
Data-Driven Analysis for Understanding Team Sports Behaviors

Review:

Data-Driven Analysis for Understanding Team Sports Behaviors
Keisuke Fujii∗,∗∗,∗∗∗

∗Nagoya University
Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan

∗∗RIKEN Center for Advanced Intelligence Project, RIKEN
744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan

∗∗∗PRESTO, Japan Science and Technology Agency
Kawaguchi Center Building, 4-1-8 Honcho, Kawaguchi-shi, Saitama 332-0012, Japan

E-mail: fujii@i.nagoya-u.ac.jp
[Received December 14, 2020; accepted February 16, 2021]

Understanding the principles of real-world biological
multi-agent behaviors is a current challenge in various
scientific and engineering fields. The rules regarding
the real-world biological multi-agent behaviors such
as those in team sports are often largely unknown
due to their inherently higher-order interactions, cog-
nition, and body dynamics. Estimation of the rules
from data, i.e., via data-driven approaches such as ma-
chine learning, provides an effective way to analyze
such behaviors. Although most data-driven models
have non-linear structures and high predictive perfor-
mances, it is sometimes hard to interpret them. This
survey focuses on data-driven analysis for quantitative
understanding of behaviors in invasion team sports
such as basketball and football, and introduces two
main approaches for understanding such multi-agent
behaviors: (1) extracting easily interpretable features
or rules from data and (2) generating and controlling
behaviors in visually-understandable ways. The first
approach involves the visualization of learned repre-
sentations and the extraction of mathematical struc-
tures behind the behaviors. The second approach can
be used to test hypotheses by simulating and control-
ling future and counterfactual behaviors. Lastly, the
potential practical applications of extracted rules, fea-
tures, and generated behaviors are discussed. These
approaches can contribute to a better understanding
of multi-agent behaviors in the real world.

Keywords: human behavior, machine learning, dynami-
cal systems, sports, interpretability

1. Introduction

The development of measurement technologies, e.g.,
GPS tracking devices and camera-based systems, has
made possible the measurement and analysis of the move-
ments of various organisms. For example, they have en-
abled an understanding of the behaviors of wild animals
and athletes from data. Specifically, recent advances in

sports-related measurement technologies have been re-
viewed by many researchers such as in [1–3]. Based on
these advances, it is now possible to obtain a better under-
standing of the principles of real-world biological multi-
agent behaviors, which is a fundamental problem in var-
ious scientific and engineering fields. The rules underly-
ing real-world biological multi-agent behaviors are often
largely unknown because the elements are not physically
connected. Mathematical models based on simple rules
are used to directly understand multi-agent movements.
For example, models based on social forces in pedestri-
ans [4] or similar rules in flocks of birds [5] or schools
of fishes [6] are widely applied, in which a force or rule
is assumed to be acting among individuals. These mod-
els are also applied to more complicated behaviors such
as those observed in team sports [7–9], under certain as-
sumptions. However, modeling the general multi-agent
behaviors of living organisms, including the behavior of
players in team sports, can be mathematically difficult due
to their inherently higher-order social interactions, cog-
nition, and body dynamics [10]. Therefore, to obtain a
better understanding of these behaviors, a data-driven and
model-free (or equation-free) approach [11, 12] is needed.

Data-driven modeling is a powerful approach that is
used, for example, for extracting information and mak-
ing predictions using complex real-world data. For exam-
ple, the learning of models with complex, nonlinear struc-
tures such as neural networks, has been actively studied
in the field of machine learning. Although these nonlinear
models are often effective in terms of obtaining higher ex-
pressiveness and predictive performance, they are some-
times difficult to interpret. Hence, this study aims to
bridge the gap between rule-based (typically used in tra-
ditional sports sciences) and data-driven approaches, for
which there is a trade-off between interpretability and ex-
pressiveness (or predictability). The next questions must
be: what kind of nonlinear data-driven model will en-
able a better quantitative understanding? In a discussion
of this issue regarding the relationship between cogni-
tive science and deep neural network models [13], the
authors mentioned that such models would have value if
they could predict and explain phenomena, which could
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Fig. 1. Overview of the categories in our taxonomy for the analysis.

serve as a starting point for the establishment of new
theories. In the case of complex multi-agent behaviors,
existing rule-based models are too simple. To obtain a
better understanding, indirect techniques using nonlinear
data-driven models are required: e.g., (i) extracting the
mathematical structure behind the movements, (ii) visu-
alizing the learned representations, and (iii) modeling the
components of multi-agent systems and generating plau-
sible movements. If this requirement can be satisfied,
even when the results are based on a nonlinear data-driven
model, it will be possible to contribute to the understand-
ing of complex multi-agent behaviors.

In this paper, data-driven analyses for team sports be-
haviors are introduced, with a particular focus on inva-
sion sports such as basketball and football, which show
complex interactive behaviors (e.g., tactical defensive and
offensive formations). A range of related surveys and
dissertations have addressed the spatio-temporal aspects
of this issue [14–16] with a focus on football [17], and
have discussed predictive approaches via machine learn-
ing [18–20] including match outcome prediction, tactical
decision making, player investments, fantasy sports, and
injury prediction. The contribution of this paper is to re-
view data-driven analyses that interpret team sports be-
haviors (e.g., based on the trajectory and action data of
the players and ball, as defined in Section 2), rather than
simply perform clustering, classification, and prediction
via black-box learning-based models. After the prelimi-
nary explanation of terms in Section 2, examples of data-
driven approaches to extract features and rules are intro-
duced in Section 3, including the visualization of learned
representations and extraction of mathematical structures
underlying the behaviors. In Section 4, an approach for
testing hypotheses by simulating and controlling plausible
future behaviors, by generating future and counterfactual
behaviors, is introduced. Overview of the categories in
our taxonomy for the analysis is shown in Fig. 1. Lastly,
in Section 5, the potential for the practical application of
these estimated rules, features, and generated predictions
is discussed.

Fig. 2. An example of multi-agent trajectory data in bas-
ketball (illustration from [21]). The colored triangles, gray
circles, and the black circle represent the defenders, attack-
ers, and ball, respectively.

2. Preliminaries

The term agent is used to denote a dynamic object of in-
terest such as a player or the ball in team sports. A single-
agent trajectory P of length m is a sequence of m features
P = (p1, p2, . . . , pm), where pi ∈ R

d is a features with d
dimensions. For example, as a feature, the d-dimensional
coordinate is a simple case. Multi-agent trajectories PK
(e.g., of a team, both teams, or including the ball, such
as those depicted in Fig. 2) with K agents comprise a se-
quence of m features PK = (pK,1, pK,2, . . . , pK,m), where
pK,i = [pi,1, pi,2, . . . , pi,K] ∈ R

K×d . A sequence of re-
lations in a multi-agent system RRRK is defined as RRRK =
(R1,R2, . . . ,Rm), where Ri ∈ R

K×K . A relation is broadly
defined and can represent, e.g., neighborhood relation-
ships, compatibility (or chemistry), or connectivity be-
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Fig. 3. An example of a player action sequence with a ball
in soccer (illustration from [25]).

tween individuals. Ri’s component Ri,k,l represents the
relation between agents k and l at each i, as computed
by Ri,k,l = h(pi,k, pi,l) (e.g., where h is a distance func-
tion [11, 22] or a Gaussian kernel [23, 24]; studies in team
sports often consider neighborhood relationships between
individuals). In the following, actions indicate discrete
behaviors such as dribbles, passes, and shots, as shown in
Fig. 3. The objective of this paper is to present a method
for obtaining a better understanding of team sports be-
haviors, including continuous trajectories and discrete ac-
tions.

3. Extracting Features and Rules from Data

This learning-based approach is used to extract features
and rules despite the availability of little prior knowledge.
In this section, conventional rule-based approaches are
firstly introduced, followed by unsupervised and super-
vised learning approaches, with particular regard to their
interpretation. Unsupervised and supervised approaches
comprise two of the three main categories of machine
learning (the third is reinforcement learning, which is in-
troduced in Section 4).

3.1. Conventional Rule-Based Approaches
In conventional methods, which do not follow a

learning-based approach, researchers in various fields
have evaluated the characteristics of multi-agent behav-
iors based on their experience and established theories.
For example, based on hypotheses, researchers have cal-
culated the distances and relative phases of two athletes
(e.g., [10, 26, 27]), the speeds of movements (e.g., [28]),
the frequencies and angles of actions (e.g., shots [29]
and passes [30–32]), as well as their representative values
(e.g., average and maximum values). Measurement sys-
tems with greater spatiotemporal resolution (e.g., motion
capture systems and force platforms) can analyze skillful
maneuvers [33, 34] in terms of their cognition [35, 36],

force [37], and torque [38]. After obtaining representa-
tive values, specific hypotheses have been tested (e.g., [10,
39]) sometimes by statistical analysis. For example, in
order to quantify the flexible teamwork involved in de-
fense in basketball (i.e., 5-vs-5), the defensive coopera-
tion against team attacks called screen-plays, which block
the movements of a defender, was evaluated [10]. The
results showed that the defender flexibly changes the fre-
quency of four roles (i.e., switching, overlapping, ignor-
ing, global-help), according to the level of urgency. This
traditional quantitative approach remains powerful, is ap-
plicable to small datasets, and is the easiest to interpret in
a range of fields (e.g., particular sports) because it allows
for the direct testing of hypotheses.

Representative values have also been computed using
more mathematically sophisticated approaches. Pioneer-
ing work was conducted in which each player’s area of
control in actual soccer games was evaluated as a Voronoi
diagram [40]. Other studies, for example, have analyzed
the connections of passes based on network theory [41],
the self-similarity hidden in a time series of the front posi-
tion of the team [42], and the breaking of spatiotemporal
symmetry using group theory in a 3-vs-1 ball possession
scenarios [43]. In a recent study [44], a probabilistic rule-
based model was developed to quantify off-the-ball scor-
ing opportunities. However, in order to represent cooper-
ative/competitive interactions in a more detailed or prac-
tical manner, more flexible modeling would be needed.
A wide variety of data-driven methods such as machine
learning have been developed to achieve clear objectives
such as automatic feature extraction, classification, and
regression. In the following subsections, unsupervised
and supervised learning, which are used in the field of
machine learning [45], are introduced, and examples of
studies using player position data in team sports, which
can be readily interpreted, are presented.

3.2. Unsupervised Learning
Unsupervised learning is a class of machine learning

algorithms that acquire insight by inferring functions for
describing hidden structures from unlabeled data. This is
a powerful approach for knowledge discovery from data
without the benefit of clear hypotheses. Typical unsuper-
vised methods include dimensionality reduction and clus-
tering.

3.2.1. Dimensionality Reduction
Dimensionality reduction involves the transformation

of high-dimensional data into a meaningful representa-
tion of lower dimensionality. For example, principal com-
ponent analysis (PCA), t-distributed stochastic neighbor
embedding (t-SNE) [46] regarding shot type [47], non-
negative matrix factorization (NMF) [48] or tensor de-
composition [49] regarding the shot type, and topic mod-
eling [50, 51] of trajectories (i.e., a natural language pro-
cessing algorithm), have been used to summarize diverse
interactive sports behaviors into lower-dimensional rep-
resentations. However, some of these methods have as-
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sumed independence of sampling. That is, the extracted
information does not reflect dynamical properties. There-
fore, an extraction method, identifying the coordinative
structures based on dynamical properties from data, is
needed.

A number of approaches are used to reduce the num-
ber of dimensions while considering the time-series struc-
tures. For example, image-based approaches trans-
form trajectory data into images using neural net-
works (e.g., [52, 53]), including the self-organizing
map (e.g., [54, 55]). Another approach for extracting
physically-interpretable dynamical properties is a method
called dynamic mode decomposition (DMD) [56, 57]. It
can decompose data into a small number of time dynam-
ics (i.e., frequency and growth rate) and their coefficients
(i.e., extraction of dynamic properties). DMD is based
on the spectral theory of the Koopman operator [58, 59].
Theoretically, to compute DMD, the data must be rich
enough to approximate the eigenfunctions of the Koop-
man operator. However, in basic DMD algorithms that
naively use the obtained data, the above assumption is
not satisfied, e.g., when the data dimension is too small
to approximate the eigenfunctions. Thus, there are sev-
eral algorithmic variants of DMDs to overcome this prob-
lem such as a formulation in reproducing kernel Hilbert
spaces (RKHSs) [60], in a multitask framework [61], and
using a neural network [62]. Researchers have applied the
DMD in RKHSs to multi-agent relation sequences (see
Section 2) in team sports [11, 22] and utilized the struc-
ture of an adjacency matrix series RRRK (see Section 2) via
tensor-train decomposition [24]. This approach has the
advantage of enabling (i) the extraction of the mathemat-
ical structure and (ii) visualization of the learned expres-
sions for the above purposes of data-driven methods.

3.2.2. Clustering
Clustering involves grouping a set of objects such that

objects in the same group (called a cluster) are more sim-
ilar to each other than to those in other groups (clus-
ters). There are many clustering algorithms based on var-
ious cluster models, e.g., hierarchical clustering (based
on the connectivity or similarity between two trajecto-
ries), centroid-based clustering (such as k-means), and
distribution-based clustering (such as Gaussian mixture
models). For team sports data, researchers have used hi-
erarchical clustering [63, 64] based on similarity [65–67]
and distribution-based clustering using a Gaussian mix-
ture model [68]. However, again, problems can occur
when using time-series data (for example, it is difficult
to naively compute a similarity when the data do not have
fixed time lengths). In that case, one approach is to specif-
ically design the similarity of time series to enable the ap-
plication of the conventional clustering method to static
data in the following approaches.

Hierarchical clustering requires appropriate distance
measures. Among the several distance measures available
for trajectories, the Fréchet distance [69] and dynamic
time warping (DTW) [70] have been frequently used (e.g.,

in basketball [65, 66] and soccer [65] games). How-
ever, these simple approaches have high computational
costs and are difficult to apply to large-scale sports data.
Therefore, researchers have developed a scalable method
for computing Fréchet distance by quickly performing a
search on a tree data structure called trie [67]. Recently
developed neural network approaches can also compute
the similarities of a single-agent trajectory in scalable
ways [71, 72] using sequence-to-sequence framework, but
these have not been applied to team sports multi-agent tra-
jectory datasets. Recently, a method for learning team
sports trajectory representation using a transformer-based
approach has been proposed [73].

3.2.3. Other Topics
Another problem is the computation of the distance

or similarity between multi-agent trajectories. A simple
method for comparing agent-to-agent trajectories encoun-
ters permutation problems among the players [66]. This
is because raw multi-agent data includes the misalignment
of players or roles due to the constant swapping of them
among multiple sequences of plays. One rule-based ap-
proach permutes the players nearest to the ball (e.g., [11,
24]). A data-driven permutation method such as a linear
assignment, known as the Hungarian algorithm [74], has
also been used for role assignment problems in basket-
ball [66, 75–77] and soccer [78, 79] (e.g., guard, forward,
and center in basketball).

Another approach to deal with the permutation prob-
lem is calculating the similarity of multivariate nonlinear
dynamical systems using DMD [11, 22]. Since DMD is a
dimensionality reduction method like PCA, the extracted
dynamical property is permutation-invariant. Moreover,
this approach uses a kernel that reflects the dynamics via
the extraction of dynamical properties. A kernel called the
Koopman spectral kernel can be regarded as a similarity
between multivariate nonlinear dynamical systems, which
permits the use of some clustering methods. However, in
general, since unsupervised learning methods do not use
objective variables (labeled data), it is sometimes difficult
to validate them quantitatively. To evaluate them quan-
titatively, combining them with the following supervised
learning methods may be effective.

3.3. Supervised Learning
Supervised learning is a machine learning task of infer-

ring a function from supervised or labeled training data.
When labeled data has discrete values such as the type of
play, it is called classification, and when it has (relatively)
continuous values such as position and score, it is referred
to as regression. Here, classification problems of team
plays or regression problems for scoring probability are
considered (other regression problems such as trajectory
prediction are described later). A simple approach is to
input static features into classification or regression mod-
els. For example, score prediction in basketball [80–82],
team identification in soccer [83], screen-play classifica-
tion [84–86], and prediction of who will obtain a basket-
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ball in rebounding situations [87] using such as linear dis-
criminant analysis (LDA), logistic regression, or support
vector machine (SVM) with the hand-crafted static fea-
tures described in Section 3.1. In this process, the static
features obtained from unsupervised learning (e.g., [88])
can be input into classification or regression models.

However, it is often necessary to reflect the time-series
structure for supervised learning also when it is applied
to complex multi-agent behaviors. A simple approach is
to use the dynamic features obtained from unsupervised
learning, as described in Section 3.2. For example, by the
use of the above DMD and computation of similarity, de-
fensive tactics (defending the area or players) and offen-
sive tactics (with or without cooperation) [24] can be clas-
sified. Another DMD-based method has also been used to
classify and predict the scoring probability [11, 22]. The
strength of supervised learning is that the results can be
clearly evaluated in terms of being able to assess the im-
portance of particular behaviors on outcomes.

More sophisticated approaches are end-to-end ap-
proaches, which use the same model to extract features
and perform predictions (i.e., classification or regression).
For example, a neural network approach can be used to
classify offensive plays [52], team styles [89], and attack
outcomes based on evaluating micro-actions [90]. How-
ever, a neural network approach sometimes lacks inter-
pretability. To obtain interpretable spatial representations,
researchers have developed a number of approaches that
provide both predictability and interpretability, such as
using matrix [91] and tensor [92, 93] factor models, and
Poisson point process [94]. Other researchers have ap-
plied a supervised pattern mining method to rugby event
data [95], which can also be applied to trajectory data af-
ter transforming the data into sequences of symbols.

The combinations of the predictability and inter-
pretability are related to practical applications to actual
sports games because coaches and players need informa-
tion such as why the score was obtained and what charac-
teristics are observed in the subsequent plays. To explain
and understand multi-agent behaviors more quantitatively
or practically, it is necessary not only to improve pre-
dictive performance, but also to clarify their underlying
principles (e.g., identify the mathematical structure and
provide visualized representations that are interpretable).
Meanwhile, if the purpose of an analysis is close to its
practical application, such as simulating and controlling
behaviors as discussed in the next Section 4, there may
be no problems in using even black-box learning-based
models.

4. Simulating and Controlling Behaviors

This approach enables verification of researchers’ hy-
potheses by modeling for future prediction or in situations
that cannot be actually measured. In this section, con-
ventional rule-based approaches are introduced, followed
by pattern-based (or data-driven) and planning-based ap-
proaches, based on the categorization of a human trajec-

tory prediction survey [96]. Pattern-based methods ap-
proximate an arbitrary dynamics function from training
data to discover statistical behavioral patterns. Planning-
based methods explicitly address long-term movement
goals of an agent and compute policies or path hypotheses
that enable the agent to reach those goals (often formu-
lated as reinforcement learning).

4.1. Conventional Rule-Based Approaches
In traditional rule-based methods, researchers need to

manually determine the rules regarding how the agents
move (e.g., approaching the ball and avoiding opponents).
The model parameters (e.g., player position, speed, and
interaction with other players) are manually determined
or statistically estimated by, e.g., regression models. For
example, the movements of players in a 3-vs-1 soccer pos-
session task was simply modeled using three virtual social
forces: spatial, avoiding, cooperative forces [7]. In actual
soccer games, pass probabilities [8] and the future trajec-
tories of players in several seconds [9] have been mod-
eled using more complex rule-based approaches. These
approaches have the advantage of providing an under-
standing of simulated and controlled behaviors because
the users set all of the rules. However, the adaptation
of this approach to different problems (e.g., from soc-
cer to basketball) requires additional and costly human
labor and it would be difficult to extract universal rules
for multi-agent behaviors.

4.2. Pattern-Based Approaches
Pattern-based or data-driven approaches automatically

learn dynamics (i.e., both the rules and parameters) from
data using less human knowledge to solve the above prob-
lem. In studies of team sports, there have been mainly
two goals in applying these approaches: simulating multi-
agent trajectories over several seconds and a more long-
term team outcome. To predict long-term outcomes, if
short-term behaviors are ignored, it is possible to simu-
late behaviors until the end of the possession (or attack).
Although this methodology mainly involves supervised
learning, which overlaps with the content in Section 3.3,
these methods are used to simulate and evaluate player
behaviors, rather than extracting features and rules. In
particular, researchers can use the reinforcement learning
framework to evaluate either a player’s action and state, or
the team state to achieve the goals described in the follow-
ing Section 4.3. In this subsection, modeling methods of
multi-agent trajectories for extracting features and rules
are then introduced.

The prediction of even just a few seconds of the multi-
agent trajectories in team sports, e.g., basketball and soc-
cer, is generally difficult. That is why it is one of the
benchmark problems in the field of machine learning [78,
79, 97–99]. Most methods have leveraged recurrent neu-
ral networks (RNN) [78, 97, 100, 101] including varia-
tional RNNs [79, 98], although some have utilized genera-
tive adversarial networks (e.g., [102, 103]), variational au-
toencoders [104], and a transformer-based approach [73]
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without RNNs. Most of these methods were simply for-
mulated as a trajectory prediction problem, whereas a few
studies formulated it as an imitation learning problem
(e.g., [21, 78]), which is one of reinforcement learning
framework utilizing demonstration of experts (i.e., data).

In most of these methods, the agents are assumed to
have full observation of other agents to achieve long-
term prediction in a centralized manner (e.g., [79, 98]).
In such a case, an important latent factor to represent
the agents’ internal states, e.g., whose information is uti-
lized by each agent, is not interpretable. Methods for
learning attention-based observation of agents have been
proposed for multi-agent in virtual environments and in
real-world systems [21, 105, 106]. Other approaches such
as neural relational inference (e.g., estimating the move-
ment coupling of physical and biological systems [107,
108]) or a physically-interpretable approaches based on
DMD [23, 24] can learn interpretable representations of
interactions. Rigorously, decentralized modeling [21] is
needed to enable computation of each agent observation
(or contribution). Meanwhile, recent graph neural net-
work approaches can learn permutation-equivalent fea-
tures [79, 107–109], which solve the permutation problem
described in Section 3.2.

Another important approach is the tactical evaluation
of a predicted trajectory. For example, trajectory predic-
tion reflecting defensive evaluations in soccer [110] and
trajectory computation optimizing defensive evaluations
in basketball [16]. Qualitatively, the evaluation of coun-
terfactual prediction (i.e., predicting “what if” situations)
can be used to validate the models [21, 79] based on the
user’s knowledge, whereas there is no ground truth in a
counterfactual situation.

Although it is generally difficult to extract mathemati-
cal structures with such an approach that prioritizes pre-
dictive performance and performs a nonlinear transforma-
tion, there are methods that make them compatible such as
in [111] with applications other than sports. Such meth-
ods can be useful for explicit modeling (e.g., observation
model) of the nonlinear model when the phenomenon can
be sufficiently explained or used as a starting point for var-
ious theories [13] as mentioned in the Introduction. These
approaches enable realistic and visually-understandable
simulations (e.g., common athlete movements and the re-
sponse to unobserved movements). Potential practical ap-
plications are presented in Section 5.

4.3. Planning-Based Approaches
Planning-based methods explicitly address the long-

term movement goals of agents and compute policies or
path hypotheses that enable the agent to reach those goals.
According to [96], planning-based approaches are clas-
sified into two categories: inverse and forward planning
methods. Inverse planning methods estimate the action
model or reward function from observed data using sta-
tistical learning techniques. In other words, this approach
utilizes a reinforcement learning framework in physical
spaces (or in real-world data). Although it sometimes

overlaps with supervised learning in Section 3.3 and im-
itation learning in Section 4.2, the methods introduced
here are used to evaluate actions and states of a player
or a team to achieve their goals, rather than to extract fea-
tures and rules or predict trajectories. Forward planning
methods make an explicit assumption regarding the opti-
mal criteria of an agent’s movements, using a pre-defined
reward function (e.g., a score in team sports). These two
approaches are described in Sections 4.3.1 and 4.3.2.

4.3.1. Inverse Approach Using Real-World Data
The inverse planning approach uses statistical learn-

ing techniques to estimate an action model or reward
function from observed data. Here this idea is extended
to consider and value players’ actions and the team’s
states. For example, with respect to shooting, player’s
actions have been valued by estimating the scoring and
conceding probability (VAEP) [25] and a state-action
value function (Q-function) has been estimated using an
RNN [112, 113], which made interpretable using a lin-
ear model tree [114]. To evaluate the shooting action
of players, researchers have investigated allocative effi-
ciency in shot [115], the expected possession value [80,
116, 117], and the value of the space [118, 119] by extend-
ing a Voronoi diagram [40]. Regarding passing actions,
similarly, researchers have considered modeling and valu-
ing of a pass [120–122], pass-receiving [123], and the
defender’s pass-interception [124]. In team plays, deep
reinforcement learning to estimate the quality of the de-
fensive actions was used in ball-screen defense in basket-
ball [125]. Another approach is the qualitative evaluation
of counterfactual predictions as described above. For ex-
ample, researchers have modeled the transition probabil-
ities and shot policy tensors and have simulated seasons
under alternative shot policies of interest [126].

4.3.2. Forward Approach in Virtual Spaces
The forward planning approach involves the develop-

ment of algorithms for the purpose of winning a com-
petition involving humans or machines in virtual space
(e.g., video games). To develop methods both in physi-
cal and virtual spaces, RoboCup (the Robot World Cup
Initiative) involves attempts by robot teams to actually
play a soccer game [127]. Research has been conducted
on virtual games such as puzzles and shooters, and re-
cently an open-source simulator for soccer games was
published [128]. Some researchers used a 3-vs-3 basket-
ball simulator [129], which is not currently open-source.
In these studies, using reinforcement learning, the per-
formances are expected to defeat humans in some cases
(such as mastering the game of Go [130]). It is also pos-
sible to learn similar behaviors from measurement data in
sports games (e.g., using imitation learning frameworks as
mentioned above). However, few studies have combined
inverse and forward planning-based frameworks. For ex-
ample, reinforcement learning could generate the optimal
defensive team trajectory with the reward of preventing
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opponent scores after the imitation learning [66]. An ap-
proach to bridge this gap is an important issue for future
research.

5. Practical Applications and Future
Directions

There are a number of possible practical applications of
extracted rules, features, and generated behaviors. First,
if play classification and score prediction become possi-
ble based on the extracted features and rules of multi-
agent behaviors, the most directly useful application is the
decrease in the workload of those who manually classi-
fied and evaluated plays by watching videos. However, it
would be sometimes difficult to define specific plays that
the user wishes to classify, whereas other plays can be
easily defined (e.g., offensive and defensive tactics [24]
in basketball). In such a case, it may be possible to col-
lect similar plays in the form of a recommendation sys-
tem [131] such as based on unsupervised learning (de-
scribed in Section 3.2), in a way that is analogous to
searching a web page.

Regarding the short-term future prediction discussed in
Section 4, these can visually present, e.g., how a certain
move will work for a player in the same situation as a
good player, and how the team in the next game will re-
spond to our team. In long-term prediction, predicting the
game situations and results of the opponent team in the
next game would be useful for tactical planning purposes.
Although there are gaps between the resolution of practi-
cal application and research on tactical planning in inva-
sion sports (e.g., formations and styles in soccer [132] and
specific cooperative plays and defense styles in basket-
ball [24]), other team sports such as baseball have fewer
such gaps [133] because most of their actions can be eval-
uated discretely. Since individual results can be more eas-
ily predicted in invasion team sports (especially those near
the ball or on-the-ball), many studies in recent years have
evaluated the behaviors of professional athletes (e.g., [25,
134]).

Three possible future issues can be considered. One
is the high cost of using location information, which cur-
rently limits the usage in professional sports. This prob-
lem is being researched with respect to both software and
hardware, and we expect that it may become easier to ob-
tain and more accurate in the future, even for estimating
joint positions [135]. With greater spatiotemporal resolu-
tion, skillful maneuvers in terms of their cognition, force,
and torque can be analyzed as described in Section 3.1.
The second is that higher (almost perfect) performance
is often required for practical use. However, it may be
more constructive to consider whether the results obtained
by these approaches are better (less expensive with fewer
mistakes) than those obtained by humans.

6. Conclusions

This survey focused on data-driven analyses that can be
used to obtain a quantitative understanding of behaviors
in invasion team sports. Two approaches for understand-
ing these multi-agent behaviors were introduced: (1) the
extraction of features or rules from data in interpretable
ways and (2) the generation and control of behaviors in
visually-understandable ways. Lastly, the potential prac-
tical applications of extracted rules, features, and gener-
ated behaviors were discussed. The development of these
approaches will contribute to a better understanding of
multi-agent behaviors in the real world.
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