
Goto, T. et al.

Paper:

Analysis of Autonomous Coordination Between Actuators
in the Antagonist Musculoskeletal Model
Takahiro Goto∗, Yasuhiro Sugimoto∗, Daisuke Nakanishi∗∗,

Keisuke Naniwa∗∗∗, and Koichi Osuka∗

∗Osaka University
2-1 Yamadaoka, Suita, Osaka 565-0871, Japan

E-mail: {t.goto@dsc., yas@, osuka@}mech.eng.osaka-u.ac.jp
∗∗National Institute of Technology, Matsue College

14-4 Nishi-ikuma, Matsue, Shimane 690-8518, Japan
E-mail: nakanishi@matsue-ct.jp

∗∗∗Hokkaido University
Kita 12, Nishi 7, Kita-ku, Sapporo, Hokkaido 060-0812, Japan

E-mail: naniwa@es.hokudai.ac.jp
[Received March 10, 2020; accepted February 24, 2021]

The McKibben Pneumatic Actuator (MPA) is well-
known as a type of soft actuator. As MPA generates
tension only in the direction of compression, it is nec-
essary to construct an antagonistic structure to drive
a joint by MPAs and to coordinate antagonized MPAs.
Similar to MPA, muscles in animals also generate ten-
sion only in the direction of contraction. Some stud-
ies have reported that animals utilize tension infor-
mation to coordinate muscles for various autonomous
movements. The purpose of this study is to realize
autonomous cooperation between antagonized MPAs
by applying tension feedback control and analyzing
the mechanism of coordination. For this purpose,
we verify the effect of tension feedback control on
the 1-DOF pendulum model with antagonized MPAs.
First, through numerical simulations, it is confirmed
that the tension feedback generates various coordi-
nated movements of antagonized MPAs, and the pen-
dulum exhibits a bifurcation phenomenon based on
the phase difference of the inputs of MPAs. Thereafter,
we develop an actual experimental machine based
on the model and confirm the autonomous coopera-
tion between actual MPAs through verification exper-
iments similar to the numerical simulations.

Keywords: pneumatic artificial muscle, actuator cooper-
ation, tension feedback, antagonistic structure

1. Introduction

The McKibben Pneumatic Actuator (MPA) is a type of
soft actuator that is driven by air pressure. As shown in
Fig. 1, MPA consists of a silicone rubber tube covered
with a nylon mesh. By applying air pressure, the actu-
ator contracts along the direction of the long axis. It is

Fig. 1. Overview of MPA at normal state (bottom) and con-
traction state (top).

often utilized in rehabilitation devices because of its flex-
ibility and high back drivability [1]. Furthermore, the
MPA is also utilized in robots that imitate animals ow-
ing to its high output per mass, and the robot achieves
jumping motion with its simple input [2]. However, due
to the complexity of the MPA model, the input design of
each MPA to drive a robot is often done by trial-and-error
parameter tuning. And there has been little theoretical
analysis of MPA coordination and the resulting robot mo-
tion. Therefore, this study aims to achieve autonomous
robot movements by controlling the coordination between
MPAs. Autonomous motion generation leads to various
motions without relying on parameter tuning.

As the MPA generates tension only in the direction of
compression, it is necessary to construct an antagonistic
structure to drive a joint by MPAs. Similar to MPA, mus-
cles generate tension only in the direction of contraction.
For this reason, multiple muscles are located on one joint
in animals. Motion is generated by the appropriate ten-
sion and relaxation of muscles involved in the movement
of each joint. Therefore, MPA-driven robots must achieve
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proper coordination between MPAs.
Various coordination skills are involved in the move-

ments of animals. For example, animals can walk with-
out falling over even on uneven terrain by skillfully mov-
ing their legs according to the surrounding terrain. The
realization of such adaptive gait is fascinating, and vari-
ous studies have been conducted to elucidate the mech-
anism. Experiments with animals suggest that the gait
of animals is not always controlled by the brain; instead,
the gait rhythm emerges at the spinal cord due to a neu-
ral circuit called the central pattern generator (CPG) [3].
Animals use this CPG to achieve periodic movements of
flexor and extensor muscles. It has also been reported that
sensory information is used for gait control in addition to
the CPG [4]. These findings suggest that animals achieve
coordination based on the feedback of sensory informa-
tion obtained from interactions with the surrounding en-
vironment in addition to the rhythm generated by CPG.

Several studies have already attempted to model the
movement of animals realized by coordination. For ex-
ample, several CPG models expressed as neural oscilla-
tor systems have been proposed for walking. Some mod-
els can realize the robust bipedal walking or quadrupedal
walking with feedback of sensory information [5, 6]. A
few studies have focused on the interaction between the
body and the surrounding environment during walking.
Ishiguro et al. proposed the “TEGOTAE” control method,
which uses force information obtained from the surround-
ings [7]. Although this control method does not include
direct coordination between the legs, it can produce co-
ordination between the legs through interaction with the
environment and acknowledge an adaptive gait according
to the walking speed, etc.

On the contrary, the cooperative relationships for an
adaptive gait exist not only in inter-leg coordination but
also in intra-leg coordination. It has been revealed that
animals walk stably by flexibly changing the contraction
timing of the muscles in their legs in response to changes
in the environment [8, 9]. Therefore, it is noteworthy that
the cooperative relationship between muscles in the an-
tagonistic structure is also an essential factor for the real-
ization of autonomous movement.

Considering the above-mentioned description, in this
study, we attempt to realize an autonomous, cooperative
relationship of antagonized MPAs with the musculoskele-
tal robot model and investigate the mechanism of the re-
sultant coordination of MPAs. To realize the coordination
between antagonistic actuators, we focus on the fact that
animals use sensory information such as muscle length
and tension during walking [4]. For this purpose, in this
study, we first construct a new tension feedback control
law. Through numerical simulations, we confirm that the
tension feedback generates various coordinations of an-
tagonized MPAs, and the pendulum exhibits a bifurcation
phenomenon based on the phase difference of the inputs
of MPAs. Subsequently, we develop an experimental sys-
tem based on the model and confirm autonomous coop-
eration between actual MPAs through verification experi-
ments similar to the numerical simulations. These results

(a) Components (b) Parameters

Fig. 2. Model of the 1-DOF pendulum driven by antagonis-
tic actuator.

Table 1. Parameters of 1-DOF pendulum.

Symbols Definitions Values

l0 Pendulum length 550 mm
θ0 Initial pendulum angle 0 rad
m Pendulum mass 1 kg
g Gravitational acceleration 9.80665 m/s2

l1, l2
Offset between the rotation

center and the upper
attachment position of MPA

30 mm

l3
Length to MPA attachment
position in rod pendulum 500 mm

L0 Natural length of MPA 300 mm
D0 Natural diameter of MPA 15 mm

lw1, lw2 Wire length of MPA 200.9 mm

suggest that the tension feedback control realizes the var-
ious movement of multi-joint robots with MPAs by con-
trolling the coordination between MPAs.

2. Leg Model and Control Law

2.1. Model of Monarticular Leg Driven by
Antagonist Muscles

For the theoretical analysis, our study focused on a one-
leg model with a simple antagonistic structure. Fig. 2(a)
presents the model to be analyzed. This model consists
of the upper body, thigh, hip joint, and two antagonized
MPAs. This model can be considered as a 1-DOF sym-
metric pendulum. As shown in Fig. 2(a), the component
supporting the pendulum corresponds to the upper body,
the center of rotation of the pendulum corresponds to the
hip joint, and the pendulum corresponds to the leg. More-
over, the antagonized MPAs drive the pendulum.

Figure 2(b) shows parameters of the rod pendulum
model. The details of each parameter in Fig. 2(b) are
shown in Table 1. It is assumed that the rod pendulum
has a constant density and that the vertically downward
direction is 0 rad.

The equation of angular motion around the joint can be
derived as follows:

Iθ̈ = fm1l3 cosα − fm2l3 cosβ − 1
2

mgl0 sinθ , . (1)
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where I is the moment of inertia, α and β are the an-
gles formed by the pendulum and the tension direction of
MPA1 and MPA2, respectively. α and β are calculated as
follows:

cosα =
l1 cosθ

Lm1 + lw1
, cosβ =

l2 cosθ
Lm2 + lw2

. . . . (2)

Each MPA length is determined by the pendulum angle θ
according to the geometric relationship as follows:⎧⎪⎨

⎪⎩
Lm1 =

√
l2
1 + l2

3 −2l1l3 sinθ − lw1,

Lm2 =
√

l2
2 + l2

3 −2l2l3 sinθ − lw2.

. . . (3)

The MPA contraction velocities vi = L̇mi (i = 1,2) are ob-
tained from the pendulum velocity as follows:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

v1 =
l1l3 cosθ√

l2
1 + l2

3 −2l1l3 sinθ
θ̇ ,

v2 = − l2l3 cosθ√
l2
2 + l2

3 +2l2l3 sinθ
θ̇ .

. . . . (4)

2.2. Tension Model of MPA
Several studies have proposed tension models for

MPA [10, 11]. In this study, we use the linear approxi-
mation model, which was proposed in our previous study,
to analyze the effect of MPA characteristics on move-
ment [12]. It has been confirmed that this model can ap-
propriately express the tension characteristics of MPA de-
spite its simplistic form, as compared to other proposed
models. The linear approximation model is expressed as
follows:

fm(P′,Lm,v) = S1P′ +S2P′Lm +S3Lm +S4 + γv (5)

where S1,2,3,4 and γ are constant. The MPA tension is
calculated by substituting the MPA pressure P′, length Lm,
and contraction velocity v into The details of this tension
model of MPA are provided in Appendix A.

2.3. Tension Feedback Control Method
To develop a tension feedback control method applica-

ble for the MPAs, the “TEGOTAE” control law [7] is re-
ferred. The “TEGOTAE” control law is a phase oscillator-
based control method that uses sensory information of the
ground reaction force of each leg for modifying the intrin-
sic angular velocity of the oscillator, to reproduce the co-
operative movement between legs. An important feature
of the “TEGOTAE” control law is its ability to produce
autonomous coordination between the legs without imple-
menting direct inter-leg coordination. In this study, using
tension feedback control, we realize autonomous coordi-
nation between MPAs and realize various pendulum mo-
tions.

The tension feedback control law for MPAs used in this
study is defined as follows:

φ̇i = ω −σ fmi cosθ . . . . . . . . . . . (6)

Fig. 3. Effect of tension feedback to phase oscillator. The
angular velocity of oscillator is greater than the intrinsic an-
gular velocity ω with negative feedback gain σ , and the an-
gular velocity is slower with positive feedback gain σ .

where φi is the phase of oscillator assigned to each MPA,
fmi (i = 1,2) is the tension of the MPAs, which corre-
sponds to the sensory information obtained in the model,
θ is the pendulum angle representing the state of the pen-
dulum, ω is the intrinsic angular velocity, and σ is the
feedback gain. The second term expresses the tension
feedback. This term modifies the periodic motion with the
intrinsic angular velocity if there is tension of the MPAs.
Furthermore, the angular velocity of the phase oscillator is
modified depending on the feedback gain sign, as shown
in Fig. 3. When there is a significant swing of the pendu-
lum , the effect of feedback is reduced because the tension
feedback is directly proportional to cosθ . The tension
feedback term results in a difference in the angular veloc-
ity of the two-phase oscillators. This difference causes a
change in the relationship between the antagonistic actu-
ators.

The MPA expands and contracts when a pressure input
is applied. In this study, the input pressure P′

i (i = 1,2) to
MPA1 and MPA2 are defined by substituting φi in Eq. (6)
into the following equation:

P′
i = A(1− sinφi) . . . . . . . . . . . . (7)

where A is the pressure amplitude. One rotation of the
phase oscillator on the circle is equivalent to the MPA
performing contraction and extension once. Hence, the
pendulum swings one cycle.

Here, the phase difference is defined as follows:

φ = φ1 −φ2. . . . . . . . . . . . . . (8)

3. Simulation of a 1-DOF Pendulum

We simulated the motion of the pendulum model and
tension feedback described in Section 2 and thus verified
that a cooperative relationship could be created and deter-
mined the type of cooperative relationship that could be
created.

3.1. Realization of Autonomous Cooperation
Between Actuators

This section describes an example of the motion real-
ized by the proposed tension control law and the ability to
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(b) Pendulum angle θ
Fig. 4. Simulation result of 1-DOF pendulum with ω =
0.20π rad/s and σ = −0.075 (t = 0–3 s).
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(b) Pendulum angle θ
Fig. 5. Simulation result of 1-DOF pendulum with ω =
0.20π rad/s and σ = −0.075 (t = 67–70 s).

generate an autonomous cooperative relationship.
Figure 4 presents the simulation results for 0–3 s with

ω = 0.20π rad/s, σ = −0.075 and the initial phase differ-
ence φ0 = π/2 rad. Fig. 4(a) shows the input pressures of
MPAs against time, and Fig. 4(b) shows the pendulum an-
gle against time. The pendulum motion is irregular due to
the initial phase difference, as shown in Fig. 4(b). Fig. 5
shows the simulation results while 67–70 s under the same
conditions. As shown in Fig. 5(a), the pressures of MPAs
became periodic and a roughly anti-phase wave. In ad-
dition, the motion of pendulum also became periodic in
Fig. 5(b). In this case, the phase difference φ transitioned
from the initial phase difference π/2 rad to near π rad.
Comparing Figs. 4 and 5, the relationship between the
pressure of MPAs transitioned autonomously, and then,
the pendulum realized the periodic motion. These results
suggest that the tension feedback control can realize au-
tonomous cooperation between the actuators.

3.2. Analysis of Relationship Between Intrinsic
Angular Velocity and Feedback Gain

Next, the effect of the tension feedback control on the
resultant pendulum motion was verified. For this purpose,
we conducted simulations while changing the intrinsic an-
gular velocity ω rad/s and the feedback gain σ parameters
in the tension feedback control law. The parameter range
of the simulation was −2.00π rad/s ≤ ω ≤ 2.00π rad/s，
−0.200 ≤ σ ≤ 0.200. Furthermore, to obtain a steady-
state result, the average phase difference φ̄ and amplitude
while 70–80 s are focused. The average amplitude is de-
fined as an average peak value of the simulation result
between 70–80 s.

(a) Average phase difference (σ -ω plane)

(b) Average amplitude (σ -ω plane)

Fig. 6. The simulation results of tension feedback with ini-
tial phase difference π/2 rad.

Figure 6 shows the simulation results for the initial
phase difference π/2 rad. In the figure, the feedback gain
σ is on the x-axis; the intrinsic angular velocity ω of the
phase oscillator is on the y-axis. The average phase differ-
ence φ̄ or amplitude is represented on the σ -ω plane by
the color shown in the color bar.

As shown in Fig. 6(a), the average phase difference
φ̄ or amplitude significantly differs based on parameters.
There are also regions with clear boundaries. In the re-
gion II, the average phase difference φ̄ does not change
from the initial value π/2 rad. This is because the feed-
back gain is small with respect to the intrinsic angular ve-
locity, and then the tension feedback did not affect it.

In regions other than region II, the average phase differ-
ence φ̄ transitioned from π/2 rad to other values depend-
ing on the choice of parameters. The region III in Fig. 6(a)
is the region where the average phase difference φ̄ transi-
tioned to the neighborhood of π . It should be noted that
the regions IIIa and IIIb are not connected. A chaotic re-
gion exists between the region IIIa and the region IIIb. As
we discuss later, this fact suggests that these regions IIIa
and IIIb have different oscillation modes. In addition, the
region I is the region where the average phase difference
φ̄ is 0 rad or 2π rad.
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(b) Pendulum angle θ
Fig. 7. Simulation result of 1-DOF pendulum with ω =
0.20π rad/s and σ = −0.170 (t = 67–70 s).

Figure 6(b) shows the average amplitude of pendulum
under each parameter. In this figure, when the pendulum
angle diverged, the average amplitude was replaced with
a negative value (the region between iii and iv). That is,
such regions are plotted as hatched areas. Similar to the
average phase difference φ̄ , there are also regions with
clear boundaries in this figure. Focusing on the region of
ω > 0 rad/s, it can be seen that the amplitude discontinu-
ously transitions from about π/3 rad to 0 rad at the bound-
ary between the regions i and ii as the feedback gain σ
decreased. Furthermore, the amplitude discontinuously
transitions to the region iii where the amplitude is about
π/6 rad. As the feedback gain σ further decreased, the
region iv where a steady-state is generated again exists
beyond the region where the pendulum motion diverges.

Comparing Fig. 6(a) with Fig. 6(b), it can be seen that
the regions in Fig. 6(a) and those in Fig. 6(b) correspond
well. Especially, the region ii, where the amplitude is
0 rad, matches the region I where the average phase dif-
ference φ̄ is around 0 rad or 2π rad well. The regions II
and iii also match well. Besides, it can also be seen that
the pendulum amplitude tends to be large in the region
where the average phase difference φ̄ is large.

From the above, it was confirmed that the proposed ten-
sion feedback generated not only a cooperative relation-
ship, but also various cooperative relationships depending
on parameters. Besides, the slight change in the parame-
ters resulted in the mode change of the pendulum motion;
e.g., the oscillation mode in the region II changed to sta-
tionary mode at 0 rad in the region I. This result suggests
that a certain bifurcation phenomenon occurred in the sys-
tem analyzed in this paper.

3.3. Analysis of Characteristic Pendulum
Movements

Next, the pendulum motion at the specific points in
Fig. 6 was examined. Fig. 7 shows the simulation re-
sults while 67–70 s with ω = 0.20π rad and σ = −0.170
in the region IIIb. From Fig. 7(a), it can be seen that
the input pressures of MPAs also became a rough, anti-
phase wave, and the pendulum showed a stable periodic
motion in Fig. 7(b). Also with σ = −0.075 in the re-
gion IIIa, the average phase difference φ̄ was approxi-
mately π rad in Fig. 6(a) with σ = −0.075. However,
the amplitude in Fig. 7(b) is larger than that in Fig. 5(b).
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Fig. 8. Simulation result of 1-DOF pendulum with ω =
0.20π rad/s (t = 67–70 s).
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Fig. 9. Simulation result of 1-DOF pendulum with ω =
0.20π rad/s and σ = 0.050 (t = 0–100 s).

Fig. 8 shows the angular velocity of the phase oscillators
in the case of σ = −0.075 or σ = −0.170 respectively.
From Fig. 8(a), the angular velocity of the two-phase os-
cillator hardly changes when σ = −0.075. This means
that the phase oscillator was moving symmetrically at the
origin. In contrast, when one phase oscillator was mov-
ing, the other phase oscillator was almost stopped in the
case of σ = −0.170 (Fig. 8(b)). These results indicate
that the two oscillators moved alternately. From above,
even if the average phase difference φ̄ looks the same,
these two parameters in Figs. 5 and 7 generated different
oscillation modes.

Figure 9 shows the simulation results while 0–100 s
when ω = 0.20π rad/s and σ = 0.050. From Figs. 9(a)
and (b), the input pressures of MPAs became non-zero
constant, and the pendulum stopped moving when σ =
0.050. This is because the phase oscillators almost
stopped. This result suggests that the oscillator may have
stopped at a stable equilibrium point except when the av-
erage phase difference φ̄ did not converge to 0 rad. In
other words, there was a stable equilibrium point that sat-
isfies the following equation.

ω ≈ σ fmi cosθ . . . . . . . . . . . . (9)

If the state of the pendulum satisfied the equation, φ̇ ≈ 0,
the phase oscillator fell into a steady state.

Figures 5, 7, and 9 indicate that cooperative relation-
ships between the MPAs and some autonomous motions
of the pendulum were generated by changing the tension
feedback control law’s parameters.
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(a) Average phase difference with initial
phase difference 0 rad (σ -ω plane)

(b) Average phase difference with initial
phase difference π rad (σ -ω plane)

Fig. 10. The simulation results of tension feedback with
initial phase difference 0 or π rad.

3.4. Analysis of the Effect of Initial Phase
Difference

Figure 10 shows the simulation result when the initial
phase difference was changed from π/2 rad. Fig. 10(a)
shows the average phase difference φ̄ with initial phase
difference 0 rad. In this case, no change in phase dif-
ference occurs when the initial phase difference is 0 rad.
The phase oscillators that determine the input pressures
of MPAs show the same behavior since the phase differ-
ence is 0 rad. θ and θ̇ are equal to 0 when the pendu-
lum stands still, therefore the MPA’s length Lmi (i = 1,2)
and contraction velocity vi are equal between actuators
because of Eqs. (3) and (4). Consequently, the MPA’s ten-
sions are equal because of Eq. (5). When the tensions are
equal, φ1 = φ2 because the angular velocities of two os-
cillators are equal. As a result, the phase difference does
not change from 0 rad. From above, φ = 0 is one of the
equilibrium points of the system.

Figure 10(b) shows the average phase difference φ̄
with initial phase difference π rad. Comparing Figs. 10(b)
and 6(a), the area of region where the average phase dif-
ference φ̄ become 0 rad or 2π rad with the initial phase
difference π rad become smaller than that with the initial
phase difference π/2 rad. This is probably due to φ = 0
may be one of the locally stable equilibrium points of the
system. If it were correct, there would be an attractor re-
gion neighborhood 0 rad or 2π rad. Thereafter, once the

Fig. 11. Experimental setup of 1-DOF pendulum.

phase difference enters the region in the process of chang-
ing the phase difference due to the tension feedback, it
will converge to 0 rad or 2π rad. Therefore, it is consid-
ered that the area of the region where the average phase
difference φ̄ becomes 0 rad or 2π rad with initial phase
difference π/2 rad is large because the initial phase dif-
ference π/2 rad is closer to 0 rad or 2π rad than the initial
phase difference π rad. The stability of the equilibrium
point φ = 0 can contribute to the realization of various
resting postures. Besides, destabilizing the equilibrium
point φ = 0 can promote the transition of the pendulum
to another mode of motion. Therefore, a more detailed
stability analysis of φ = 0 is significant and necessary.

When the average phase difference transitions, the av-
erage phase difference transitions to the around φ̄ = 0 or
φ̄ = π . Therefore, in this paper, the result of the initial
phase difference φ = π/2 is focused because the change
in the average phase difference is clear (Fig. 6). And the
results of the initial phase difference φ = 0 and π are dis-
cussed for comparison with that of φ = π/2 (Fig. 10). The
other results are likely to be interpolated into the results
of 0 ∼ π/2 ∼ π , but a detailed analysis of the effect of the
initial phase difference is a subject for future study.

4. Verification of Cooperative Movement of
Mpas with Experimental System

Next, we verified whether the proposed tension feed-
back control generated cooperation between the MPAs
and if the cooperative relationship changed depending on
the parameters on an experimental system.

4.1. 1-DOF Pendulum Machine
Figure 11 shows the developed experimental system

based on Fig. 2(b). The pendulum was constructed by
stacking two aluminum plates. A stainless-steel shaft was
passed through the aluminum plates, and the pendulum
can freely rotate around the shaft. The shaft was con-
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Fig. 12. Schematic of experimental setup.

nected to the base that supports the rod pendulum. Two
antagonized MPAs were attached between the rod pen-
dulum and the base, and the rod pendulum was driven
by applying input pressure to the MPA. The ball joint
(ASA Electronics Industry: MBD20-10-10) and the load
cell (SNC: SC301A-100kg-V50) were connected to each
MPA. The tension of the MPA can be measured using the
load cell. The potentiometer (TOCOS: RA30Y20S B102)
is attached to the pendulum, and the potentiometer is con-
nected to the shaft via a gear. Therefore, the angle of the
pendulum can be measured by the potentiometer.

The experimental environment around the actual ma-
chine is shown in Fig. 12. Compressed air was
sent to each MPA via the electro-pneumatic regulator
(SMC: ITV1050-212B). The electro-pneumatic regulator
adjusted the pressure of air input. The microcomputer
(Arduino: Arduino Uno) sends the value of the input pres-
sure of MPAs, which is determined with Eqs. (6) and (7),
to the regulators. The data of MPA’s tension and the angle
measured by the load cell and the potentiometer are sent
to the microcomputer. The tension of MPAs, the pendu-
lum angle, and the input to regulators are recorded on a
PC via a microcomputer. In addition, the output value
from regulators is also recorded to verify that compressed
air was actually sent to MPAs.

4.2. Conditions of Verification Experiment
To investigate the cooperation between MPAs using the

proposed tension feedback control, we compared the re-
sults of experiments under various conditions. In the first
case, the initial phase difference φ0 was set as 0 rad. Ex-
periments were conducted for the positive (0.01) and neg-
ative (−0.01) feedback gains σ . Furthermore, the pres-
sure amplitude A was 0.05 MPa and the intrinsic angular
velocity ω was 0.8π rad/s. In the second case, the ini-
tial phase difference was set to π/2 rad. Similar to the
first case, positive (0.01) and negative (−0.01) feedback
gains σ were used. In this case, the pressure amplitude
was 0.075 MPa, and the intrinsic angular velocity was

60 62 64 66 68 70
Time [s]

0

0.05

0.1

0.15

0.2

O
ut

pu
t p

re
ss

ur
e 

[M
Pa

] MPA1
MPA2

(a) Input pressure of MPAs P′
i

60 62 64 66 68 70
Time[s]

- /6

- /9

- /18

0

/18

/9

/6

[ra
d]

(b) Pendulum angle θ
Fig. 13. Experiment result with initial phase difference 0 rad
and feedback gain σ = 0.01.
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Fig. 14. Experiment result with initial phase difference 0 rad
and feedback gain σ = −0.01.

0.8π rad/s. For all the cases, the same parameters were
used in the two-phase oscillators assigned to MPA1 and
MPA2.

4.3. Experimental Result with the Initial Phase
Difference 0 rad

Figures 13 and 14 show the results while 60–70 s
when the initial phase difference was 0 rad. Figs. 13
and 14 show the experimental results with positive feed-
back gain σ = 0.01, and that with negative feedback gain
σ =−0.01. From Figs. 13(b) and 14(b), in both cases, the
amplitude of the pendulum angle is almost 0 rad. More-
over, it can be verified that waveforms of the input pres-
sures of MPAs are in good agreement, that is, the phase
difference did not change from 0 rad despite the tension
control law.

The reason for the behavior is as follows. When the ini-
tial phase difference is 0 rad, the input pressures of MPAs
are equal, and the tensions of MPAs fm1, fm2 become
equal. If fm1 = fm2, the pendulum does not swing be-
cause the MPA tension is balanced. In such a situation, the
two-phase oscillators move at the same velocity, accord-
ing to Eq. (6). As a result, the phase difference remains
unchanged. This result is consistent with Fig. 10(a).

4.4. Experimental Result with the Initial Phase
Difference πππ///222 rad

Figures 15 and 16 shows the experimental results with
the initial phase difference was π/2 rad. When the feed-
back gain was σ = 0.01, the input pressures of MPAs
were slightly shifted, as shown in Fig. 15(a). This indi-
cates that the phase difference transitioned from π/2 rad
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Fig. 15. Experiment result with initial phase difference
π/2 rad and feedback gain σ = 0.01.

60 62 64 66 68 70
Time [s]

0

0.05

0.1

0.15

0.2

O
ut

pu
t p

re
ss

ur
e 

[M
Pa

] MPA1
MPA2

(a) Input pressure of MPAs P′
i

60 62 64 66 68 70
Time[s]

- /6

- /9

- /18

0

/18

/9

/6

[ra
d]

(b) Pendulum angle θ
Fig. 16. Experiment result with initial phase difference
π/2 rad and feedback gain σ = −0.01.

in a decreasing direction. Consequently, as shown in
Fig. 15(b), the amplitude of the pendulum also remained
small because the phase difference remained small. The
reason for the behavior is that if the feedback gain was
positive, the velocity of the phase oscillator decreased
when the MPA tension was generated by the tension feed-
back control. This increased the time during which the
MPA tension was generated. As a result, the phase differ-
ence changed such that the MPA antagonized and a larger
tension was obtained. Here, the results with the param-
eters used in this experiment correspond to the region ii
of Figs. 6(b) and 9 in the numerical simulation. As in the
simulation results, the phase oscillator was not stopped in
the experiment. However, the result that the phase differ-
ence transited in the direction of decreasing became con-
sistent.

Figure 16 shows the results with negative feedback
gain. From Fig. 16(a), it can be seen that two MPAs alter-
nately contracted and expanded, and the phase difference
transitioned from π/2 rad in the increasing direction with
negative feedback gain. As a result, the pendulum also
realized stable periodic motion, as shown in Fig. 16(b). If
the feedback gain was negative, the velocity of the phase
oscillator increased when MPA tension was generated by
the tension feedback control. This changed the phase dif-
ference so that the MPA tensions did not antagonize and
avoid the generation of large tensions. As a result, the
phase difference transitioned from π/2 rad in an increas-
ing direction. This result corresponds to oscillation mode
of the region IIIa in Fig. 6(a). The difference in the mag-
nitude of the intrinsic angular velocity and feedback gain
between Fig. 5 in the numerical simulation and Fig. 16
in the experiments was due to modeling errors and vari-

ous error factors that exist in the actual machine such as
tension model and attachment method of MPA.

Based on these experiments, it could be verified that the
antagonized MPAs can autonomously change the relation-
ship and realize a cooperative movement by implementing
the tension feedback in an experimental system. These
results suggested that by selecting the feedback gain ap-
propriately for the intrinsic angular velocity, the desired
MPA cooperative relationship can be generated, and var-
ious movements can be realized. To realize the move-
ments, it is necessary to clarify the mechanism by which
these movements are generated. Theoretical analysis of
the system with the proposed tension feedback is for fu-
ture study.

5. Conclusion

The purpose of this study was to realize the cooperation
between antagonized MPAs by applying tension feedback
control to the musculoskeletal model. In this study, we
analyzed the 1-DOF pendulum motion with MPA antago-
nistically arranged as the simplest musculoskeletal model.
As a control law for generating the cooperation of MPAs,
we proposed tension feedback control. Through numer-
ical simulations, it was verified that the relationship be-
tween MPAs changed depending on parameters such as
the intrinsic angular velocity and the feedback gain. As
a result, the pendulum exhibited various motions, and
the tension control law generated some oscillation modes
of the pendulum. We further developed the experimen-
tal system and conducted verification experiments by im-
plementing the tension feedback control law to MPAs.
Similar to the numerical simulations, it was also veri-
fied that MPAs realized various cooperative relationships.
Thereafter, the pendulum exhibited various movements
on the actual machine. Based on these results, accord-
ing to the parameters in the robot and the control law, an
autonomous cooperative relationship between the MPAs
could be generated by using the proposed tension feed-
back control. Further studies are required to consider the
cause of the cooperation between actuators.

The simulation results show that various oscillation
modes were generated according to the parameters, and
the change of the oscillation modes with the parameter
changes was abrupt. This result suggests that the bifurca-
tion phenomenon occurred in the system targeted in this
study. Although the case of relatively slow transitions is
examined in this paper, the parameters that cause immedi-
ate transitions are also confirmed in simulations. Theoret-
ical analysis as nonlinear dynamical tension feedback of
MPA for the investigation of the autonomous cooperative
relationship generation mechanism is a future topic. It is
also important to analyze the effects of initial phase dif-
ference and responsiveness in more detail and to discuss
how the various modes are connected to achieve a variety
of continuous robot motions.
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Appendix A. Linear Approximation
Model [12]

The linear approximation model is based on the conser-
vation law model proposed in our previous study, which
was derived using the law of conservation of energy [13].

nπD

b

 turnsD

L

n

θ

Fig. 17. The geometry of the actuator and the relationship
between L, D, b, and n illustrated by the triangle [13].

The conservation law model is expressed as follows:

fm(P′, L, v) = −P′ dVb

dL
+Vr

dW
dL

+ γv . . . (10)

where L is the length of MPA, v is the contraction veloc-
ity of MPA, P′ is the pressure of the MPAs, Vb is the air
bag’s volume, Vr is the volume of the rubber, and W is
the strain energy density determined using the Mooney-
Rivlin model, which is one of the super elastic models.
The third term represents the dynamic characteristics of
the MPA fv. Sugimoto et al. found that fv has a linear re-
lationship with the contraction speed. Therefore, fv = γv,
where γ is a constant, in the model.

Equation (10) is rewritten in detail as follows:

fm(P′, L, v) = −P′ b2 −3L2

4πn2

+Vr

[
C1

{
2L
L2

0
− 2L

D2
0n2π2

− 2L2
0D2

0n2π2(b2 −2L2)
L3(b2 −L2)2

}

+C2

{
−2L2

0
L3 +

2D2
0n2π2L

(b2 −L2)2 +
2Lb2 −4L3

L2
0D2

0n2π2

}]
+ γv. (11)

Fig. 17 presents the parameters used in the model. These
parameters are constants. The subscript 0 in Eq. (11) in-
dicates the initial value. The Mooney-Rivlin constants
C1,C2 refers to the value in the previous research [14].
The details of this model are given in [13].

On the contrary, Nakanishi et al. discussed the effects
of MPA length and pressure on dynamic properties [15].
As a result, it was shown that the relationship between
the MPA’s tension fm, the contraction velocity v, and the
MPA’s length L could be described by a plane in three-
dimensional space. Based on the result, the linear sum
model of the MPA tension model is proposed as follows:

fm = b0 +b1v+b2L. . . . . . . . . . . (12)

The coefficients (b0,b1,b2) are in a linear relationship
with the air pressure P′. Therefore, Eq. (12) is rewrit-
ten in detail using the intercepts (q0,r0,s0) and the slopes
(q1,r1,s1) as follows:

fm = (q0 +q1P′)+(r0 + r1P′)v+(s0 + s1P′)L
= q1P′ + s1P′L+ s0L+q0 +(r0 + r1P′)v. (13)
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The expression for the linear sum model is simpler than
that of the conservation law model. However, the param-
eters in the linear sum model need to be identified every
time the MPA conditions are altered. The details of this
model are given in [15].

From the abovementioned two models, Yoshida et al.
rewrote Eq. (10) at first as follows:

fm = −P′G1(L)+G2(L)+ γv, . . . . . . (14)

where G1 and G2 are the functions of the MPA’s length
defined as follows:

G1(L) =
b2 −3L2

4πn2 , . . . . . . . . . . . (15)

G2(L) =

Vr

[
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{
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0n2π2

− 2L2
0D2
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L3(b2 −L2)2

}

+C2

{
−2L2

0
L3 +

2D2
0n2π2L

(b2 −L2)2 +
2Lb2 −4L3

L2
0D2

0n2π2

}]
. (16)

By Taylor expansion around L̃, which is a certain MPA’s
length, Eq. (14) can be linearly approximated as follows:

fm = fm(L̃,P′)+

(
−dG2(L̃)

dL
L̃+P′L̃

dG1(L̃)
dL

G1(L)

)

+γv+

(
dG2(L̃)

dL
−P′ dG1(L̃)

dL

)
L = c0 + c1v+ c2L (17)

Eq. (17) has a similar expression with the linear sum
model (Eq. (12)), and the coefficients in Eq. (17) are lin-
early related to P′. Furthermore, Eq. (17) is rewritten as
follows:

fm =

(
−G1(L̃)+ L̃

dG1(L̃)
dL

)
P′ +

(
dG1(L̃)

dL

)
P′L

+

(
dG2(L̃)

dL

)
L+

(
G2(L̃)− dG2(L̃)

dL
L̃

)
L+ γv

= S1P′ +S2P′L+S3L+S4 + γv
(S1,2,3,4 = const.) . . . . . . . . . . (18)

This model is the linear approximation model. Eq. (18)
has the same expansion of variables and constants as
Eq. (13). However, coefficients in Eq. (18) are deter-
mined by the geometric structure of MPA and Mooney-
Rivlin constant unlike the linear sum model. Additional
details can be found in [12]. Although L̃ is defined as the
midpoint between the maximum length Lmax = L0 and the
geometric minimum length Lmin = L0/

√
3 in [12], we de-

fine L̃ as the natural length of MPA in this paper because
the displacement of the MPA’s length oscillated around its
natural length.
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