DLC, which is widely
used in ecology, position information can be obtained ac-
curately from a video by selecting several parts of the tar-
get object. A PF was used to predict the parameters of the
NACA model. The location information obtained by the
DLC was used in the likelihood calculation of the predic-
tion. Combining these two methods enables us to stably
obtain the location and trajectory of the fish, including
when the swimming direction and speed change rapidly.
The proposed method was applied to silhouette images of
fish captured from the top or bottom of a water tank, as
shown in Fig. 1. This paper is organized as follows. Re-
lated studies are introduced in Section 2, and our tracking
and pose estimation method for multiple fish is described
in Section 3. Our experimental results obtained using sim-
ulation data and videos recorded in an aquarium are pro-
vided in Section 4. Finally, we summarize this paper and
present our plans for future studies in Section 5.
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Fig. 1. Fish school images captured from bottom of the aquarium.

Fig. 2. Overview of proposed method.

2. Related Studies

Many multitarget tracking methods have been pro-
posed, most of which are intended for tracking hu-
mans [11]. Additionally, methods for tracking multiple
fish in a shallow tank have been developed [6, 12]. Re-
cently, tools have been developed to easily acquire the
location information of target animals more easily [13].
For underwater environments, Okuda et al. proposed a
method for detecting and tracking marine life in images
captured using movable sensor nodes [14]. The above-
mentioned methods enable numerous animal movement
trajectories to be obtained more easily, thereby contribut-
ing to advancements in the field of ecology.

After the location information is acquired, pose is to be
estimated to reveal more detailed information regarding a
target person or animal. Human pose estimation has been
an active research area [15, 16], and the results of pose
estimation can be applied to sports motion analysis and
motion recognition.

Furthermore, pose estimation is used to understand the
ecology of animals. DLC [9] is an efficient tool for the
three-dimensional (3D) markerless pose estimation of an-
imals based on transfer learning using deep neural net-
works. Although it has been used for various types of
animals, few studies have focused on the change in pos-
ture of fish or introduced a parametric model to represent
such changes, unlike the current study.

Terayama et al. tracked multiple fish in a dense school
using their appearance model based on fish images in
a video [7]. The appearance model was parameterized,
which enabled future motions to be estimated and unusual
behaviors to be detected. However, their algorithm is rel-
atively slow because the optimization process was based

Fig. 3. (a) NACA0012 airfoil model. (b) Fish shadow model
when A = 0.01, p = 0; (c) A = 0.1, p = 0; (d) A = 0.33,
p = 0.

on simulated annealing [17], which is a severe problem
for practical applications.

The method proposed herein uses a parameterized ap-
pearance model to represent the pose and dynamics of
fish while a PF is applied to fit the parameters. If a PF
estimates all parameters, it may not be able to manage
rapid changes in the swimming direction. Hence, we first
obtained the location information using DeepLabCut and
applied a PF to estimate the time-series parameters repre-
senting the dynamics of the fish postures. This allows us
to achieve a stable posture estimation.

3. Proposed Framework

Figure 2 shows an overview of the proposed method.
In this study, we adopted the NACA0012 airfoil model to
represent the appearance of a fish (Fig. 3). As shown in
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Fig. 4. Time-varying fish silhouette model.

Fig. 4, this model represents the silhouette of a swimming
fish, and changes in the silhouette during swimming can
be represented by changes in the parameters.

3.1. Appearance Model of Fish
To fit the NACA0012 model to a swimming fish video,

we used DLC and a PF. DLC is a tool that is widely used
in the field of ecology to acquire the motion information
of a target animal from video images. First, we provided
the positional information of multiple parts of the target
animal for certain images. Subsequently, the locations of
the parts in the remaining images were accurately esti-
mated using machine learning.

Because DLC only estimates the location of the tar-
get objects, additional processing is required to obtain
the parameters representing the time-series changes in the
NACA0012 model. Therefore, we used a PF, which is
widely used to predict the time series of multiple vari-
ables. Additionally, the location information obtained us-
ing DLC was used to calculate the likelihood of the esti-
mated variables.

We employed the NACA0012 airfoil model as a ba-
sis for a deformable appearance model of fish. Fig. 3(a)
shows the NACA0012 model. As in [7], we define the
deformation equation h(x, p) around the initial center line
in Fig. 3(a) as

h(x, p) = A
(
− (x−1)2 +1

)
cos

2π
λ

(x− v · p) , (1)

where the parameters A, λ , v, x, and p represent the maxi-
mum amplitude, wave length, phase velocity, and position
from the head as shown in Fig. 3, and the phase of a sin-
gle beat cycle, respectively. For each scene, we first cal-
culated the average brightness of the fish and constructed
92 standard appearance models based on the NACA0012
model and Eq. (1), where we changed A and p by filling

in the form of the brightness. We refer to these models
as the NACA model. Figs. 3(b) and (c) show the exam-
ples of the NACA model. We set both λ and v to 2, and
changed A from 0.01 to 0.3 and p from 0 to 1. In Fig. 4, A
indicates the deformation extent of a fish, and the beating
of a fish while it is swimming is represented by the chang-
ing p. In our pose estimation method, we estimated A and
p, whereas λ and v were fixed to predetermined values.
To manage a large deformation (bending), we added a
few significantly deformed models based on h(x, p) with
a large amplitude. Fig. 3(d) shows an example of a sig-
nificantly deformed model.

3.2. DeepLabCut (DLC)
To represent the posture change of a swimming fish in

a video using the NACA model, we must first identify
the position of the fish, followed by the appropriate pa-
rameters. It is extremely challenging to accurately deter-
mine the location of fish swimming in a dense school (see
Fig. 1); therefore, we used DLC.

DLC is a widely used tool in the field of ecology to an-
alyze the behavior of target animals. First, the user manu-
ally specifies the positions of the animal’s legs, head, and
other parts of the body in several images from a video
of the target animal. Subsequently, the system builds a
model to detect them through machine learning. By ap-
plying the model to the remaining images, the system can
detect the body part positions of the animal.

Our preliminary experiments show that DLC can yield
sufficient detection accuracy; hence, we used it as basic
data to estimate the parameters of the NACA model. To
obtain the parameters of the NACA model, not only the
position of the individual but also its swimming direction
must be determined. Hence, we tracked the head, body
center, and tail fin of a single fish, as shown in Fig. 5.

For training DLC, these three points were specified
manually by the annotators. The center of the body was
set to be equidistant from the head and the tail fin. Al-
though the center point did not exhibit a clear image fea-
ture compared with the other two points, it can still be
tracked with sufficient accuracy using DLC (as will be
presented in Section 4.2.1).

In Section 4, we present the tracking performance re-
sults of DLC obtained from detailed evaluation experi-
ments.

3.3. Particle Filter (PF)
Because the NACA model represents the time-series

variations in the appearance of fish, we used a PF to es-
timate its parameters. PFs are widely used in time-series
filtering and can estimate the state vector accurately, in-
cluding noisy or missing observations. In this framework,
we define the state vector xxx = (A, p, ccc, θ), where A and p
are the maximum amplitude and phase of one beat cycle
in the NACA model described in Section 3.1, respectively.
The swimming direction θ and center position ccc were ob-
tained from three points detected using DLC, as shown
in Fig. 6. We calculated θ from the estimated positions
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Fig. 5. Body part detection using DeepLabCut. (a) Orig-
inal video. (b) Labeling of the head, center, and tail fin.
(c) Learning and detection.

Fig. 6. Fish position and swimming direction obtained from
DLC detection results.

of the head and tail fin of the swimming fish, which cor-
responded to the direction of the line passing through the
two points. The center of the fish body is denoted as ccc. Fi-
nally, we set the observation vector yyy be I in the binarized
observed image, which is used to calculate the likelihood
of the state vector.

The flow of the PF process was as follows: (a)–(e) cor-
respond to the symbols shown in Fig. 7.

(a) Determine the initial state vector at the beginning of
tracking. For (ccc, θ), we used detection results from
DLC.

(b) Particles were generated. As in the standard defi-
nition of a PF, each particle represents one possible
value of the state vector xxx(i)

t =
(

A(i)
t , p(i)

t , ccc(i)
t , θ (i)

t

)
.

Fig. 7. Pose estimation using particle filter.

(c) Update the state vector for each particle, xxx(i)
t+1 =

F
(

xxx(i)
t , xxx(i)

t−1

)
+δ xxx, where the function F represents

the dynamics of the NACA model, and δ xxx denotes
Gaussian noise. In our implementation, F is sim-
ply defined as follows. The center point ccc is as-
sumed to move in a linear motion of constant speed
and is updated as ccc(i)

t+1 = 2ccc(i)
t − ccc(i)

t−1 + δ ccc, where
δ ccc represents Gaussian noise. For the other com-
ponents,

(
A(i)

t , p(i)
t , θ (i)

t

)
, Gaussian noise is added

to
(

A(i)
t+1, p(i)

t+1, θ (i)
t+1

)
=

(
A(i)

t , p(i)
t , θ (i)

t

)
+ δ in the

update process.

For updating (ccc, θ), we used the DLC-derived ccc(i)
t ,

ccc(i)
t−1, and θ (i)

t instead of the results of the PF in the
previous frames.

(d) Calculate the likelihood of each particle. We com-
puted the difference between the binarized observed
image and the silhouette generated using Eq. (1).

The implementation above differs slightly from the typ-
ically used PF. The value of (ccc, θ) is updated based on the
observation from the DLC; therefore, reliable results are
yielded.

4. Experiments

To demonstrate the effectiveness of our method, we
conducted experiments using the following two types of
datasets:

• A set of images generated by manually setting the
parameters of the NACA model (Experiment 1).

• Real fish school images captured from an aquarium
(Experiment 2).

The former evaluates the performance of the proposed
method when the ground truth of all the parameters of
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(S1) Normal (S2) Escaping

Fig. 8. Simulation images for Experiment 1.

Fig. 9. Sample snapshots of dataset for Experiment 1.

the NACA model is known. The latter is used to confirm
the effectiveness of the proposed method for actual swim-
ming scenes. Because the ground truths of all the NACA
model parameters were not provided, we conducted a
quantitative evaluation for some of the parameters in ad-
dition to a qualitative review.

4.1. Experiment 1: Simulation Data
To conduct a quantitative evaluation, we prepared sim-

ulation images for two situations, as shown in Fig. 8.
S1 simulates regular swimming, where a fish swims in
a constant direction and speed. S2 simulates a situation in
which a fish changes its swimming direction abruptly to
escape from an external stimulus. Fig. 9 shows snapshots
of S1 and S2. Estimating the position and posture of S2 is
more challenging than that of S1.

In the experiment, we compared the following four
methods.

• PF: A PF was used for all components of xxx =
(A, p, ccc, θ).

• DLC: (ccc, θ) was calculated from the output of DLC,
as described in Section 3.2.

• DLC (pos.) w/ PF: The DLC results were used for
the PF process described in Section 3.3, but only the
location data ccc were used.

• Proposed: The proposed method which is described
in the previous section was used.

We did not compare this method with Terayama’s
method [7], which also uses the NACA model. Tera-
yama’s method uses the SA to optimize the parameters;
therefore, the optimization results are much better, al-
though more time is required. This paper focuses on
our evaluation of the methods above, which provides re-
sults within a reasonable amount of time. The proposed

Table 1. Average error for data S1.

Average errors ccc [pixel] θ [rad] A [pixel] p [rad]
PF 0.762 0.014 0.010 0.165
DLC 1.722 0.056 N/A N/A
DLC (pos.) w/ PF 0.783 0.028 0.012 0.195
Proposed 0.710 0.049 0.019 0.315

Table 2. Average error for data S2.

Average errors ccc [pixel] θ [rad] A [pixel] p [rad]
PF 2.730 0.109 0.032 0.568
DLC 1.799 0.049 N/A N/A
DLC (pos.) w/ PF 1.611 0.109 0.032 0.744
Proposed 0.883 0.046 0.017 0.846

method requires approximately 3–4 h to complete com-
putations using a Core i7-5960X CPU and GTX1070Ti
GPU.

The results are shown in Tables 1 and 2, where
the average errors of the parameters are shown as xxx =
(A, p, ccc, θ). A and p are not available in the second line
because they (the posture information) cannot be obtained
from DLC alone.

Dataset S1 was relatively simple and easy to track and
estimate. The results presented in Table 1 show that the
four methods do not differ significantly. Although the pro-
posed method does not necessarily provide the best re-
sults, the difference is negligibly small and does not pose
a significant problem.

By contrast, dataset S2 was more challenging to track
because of the rapid changes in swimming direction and
speed. The table shows a significant difference in position
ccc in this case because the PF (first row) failed to monitor
the rapid changes. By contrast, tracking via DLC yielded
relatively stable location information (second row), un-
like tracking using the PF. The combination of position
information from DLC and time-series filtering by the PF,
which is a feature of the proposed method, improved the
estimation accuracy. However, among the DLC results,
DLC (pos.) w/ PF, which is shown in the third row, did
not improve the accuracy sufficiently. When using the
three points of the head, body center, and tail fin (pro-
posed method, fourth row), better estimation results were
obtained.

Figure 10 shows some snapshots of the results of the
PF and proposed method, in addition to the ground truth
of the silhouettes. As shown by these results, although
the difference between the two results for S1 did not dif-
fer significantly, the proposed method generated better
silhouettes than the PF for S2, particularly during burst
swimming.

These results demonstrate that the proposed method is
effective. It is noteworthy that the body length of the tar-
get fish was approximately 50–60 pixels. Compared with
the body length, the average error in the position was rel-
atively low and reliable for further analysis.
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Fig. 10. Experimental results for simulation data. Ground
truth, results of proposed method (combination of DLC and
PF), and PF are shown. For each of simulation dataset S1
and S2, snapshots of ground truth (upper row), PF results
(middle row), and results of proposed method (lower row)
are shown. For S2, columns 2–4 correspond to burst swim-
ming, in which fish changes swimming direction and speed.

(a) (b)
Fig. 11. Dataset for experiments of real scenario: (a) camera
setup and (b) snapshot of fish school video.

4.2. Experiment 2: Real Scenario
The effectiveness of the proposed method was ana-

lyzed using actual images of fish schools. We recorded
videos of schools of sardines (Sardinops melanostictus)
at Kujukushima Aquarium Umikirara, Nagasaki, Japan.
The videos were recorded at 30 fps using a GoPro HERO4
video camera. Figs. 11(a) and (b) show the camera setup
and a snapshot of the video, respectively.

We extracted three video clips from the video as the
target of the experiments. We focused on a single fish in
the video clip and qualitatively evaluated the tracking re-
sults. Fig. 12 shows snapshots of the three video clips,
where the trajectories of the target fish are depicted by

Fig. 12. Snapshots of extracted target videos for Experi-
ment 2. White lines show trajectories of target fish.

Table 3. Average errors of ccc [pixel] for Targets A–C.

Estimation method Target A Target B Target C
PF 2.395 8.530 N/A
DLC 5.540 4.031 3.526
DLC (pos.) w/ PF 1.703 4.323 3.665
Proposed 1.604 2.010 3.033

white lines. Target A overlapped slightly with other fish
and exhibited a simple movement. Similarly, Target B
overlapped slightly with the other fish, but it changed its
swimming direction in the middle of the trajectory. We
expect this motion to be challenging to track. Finally, Tar-
get C is more difficult to track because it overlaps with
other fish, and it swims in a circle at the end of the tra-
jectory. We evaluated the performance of the proposed
method using samples of different difficulty levels.

4.2.1. Quantitative Evaluation
We first conducted a quantitative evaluation on the

three datasets. Among the parameters estimated by the
proposed method, only the center point ccc can be manually
obtained from the image. Hence, we calculated the er-
ror in ccc between the results estimated using the proposed
method and the correct values obtained manually.

Table 3 shows the average errors of ccc, i.e., the center
of the fish body. We compared four methods, as in Exper-
iment 1. The calculated average errors for the four meth-
ods are presented in Table 3. For Target C, we could not
compute the errors of the PF because it failed to track a
fish that changed its swimming direction rapidly – the de-
tails are shown in Fig. 13. These results revealed the same
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Fig. 13. Experimental results for real videos. Proposed method (a combination of DLC and PF) and PF are compared. For each
of three Targets (a)–(c), results of proposed method are shown in upper row, and results of PF are shown in lower row. For results
of each frame, distribution of ccc among state vectors of particles is shown above, and silhouette generated from particle with highest
likelihood is shown below.

characteristics as those shown in Experiment 1. Com-
pared with the head and tail fins, the center of the body
is more ambiguous for tracking; however, it was tracked
with good accuracy even when using DLC alone. In addi-
tion, the accuracy improved further when the DLC results
were combined with particle filtering, and the proposed
method demonstrated the best accuracy.

4.2.2. Qualitative Evaluation
Figure 13 shows the tracking results. We compared the

proposed method (a combination of DLC and PF) with a

method in which a PF was used for all components of the
state vector, which is the same as the method shown in the
first row of Tables 1–3.

We observed the following from the figure:

• For Target A, both methods yielded good results.

• In the case of Target B, when the swimming direction
changed, the tracking results of the PF were affected.
Eventually, the PF failed to track and output an inac-
curate silhouette at the frame shown on the rightmost
side.
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• The same pattern was observed for Target C; the fish
could not be tracked by the PF in the area where it
was swimming in a circular direction.

This observation is consistent with the simulation re-
sults presented in Section 4.1. When using a PF alone,
tracking fails when the swimming direction changes
rapidly, and tracking cannot be restarted easily. By con-
trast, DLC employs a detection process based on machine
learning, which reduces tracking failures. Therefore, by
combining DLC with PF-based pose estimation, we can
perform a more accurate position and pose estimation. In
summary, we confirmed that the proposed method can ef-
fectively detect and track fish.

5. Conclusion

Herein, we proposed a method to track fish swimming
in a school and estimate their posture. The proposed
method utilizes the NACA model to represent the pose
and dynamic variations of fish. The model is a paramet-
ric representation that can estimate future fish movements
and detect abnormal behaviors, such as escape. To fit the
model to video data, we first adopted the DLC toolbox
to detect body parts (i.e., head, center, and tail fin) in an
image sequence. Subsequently, a PF was applied to fit a
set of parameters of the NACA model. In this filtering
process, the results from DLC, i.e., three points on a fish
body, were used to adjust the components of the state vec-
tor. This method enables more reliable estimation results
to be yielded, including when abrupt changes in speed and
direction occur.

To evaluate the effectiveness of the proposed method,
we conducted experiments using simulation data and real
fish school videos. The results indicated that the proposed
method stably tracked a fish and estimated its posture in-
formation.

A future study will be conducted to investigate a
method to achieve a fully automated detection and track-
ing of large-scale fish schools, since the current imple-
mentation requires manual annotation for each scene, and
our focus was on tracking a single fish. To track a large
number of fish in a fish school, the algorithm used must
be improved such that it can accurately track the fish even
when they overlap each other. We believe that the posture
estimation results obtained using the proposed method
can be used in data association for multiple-object track-
ing [18, 19]. Additionally, 3D information acquired using
two or more cameras [20] may facilitate in tracking over-
lapping fish in a large-scale school.

Additionally, we will focus on applying the proposed
method to various types of collective behaviors and ana-
lyze the mechanism using the pose estimation results. We
plan to analyze the mechanism of collective behavior by
processing the captured images offline because the pro-
posed method requires several hours to yield the results.
Another future direction includes implementing this tech-
nique in autonomous underwater vehicles [21].
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