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Humans observe the actions of others and predict their
movements slightly ahead of time in everyday life.
Many studies have been conducted to automate such
a prediction ability computationally using neural net-
works; however, they implicitly assumed that prelim-
inary motions occurred before significant movements.
In this study, we quantitatively investigate when and
how long a preliminary motion appears in motions
from static states and what kinds of motion can be
predicted in principle. We consider this knowledge
fundamental for movement prediction in interaction
techniques. We examined preliminary motions of ba-
sic movements such as kicking and jumping, and con-
firmed the presence of preliminary motions by using
them as inputs to a neural network. As a result, al-
though we did not find preliminary motion for a hand-
moving task, a left-right jumping task had the most
preliminary motion, up to 0.4 s before the main move-
ment.

Keywords: motion capture, movement prediction, ma-
chine learning, robots in society

1. Introduction

Interactions between humans and machines are ex-
pected to increase in parallel with the accelerating devel-
opment of robotics technology [1]. In order for robots
to behave appropriately in human society, they must in-
teract with humans [2, 3] and focus on observing safety
protocols [4]. For this purpose, it is considered effective
to observe and predict human movements. For example,
long-term and macro-level prediction [5] of the behavior
or flow of people within crowds can be applied to choose
efficient movements for robots inside a group of people.
On the other hand, short-term and personal-level predic-
tion [6] of an individual’s movements can be applied to
tasks such as avoiding collisions in emergency situations.
Rapid, subtle personal observations and predictions have

also been used to guide the behavior of individuals in
groups [7–9]. According to Ballerini et al. [8], individuals
in a flock make behavioral decisions based on the move-
ments of a few nearest neighbors. In addition, according
to Lukeman et al. [9], the behavior of a herd can be rep-
resented by a rule that when a member’s neighbor moves,
that member also moves. Thus, mutual observation and
prediction among individuals are thought to influence the
behavior of groups. In this study, we aim to investigate the
predictability of short-term and low-level (i.e., concerning
a specific individual) predictions from the perspective of
preliminary motion.

Many studies have been conducted to simulate human
short-term movement prediction ability via calculations
and computations [6, 10–16]. For example, Martinez
et al. [6], Fragkiadaki et al. [10], and Chiu et al. [11] used
regressive neural networks to predict future movements
using the Human3.6M [12] dataset. Barsoum et al. [13]
used generative adversarial networks to predict the future
poses. Horiuchi et al. [16] used a forward-propagating
neural network to predict movements for data on human
jumping motions measured with Kinect. Previous studies
have shown that movement prediction can be used in com-
putationally augmented sport tasks, such as predicting the
trajectory of a volleyball toss [17], the landing point of
ping-pong ball serves [18], or future movements in mar-
tial arts [19].

Although many studies have been conducted on pre-
dicting human motions, few have quantitatively investi-
gated when and how much of the preliminary motions
had to be observed before a given motion can be pre-
dicted. It is expected that the time conditions for pre-
diction will differ for movements involving shifting one’s
weight (e.g., walking and jumping) and those involving
only hand movements (e.g., sign language). This is ex-
pected because all the muscles in the body must move in
coordination to move a large mass in body movements
involving weight shifting, and various preliminary move-
ments are thus expected to occur. The same may occur to
maintain balance in a situation where the center of gravity
is not shifted, but the limbs are moved significantly. Clar-
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ifying the conditions for the occurrence of preliminary
motions is expected to be important in applying predic-
tion technology to the fields of human-robot and human-
computer interaction.

We focus on motions performed from static states to
explore the limits of automated prediction of human mo-
tion. This is because it remains difficult to distinguish in
the case of successive motions between the end of one
motion and the beginning of the next. These two motions
appear simultaneously when the motion transitions from
one state to the next. For example, when we consider a
motion to take two steps forward and kick a ball, we can-
not distinguish which part of the motion is the cessation of
walking, and which part is a preliminary motion for kick-
ing, at the moment of the transition between the two. In
this study, we define a preliminary motion as motion pre-
ceding a target motion, which began from a static state,
and analyzed these transitions. The purpose of this study
is to identify limitations in the effectiveness of prediction
methods for a single action and evaluate them in terms of
prediction accuracy in NNs.

In this study, we first measured human motion begin-
ning from a static state at 100 fps using a motion cap-
ture system (OptiTrack). For these motions, we looked
at the movements of each body part and checked whether
they moved prior to the start of the target movement. De-
pending on the type of movement, we identified several
types of motion group, including those in which prelim-
inary motions occurred and those in which they did not;
among the groups in which preliminary motions occurred,
we further distinguished whether the timing of their oc-
currence was relatively early or immediately prior to the
primary motion. We applied these preliminary motions
to a simple forward-propagating neural network to deter-
mine whether they could be used to predict subsequent
motions.

As a result, we confirmed that there was no prelimi-
nary motion for hand waving movements, and that they
were not predictable. In contrast, for left and right jumps,
which were the focus of a previous study [16], prelim-
inary motions occurred approximately 0.4 s prior to the
main movement, and it was confirmed that the prelimi-
nary movement could be used to predict primary move-
ments occurring in the near future. This result is consis-
tent with that of the abovementioned previous study.

The contributions of this paper are as follows.

1) We identified a set of motions in which body parts
began moving before the main motion, by observing
body motion with respect to the starting point of the
main motion.

2) We confirmed that for the group of motions with as-
sociated preliminary motions, we were able to use
neural networks to predict future motions.

3) We demonstrate that we could not predict motions
without such preliminary motions, showing the limi-
tations of movement prediction based on preliminary
motion.

This fundamental information about the presence or ab-
sence of preliminary motions can be used to predict in-
stantaneous actions of people and determine the next ac-
tions of robots in environments where people and robots
coexist. Prediction using high-speed vision has also
been performed [20]; however, although high-speed ma-
chine vision can accurately predict information as long
as relevant information is available, NN prediction ap-
proaches have the advantage of being able to predict next
actions even in environments with latency. Therefore,
such methods are desirable to compensate for communi-
cation delays in remote communication, such as in telexis-
tence [21] or telepresence applications. Our results show
the limits of the types of actions that can be predicted and
are expected to be useful for the design of such systems.

2. Type of Motions Measured

2.1. Predictability of Body Movements

In terms of human body movements, some motions
are more likely be associated with predictable preliminary
motions, whereas others are less so or not at all. In gen-
eral, the larger the movement, the greater the mass and
velocity involved, and more force would be required, im-
plying a probability of characteristic preparatory move-
ments. According to Horiuchi et al. [16], movements of
the body’s limbs and extremities are more difficult to pre-
dict, whereas whole-body or trunk movements and shifts
in center of mass or gravity are easier to predict. Exam-
ples of the former include movements of the arms and
legs, and examples of the latter include movements such
as jumping and walking.

If we can classify types of behavioral actions as pre-
dictable or unpredictable and quantitatively show how far
ahead an automated system can predict, we can use this
information to model group behavior among people who
mutually predict each other. For example, walking actions
require a shift in one’s center of gravity, and walking is an
easily predictable action, as shown in another study [22].
Therefore, it may become possible to simulate the behav-
ior of people in crowds, such as in scramble intersections
or other public spaces, including aspects of how well peo-
ple can predict the behavior of others.

2.2. Classification of Body Movements

Movements of extremities are the only movements that
can be performed by humans without relatively large
center-of-gravity shifts. Accordingly, we considered three
types of movements, including hand, foot, and neck
movements, among which hand and foot movements were
determined to be the most important. Specifically, we
measured the following types of movement (Fig. 1).

• Raising the dominant arm and touching a virtual but-
ton at an angle of 45◦ to the left and right, approxi-
mately 30 cm in front and 30 cm to the left and right.
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Fig. 1. Type of movements. From left, button touch, kick,
rotation jump, and left-right jump.

Fig. 2. The 21 body points measured with OptiTrack, and
the actual motion capture scene.

• Kicking a right or left leg up approximately 60◦ with
the leg extended.

In contrast, humans are capable of various full-body
movements, such as jumping and walking. In this exper-
iment, we decided to concentrate on jumping because we
focused on movement from a stationary state. We also
aimed to measure preliminary movements of rotation and
translation preceding jumping motions. Specifically, we
measured the following types of movement (Fig. 1).

• Jumping 180◦ rotating clockwise or counterclock-
wise while remaining in the same place.

• Jumping 75 cm to the left or right.

To summarize the above, we measured several types
of motions such as arm movements, leg movements, and
whole-body movements, which are relatively large mo-
tions in human motions, and are also thought to be impor-
tant in human interaction. These motions were measured
using an OptiTrack motion capture system and recorded
as skeletal coordinates of 21 body points (Fig. 2).

Seven subjects (seven right-handed men in their 20s)
participated in the motion capture procedures. For each
movement, the participants were instructed to move as
naturally and as quickly as possible. The subjects were
instructed to move in the corresponding direction (left or
right) shown on a monitor. For all subjects, 120 instances
were recorded for each movement, collected at 100 fps.
Instructions for the left and right directions were pre-
sented randomly. The initial position of the experiment

and the target position for the jump were marked on the
floor.

3. Experiment

3.1. Moment of the Preliminary Motions
When performing the intended main motions, some

motions are performed unconsciously for reasons such as
balance. Among these motions, we refer to those that be-
gan before the main motion as preliminary motions in the
context of a static starting position. By observing the pre-
liminary motion, the action of the main motion can be
predicted before they begin. The goal of this study is to
identify the timing of this preliminary motion and its lo-
cation. Therefore, we first need to define the starting mo-
ment of the main action. Because the static state does not
correspond to a preliminary motion, frames which may
have a higher likelihood of being a preliminary motion
can be identified by detecting a moment when each body
part starts to move.

The starting point of the target motion should be the
moment when we can determine the direction of move-
ment of the subject is going to move by looking at the
target body point. We set the starting point of the main
motion as the point where the hands or feet moved 3 mm
or more in the direction indicated for three consecutive
frames in the button touch and kick movements. The
threshold of 3 mm over 3 frames was determined by con-
sidering the noise motion during the static state (up to
0.5 mm/frame) and OptiTrack motion capture system ac-
curacy (0.5 mm) to robustly detect the main movements.
For the two jumping motions, we considered jumping to
be “an action in which the feet leave the ground and the
center of gravity moves upward from the initial state.”
Therefore, we considered that “the moment when the cen-
ter of gravity begins to move upward” was an appropriate
starting point to identify a jumping motion.

To determine the motion of all body parts starting to
move from the static state, the mean and standard devi-
ation of the velocity at static states were calculated for
every body point as a noise component under static condi-
tions. Then, a velocity threshold was empirically defined
as the sum of three times the mean and standard devia-
tion. The time when a velocity exceeded the threshold for
three consecutive frames was set as the moment of initial
movement of the various body parts.

3.2. Time and Duration of Preliminary Motions
Using the starting point of a target motion as a reference

point, we varied the following two values as inputs to the
NN for movement prediction.

1. Number of frames ahead used to predict (frames be-
fore movement, FBM).

2. Number of frames used as input (used frames, UF).
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Fig. 3. Input of skeleton model. We use sequential frames
of UF as an input.

Fig. 4. The simple fully connected NN which Horiuchi
et al. [16] used.

For example, if the target motion start point was at the
50th frame, and FBM was 20 and UF was 10, the data at
frames 20–29 were used as input (Fig. 3).

For the NN, we used a fully connected network with
four hidden layers, similar that of a previous study [16]
as shown in Fig. 4. The input data were 3D coordinates
of 21 joints measured using an OptiTrack motion capture
system. The total number of units in the input layer was
(21 joints) × (3 dimensions) × (# of UF). Fig. 4 shows an
example when the UF is 10. The middle layer was fixed
at 1000, 500, 100, and 63 units, in that order, and the
output layer had 2 (left or right). The activation function
of each unit in the intermediate layer was a normalized
linear function, and the output layer was an identity map.
A softmax cross-entropy error function was used, as well
as an Adam optimizer.

Four randomly chosen subjects out of seven were used
as training data, two were used as validation data, and
one as testing data. The training was conducted in mini-
batches, with 100 minibatches and 1000 epochs.

4. Results

4.1. Moment of the Preliminary Motions
In Figs. 5–8 below, the button touch movement is

denoted by BT Rhand, the kick movement is denoted
by Kick F, the rotation jump movement is denoted by
Jump Rot 180, and the left-right jump movement is de-
noted by JumpLR. The starting points of these target

movements (mean ± standard deviation) and initial mo-
tion moments of the other body parts are summarized in
Table 1. The column “Main motion” represents the time
from the instruction to the starting point of the target mo-
tion. The column “Mean of motion start frame of other
body parts” represents the average value of the difference
between the starting point of the target motion and that
of each body part. That is, when this value is negative,
the other body parts tend to start moving prior to the main
movement.

The average movement speed of the body parts in each
frame based on the starting point is shown in Figs. 5–8.
The body parts with larger movements are placed on the
upper side, and those with smaller movements on the
lower side. These figures were constructed only from
right-side movement data, as the left-side movement data
are symmetrical and largely equivalent.

These figures indicate that almost no preliminary mo-
tions occurred in the button touch movements, and after
the initiation of arm motions, other body parts moved to
maintain overall balance. The kick movement showed an
average of 10 frames, and a maximum of 20–30 frames
of preliminary motion. Before a kick, the hand on the
opposite side of the moving foot started to move slightly
earlier. The jumping movements showed an average of
20 frames and a maximum of 30–40 frames of prelimi-
nary motion before a jump began. In the rotation jump, a
hand tends to move in the opposite direction as the jump
just prior, while in the left-right jumps, a hand moved in
the same direction as the jump prior to the action.

4.2. Time and Duration of Preliminary Motions
Having identified tendencies of possible preliminary

motions, we determined the period of the input frames
based on these frames. For the kicking and jumping mo-
tions, the number of used frames (UF) varied from 5 to 40
(0.05 to 0.40 s), and the frames before movement (FBM)
varied from 0 to 40 frames before the start of the main
motion. Because it was unlikely that a preliminary mo-
tion would be available for the button touch motion, the
UF was 5 to 30 (0.05 to 0.30 s), and FBM was −20 to
10 (minus means the input is after the start of the main
motion).

Using these data as input, the accuracy results of the
left-right classification task for 120 test data (data of
one subject not used for training) are summarized in
Tables 2–5. We chose testing data from two different
sets; one set used data from Subjects 1–4 as training data,
from Subjects 5 and 6 as validation data, and that of Sub-
ject 7 as testing data, while the other set used data of
Subjects 4–7 as training data, that of Subjects 2 and 3 as
validation data, and that of Subject 1 as testing data. Be-
cause there was no significant difference in accuracy for
UF values above 25, we omitted some of the calculations
(shown in blank in the tables).

According to these tables, we may observe that for the
button-touch movement, using a body movement 0.2 s
“after” the motion started enabled prediction. There
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Fig. 5. Motion of body parts in the button touch movement.

Fig. 6. Motion of body parts in the kick movement.

Fig. 7. Motion of body parts in the rotation jump movement.

Fig. 8. Motion of body parts in the left-right jump movement.
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Table 1. Start of the main motion and preliminary motion.

No.
Main motion [ms]

(Mean SD),
n = 840

Mean of motion
start frame of

other body parts
[ms]

Button touch 379±65 +82
Kick 609±115 −109

Rotation jump 660±123 −200
Left-right jump 733±72 −221

Table 2. Classification accuracy on button touch movement.

(a) Subject 7 as testing data.

FBM [100 fps]
UF −20 −10 0 10
5 1.00 0.83 0.47 0.48
10 1.00 0.88 0.47 0.52
15 1.00 0.76 0.47 0.48
20 1.00 0.63 0.47 0.49
25 1.00 0.78
30 0.79 0.51

(b) Subject 1 as testing data.

FBM [100 fps]
UF −20 −10 0 10
5 0.98 0.82 0.48 0.49

10 0.97 0.83 0.47 0.51
15 0.95 0.73 0.52 0.50
20 0.95 0.67 0.52 0.54

Table 3. Classification accuracy on kick movement.

(a) Subject 7 as testing data.

FBM [100 fps]
UF 0 10 20 30 40
5 0.76 0.57 0.44 0.44 0.47

10 0.88 0.62 0.46 0.43 0.51
15 0.89 0.62 0.43 0.46 0.50
20 0.91 0.66 0.45 0.46 0.51
25 0.88 0.62
30 0.84 0.61
35 0.87 0.60
40 0.85 0.58

(b) Subject 1 as testing data.

FBM [100 fps]
UF 0 10 20 30 40
5 0.95 0.69 0.73 0.49 0.46
10 0.96 0.78 0.66 0.51 0.50
15 0.82 0.86 0.62 0.47 0.48
20 0.91 0.88 0.61 0.48 0.51

Table 4. Classification accuracy on rotation jump movement.

(a) Subject 7 as testing data.

FBM [100 fps]
UF 0 10 20 30 40
5 0.97 0.88 0.51 0.51 0.46
10 0.98 0.91 0.47 0.48 0.44
15 0.97 0.90 0.53 0.53 0.49
20 0.99 0.81 0.55 0.53 0.56
25 0.99 0.86 0.53
30 0.99 0.91 0.46
35 0.98 0.90 0.51
40 0.99 0.89 0.55

(b) Subject 1 as testing data.

FBM [100 fps]
UF 0 10 20 30 40
5 0.89 0.65 0.55 0.52 0.49
10 0.89 0.65 0.55 0.54 0.50
15 0.89 0.64 0.55 0.54 0.50
20 0.87 0.64 0.55 0.55 0.51

Table 5. Classification accuracy on left-right jump movement.

(a) Subject 7 as testing data.

FBM [100 fps]
UF 0 10 20 30 40
5 0.84 0.69 0.76 0.63 0.52
10 0.82 0.75 0.66 0.58 0.48
15 0.82 0.73 0.79 0.55 0.52
20 0.84 0.83 0.85 0.57 0.51
25 0.83 0.89 0.73 0.58
30 0.85 0.85 0.79 0.58
35 0.87 0.91 0.85 0.53
40 0.86 0.87 0.77 0.54

(b) Subject 1 as testing data.

FBM [100 fps]
UF 0 10 20 30 40
5 0.96 0.85 0.70 0.51 0.49
10 0.94 0.86 0.67 0.51 0.46
15 0.94 0.80 0.64 0.52 0.46
20 0.93 0.80 0.64 0.50 0.45
25 0.90 0.78 0.66 0.48 0.45
30 0.90 0.78 0.64 0.51 0.45
35 0.89 0.79 0.64 0.54 0.45
40 0.90 0.77 0.63 0.51 0.43
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Table 6. Comparison of beginning of the main motions in trainings data. When the information from Subject 1 was used as testing
data, Subjects 4–7 were used to train the proposed network. When Subject 7 was used as testing data, Subjects 1–4 were used for
training.

No.

Main motion,
average of Subjects 4-7

(Subject 1 as testing data source)
(Mean±SD) [ms], n = 480

Main motion,
average of Subjects 1–4

(Subject 7 as testing data source)
(Mean±SD) [ms], n = 480

SD ( f -test)
α = 0.01

Mean (Welch’s t-test)
α = 0.01

Button
touch 361±51 404±70 Significant

difference
Significant
difference

Kick 584±80 637±37 Significant
difference

Significant
difference

Rotation
jump 669±148 704±126 Significant

difference
Significant
difference

Left-right
jump 732±65 740±81 Significant

difference p = 0.087

seemed to be almost no preliminary motion, and it was
difficult to classify the button-touch movement before a
hand started to move.

For the kick movement, more than 90% of actions
could be predicted by using body movement 20 frames
back from a starting point (FBM = 0 and UF = 20) for
both subjects. In contrast, prediction based on informa-
tion up to 0.1 s before the starting point varied depending
on the subject; for Subject 1, approximately 80% of the
actions could be predicted using 15–20 frames. Because
it was difficult to classify left or right jumping movements
with inputs more than 0.2 s before the main motion (FBM
> 20), the preliminary motion was considered to occur
within 0.2 s before the starting point, and we found that
15–20 frames of input enabled reasonably accurate pre-
diction.

For the rotation jump, one subject could be predicted
0.1 s before the starting point and the other could not. The
preliminary motion was thought to be within 20 frames
before the start of the main motion.

The left-right jumping action showed the largest pre-
liminary motion. Using body movement 0.2 s before the
starting point, 70% of these actions could be predicted,
and some conditions were 85% predictable. Preliminary
motion appeared in some cases up to 40 frames before the
main motion started. Five frames of input were sufficient
to predict left or right jumps.

From these results, it was confirmed that the duration
of the time defined as preliminary motions in Section 4.1
was correlated with the predictable duration of the move-
ment. In other words, the movements of the other body
parts that occurred before the beginning of the main mo-
tion observed in Section 4.1 were considered to be prelim-
inary motions with sufficient information to predict which
way the subject would move. In addition, although there
were differences depending on movement type, prediction
accuracy was higher for UFs around 15–30, suggesting
that an input length of 0.15–0.3 s could be effective for
applications such as real-time estimation.

In addition, in order to examine the effect of the dif-
ferences in training data, we summarized the means and
standard deviations of the training data for Subjects 1

Table 7. Classification accuracy on the button touch move-
ment, excluding the input of right arm. Subject 7 as testing
data.

FBM [100 fps]
UF −20 −10 0 10
5 0.58 0.48 0.48 0.48
10 0.53 0.48 0.46 0.48
15 0.47 0.47 0.50 0.48
20 0.47 0.47 0.48 0.52

and 7 in Table 6. In most cases, the variances were not
equal, and the means were different; therefore, the train-
ing and validation data may also be considered a factor
for the difference in estimation accuracy.

5. Discussion

5.1. Arm Movement Prediction

To investigate the influence of body parts that were not
important in predicting the main motions, we also per-
formed left-right classification in a case where important
skeletal regions were excluded from the input skeletal co-
ordinates. In the case of the button touch movement, the
input per frame was 17× 3 points, excluding the 4 point
coordinates of the right arm, and for the other actions,
the input per frame was 13× 3 points excluding the eight
points of both legs.

As a result, the accuracy of the kick, rotation, and trans-
lation jump movements did not change significantly, but
the accuracy of the button touch changed significantly
(Table 7). Therefore, for the button touch movement, it
is considered that the left-right decision for FBM = −20
was made using the actual movement of the right arm af-
ter the main movement started. No other body parts con-
tributed to the estimation of motion for this action.

As for the reasons why preliminary motions did not ap-
pear in the button touch movement as they did in others,
the following can be considered.
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• The physical torque required to move an arm is rela-
tively small and requires relatively little support from
other parts of the body.

• The kicking, rotating, and left-right jumping move-
ments involve a need to balance the body.

The first factor could be investigated by making the
same measurement with a weight on the arm or holding a
stick to change the physical moment, and classifying the
left and right in that case. As for the second factor, if the
accuracy of classification were decreased in a balanced
situation (e.g., kicking from a seated position), it could be
confirmed that the contribution of balance maintenance
observations to the accuracy of left-right classification is
significant.

5.2. Network Structure and Prediction
In general, one NN failing to predict does not mean that

prediction is impossible with that dataset, because other
NNs or methods may be able to make a correct predic-
tion. In this case, however, we were able to identify the
period of time when a preliminary motion occurred from
the motion capture data, and there was a good correlation
between that period of time and the time span predictable
by NN. Therefore, it is reasonable to say that prediction
cannot be performed well using data lacking preliminary
motion.

Currently, room for improvement remains because pre-
diction is not perfect in areas where preliminary move-
ments are observable. However, in many situations where
prediction has not been possible, preliminary movements
have not been observed, and it is thus highly unlikely that
prediction will be possible even if a more advanced NN
structure were devised.

On the other hand, it is possible that different types of
information, such as mutual information, could be used
to extract behavior-related information earlier than a NN
can. This is considered as a future challenge.

5.3. Identifying a Motion Start Moment
In this study, we have discussed whether or not there

was a preliminary motion in some particular movements
and whether or not the preliminary motion could be used
for prediction. The length of these preliminary move-
ments varied significantly depending on the definition of
the motion start moment. We defined the motion start mo-
ment for limb movements as the moment when the part of
the body we instructed to move started to move. In jump-
ing actions, because the intended motion is a whole-body
movement and it is not possible to define a specific part of
the body to be moved, it is difficult to define a motion start
moment. As mentioned above, we determined the timing
from “the moment when the center of gravity began to
move upward.”

If the definition of the motion start moment was
changed, the judgment of whether the prediction was pos-
sible would be accordingly altered. For example, the mo-
tion start moment may be defined as the moment when the

brain processes the directional instruction on the screen
and decides to move, or as the moment when myoelec-
tricity is observed in the target muscle. In such a case,
the motion start moment would be set before the body
movement started, and thus there would be no prelimi-
nary movement by definition. In this paper, we discuss
whether there was a preliminary motion in terms of a mo-
tion start point defined within the range that can be judged
by motion capture body movement measurement.

5.4. Prediction in Robotics
Based on our experimental results, we expect it to be

difficult to predict fine gestures and eliminate delays, such
as in telexistence, because subtle hand movements that do
not disrupt the body’s balance cannot be predicted.

One possibility is to utilize a “context of action.” For
example, Mao et al. [23] improved prediction perfor-
mance by more than 0.5 s by including motion smooth-
ness as a feature. If we consider the use of more medium-
to long-term information, it may be possible to predict
further ahead. Algorithms that take into account the con-
text of an action, such as regressive neural networks, have
the potential to improve prediction performance and have
potential applications in robotics.

This study did not take such “context of action” into
account, and assumed that only the preliminary motions
associated with the main motions were directly used for
prediction. We showed the theoretical limits of prediction
without considering motion context. The results demon-
strate that it is possible to estimate whole-body movement
actions, such as jumping. This can be used in human-
robot interaction spaces to avoid collisions by predicting
sudden human movements.

5.5. Prediction in Group Behavior
In this study, it was shown that movements that in-

volve shifting the center of gravity could be predicted. It
is thought that humans can predict movements that have
such preliminary motions and make use of this ability in
human groups [24]. For example, people decide their
own behavior by predicting the actions of others, such as
walking in crowds. In the case of animals that move in a
unified manner as a group, it may be meaningful to con-
sider the effects of an individual’s predicted movements of
other individuals on their current movements and to con-
sider their interactions. Although this study only focused
on human movements, analysis and application to other
animals may be possible and remain as challenging future
issues.

6. Conclusion

In this study, we measured arm movements, leg move-
ments, and whole-body movements at 100 fps to deter-
mine the motion starting point of a single motion from a
static state. We also performed left and right classification
using neural networks by changing the number of frames
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and input timing of the input skeletal coordinates. In this
way, we identified sequences in which the necessary pre-
liminary motions appeared before the main motions were
performed. No preliminary motion was seen in the case
of the button touch movement, but for the kicking and ro-
tation jumping movements a preliminary motion was seen
0.2 s before the main movement started, whereas for the
left-right jumping action, the preliminary motion began
0.3 s before the main movement. Based on this experi-
mental data, it was confirmed that prediction by the neural
network was possible for the actual movement in propor-
tion to the time when a preliminary motion appeared. In
other words, hand movements could not be predicted in
advance, while kicks and jumps could be predicted from
0.1 s before, and left and right jumps from 0.2 s before. In
the case of predicting other body movements in a forward
propagation network, input data of approximately 0.15–
0.3 s in length, 0.1–0.2 s before the start of the movement
to be predicted are expected to be suitable.

These basic measurements of a person’s onset of ac-
tion and preliminary motions are basic information that
helps enable an understanding of the behavior of peo-
ple in groups. This is because people predict the move-
ments of others based on their observations of them and
change their own behavior accordingly, and the aggrega-
tion of these changes determines the behavior of people
as a group. For example, one could simulate changes in
the behavior of a group using models representing varying
predictions times ahead for each individual, for instance
0.1 s ahead compared to 0.5 s. We believe that this basic
information will prove useful to future clarification of the
group behavior of humans and other living creatures.
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