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In this study, with the aim of installing an object recog-
nition algorithm on the hardware device of a service
robot, we propose a Binarized Dual Stream VGG-16
(BDS-VGG16) network model to realize high-speed
computations and low power consumption. The BDS-
VGG16 model has improved in terms of the object
recognition accuracy by using not only RGB images
but also depth images. It achieved a 99.3% accuracy
in tests using an RGB-D Object Dataset. We have
also confirmed that the proposed model can be in-
stalled in a field-programmable gate array (FPGA).
We have further installed BDS-VGG16 Tiny, a small
BDS-VGG16 model in XCZU9EG, a system on a chip
with a CPU and a middle-scale FPGA on a single
chip that can be installed in robots. We have also
integrated the BDS-VGG16 Tiny with a robot op-
erating system. As a result, the BDS-VGG16 Tiny
installed in the XCZU9EG FPGA realizes approxi-
mately 1.9-times more computations than the one in-
stalled in the graphics processing unit (GPU) with a
power efficiency approximately 8-times higher than
that installed in the GPU.

Keywords: convolutional neural network, depth image,
dual stream, field programmable gate array, object recog-
nition

1. Introduction

In recent years, as the labor force has continuously de-
clined within an aging society with fewer children, ser-
vice robots have been drawing attention. A service robot
refers to a robot that supports human work by acting in the
same way as humans in environments such as households
and stores [1–6]. Such robots are expected to fulfill tasks
such as cleaning a child’s room or serving as a waiter in a
restaurant. To fulfill such tasks, the robot must be able to
recognize objects [2, 7], for which the object recognition

system is crucial.
In operating a service robot in actual environments, it

is necessary to be able to recognize objects with high ac-
curacy, high speed, and low power consumption. Failure
in recognizing objects could lead to a failure in fulfilling
the assigned task, and low-speed processing could lead to
a decline in its service quality. A low power consumption
is also required for service robots because they are battery
driven.

Since AlexNet won the ImageNet Large Scale Visual
Recognition (ILSVRC) contest in 2012 [8], convolutional
neural networks (CNNs) [9] have become mainstream of
object recognition. For example, VGG-16 [10], a CNN
with a simple structure, achieved an 8.8% top-5 error rate
using the ImageNet 2014 Dataset [11], an object recogni-
tion dataset consisting of 1,000 categories.

Inputs to general CNNs, including VGG-16, are only
RGB images. On the other hand, many service robots
can capture not only RGB images but also depth images
with an RGB-D camera. A depth image refers to data
with distance information from the camera to the object
surface contained in the pixels. Eitel et al. demonstrated
that the use of depth images in addition to RGB images
in recognizing objects can improve their recognition ac-
curacy [12].

Based on the idea of Eitel et al., we proposed a VGG-16
with a dual-stream structure, i.e., Dual Stream VGG-16
(DS-VGG16) [13]. DS-VGG16 has an RGB stream to
learn RGB images and a depth stream to learn depth im-
ages. DS-VGG16 achieved a 99.9% accuracy in tests us-
ing an RGB-D Object Dataset [14]. By contrast, the said
network model with a large-scale structure has the fol-
lowing problems: a large number of computations, a high
power consumption, and a long processing time.

Hardware acceleration is effective for improving the
object recognition speed. In general, a graphical process-
ing unit (GPU) is used to make a high-speed CNN, which
tends to consume a large amount of power, making it un-
suitable for service robots [3].

A field-programmable gate array (FPGA) provides an
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alternative means allowing a GPU to make a high-speed
CNN. Nakahara et al. reported that CNNs installed in
FPGAs have achieved a higher power efficiency than
those installed in a central processing unit (CPU) and a
GPU [15]. From the perspective of such high power ef-
ficiency and low power consumption, it would be most
suitable for a service robot to have a CNN installed in an
FPGA [3, 16–18].

In [19], a binarized neural network (BNN) is proposed
as an effective means to install a deep neural network
(DNN) in hardware. Their proposed method can re-
place multiplications with XNOR operations by binary-
quantizing the weight parameters and activation function
outputs at the time of forward propagation.

In the above-mentioned context, this study aims to re-
alize an object recognition system with high accuracy,
high speed, and low power consumption. In this pa-
per, we propose a Binarized Dual Stream VGG-16 (BDS-
VGG16) [20, 21], a binary DS-VGG16, and a method to
install it in an FPGA. We also installed a BDS-VGG16
Tiny, a small version of the proposed model in an FPGA
and connected it to the robot operating system (ROS),
middleware for robots [22]. In this study, we installed
the proposed network in an XCVU190 [a], a large-scale
FPGA, and in an XCZU9EG [b], a system on a chip (SoC)
with a CPU as well as a mid-scale FPGA integrated on a
single chip to enable its installation in a robot. We also
verified the operating speed and power efficiency of the
system when connected to a robot. In the experiments,
BDS-VGG16 achieved a 99.3% accuracy in the evalua-
tions using an RGB-D Object Dataset, and was proved to
be installable in an XCVU190. We have further installed
BDS-VGG16 Tiny in an XCZU9EG and found that it
can operate at a speed approximately 4.7-times higher
than that installed in a CPU and approximately 1.9-times
higher than that installed in a GPU, and that its power effi-
ciency is approximately 20-times better than that installed
in a CPU and approximately 8-times better than that in-
stalled in a GPU. Finally, we connected the BDS-VGG16
Tiny installed in the XCZU9EG to an ROS to find that it
can process in real time.

This paper consists of six sections. The first section
describes the context of this study and its overview. The
second section presents studies related to service robots,
methods for preprocessing depth images, a CNN, and an
FPGA. The third section proposes a method for encod-
ing depth images, a BDS-VGG16 model, and its hard-
ware architecture. The fourth section describes the ex-
periments conducted to measure the BDS-VGG16 object
recognition accuracy and the FPGA resource usage rate.
The fifth section compares the experimental results of
BDS-VGG16 Tiny, a miniaturized BDS-VGG16, a CPU,
a GPU, and an FPGA in terms of their processing speeds
and power efficiencies. Section 5 also evaluates the sys-
tem in which the proposed method is connected to an
ROS. The sixth section concludes this paper.
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Fig. 1. Service robot “Exi@.”

Fig. 2. Robot action flow.

2. Related Studies

2.1. Service Robots
Service robots support human tasks in environments

such as households and stores. Fig. 1 shows the ser-
vice robot “Exi@” developed by our team Hibikino-
Musashi@Home [7]. Exi@ has a variety of sensors, actu-
ators, and computing devices installed. An RGB-D cam-
era, one of its installed sensors, can capture both RGB
and depth images. The computing device installed on the
robot is an FPGA.

Figure 2 shows a flowchart of the robot system. The
service robot operates according to the following proce-
dures. (1) Perception: receive sensor data and recognize
its surrounding environment through processing such as
object recognition. (2) Decision: the robot decides the ac-
tions it should take next on the environmental information
it has recognized. (3) Control: the robot acts by control-
ling the actuator based on the actions it has chosen.

As we can see from the above-mentioned proce-
dures, perception processing is positioned upstream in
the robot’s action flow. Because it affects every action
of the robot, perception processing is crucially impor-
tant. Therefore, to realize a service robot, it is essential
to improve the accuracy and speed of its object recogni-
tion system. Because a service robot is battery-driven, we
also need to consider the power consumption of its object
recognition system.

2.2. ROS
ROS [22] is a middleware for robots. Middle-

ware, lying between the operating system and ap-
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(a) RGB Image (b) Depth Image
(Adjusted the brightness for easy viewing)

Fig. 3. RGB and depth images.

plications, provides the function of data communica-
tion/management/debagging. Above all, ROS has a large
number of users globally [c] and has been adopted by
many research institutes and businesses [23].

Because various types of algorithms required for the
robot system operations are installed as ROS nodes, the
robot system operates using the coordinated actions of the
nodes. In previously proposed systems with high-speed
algorithms developed through their hardware, such algo-
rithms are also designed to act as nodes [3]. Robot sys-
tems designed in such a way have the following advan-
tages: no stoppage of any one of the algorithms will stop
the robot instantaneously, it is quite easy to transfer from
a conventionally used algorithm to a new algorithm, and
the algorithms have a high reusability.

In this study, we installed the proposed object recogni-
tion system as an ROS node and connected it to a robot
system with an ROS.

2.3. RGB and Depth Images
An RGB-D camera is installed on the service robot.

Fig. 3 shows the (a) RGB image and (b) depth image
captured by the RGB-D camera. In the RGB image in
Fig. 3(a), a whiteboard, a round table, and shelves are
shown. The pixels of the depth image represent the dis-
tances from the camera to the object surfaces. In Fig. 3(b),
the whiteboard and round table, both positioned close to
the camera, are represented in black because their dis-
tances from the camera are nearly zero. By contrast, the
shelves, positioned at a long distance from the camera,
are represented in white because their distances have large
values.

The features of an RGB image contain the appearance
information of an object such as the color and patterns.
The weak points of an RGB image include its direct sus-
ceptibility to the effects of the illumination conditions. By
contrast, as the features of the depth image, it contains
the shape information of an object. Its strong points are
its robustness to the illumination conditions, and its weak
points are its likelihood to contain some missing values
(noises), as shown in the black spots in Fig. 3(b).

2.4. How to Remove Noise from Depth Image
As described above, a depth image contains noise. A

depth sensor calculates the distance to an object on the re-
flected waves of the infrared ray and laser radiated to the

object surface, and thus it may fail to measure the distance
to an object owing to the effects of the surface material of
the object. In the event of a failure in the distance mea-
surements, such distance points constitute missing values
and appear as noise. Such noises are often represented in
the data as NaN or 0, and in the RGB-D Object Dataset, in
particular, which is stored as image files, noises are rep-
resented as 0. As a method for repairing such noises, Lai
et al. proposed the application of a recursive median filter
(RMF) to the pixels that contain noise [14].

Figure 4 shows the depth images of an apple as cap-
tured by the camera: (a) an unrepaired depth image
and (b) an RMF-applied depth image, in which the only
brightness has been adjusted for easier viewing. We can
see from image (b) that the noise appearing as black spots
in image (a) disappeared by applying the RMF. Now, we
normalize the images by linearly transforming them into a
value range of 0–255. Figs. 4(c) and (d) show the normal-
ized images of Figs. 4(a) and (b), respectively. Figs. 4(e)
and (f) show the histograms of Figs. 4(c) and (d), respec-
tively. We can see from Fig. 4(f) that the values are dis-
persed in the area between 0 and approximately 255, and
from Fig. 4(e) that the noises constitute outliers and that
the values are concentrated in the area between approxi-
mately 150 and 255, except for the noise indicated by a 0,
which seems to suggest that the value range between ap-
proximately 150 and 255 is practically the only range we
can use to represent the object shape. In other words, re-
moving noise from an image seems to increase the value
range of the normalized image, which we can practically
use.

2.5. Encoding Methods for Depth Images
To appropriately extract features from depth images,

several methods have been proposed to encode such im-
ages before the CNN learns them. The proposed encoding
methods expand a one-channel depth image to a three-
channel image. Fig. 5 shows the depth images encoded
by these methods. These encoding methods have the fol-
lowing features.

(a) Surface normal method: Bo et al. proposed a surface
normal method [24]. Fig. 5(a) shows an image en-
coded using the surface normal method. The surface
normal method calculates the surface normal of each
pixel of a depth image and directly substitutes the
vector components x, y, and z in three channels.

(b) HHA method: The horizontal disparity, height above
the ground, and angle (HHA) method is an encoding
approach proposed by Gupta et al. [25]. The HHA
method seeks a horizontal disparity, height above
ground, and angle toward the vertical direction and
stores them in three channels. Fig. 5(b) shows a
depth image encoded by the HHA method. The
HHA method, which combines environmental vari-
ables with depth imaging, should be suited to scene
images rather than images that only contain objects.
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Fig. 4. Comparison of unrepaired depth image with RMF-applied depth image.

(a) Surface Normal (b) HHA (c) ColorJET

Fig. 5. Comparison of depth image encoding methods.

(c) ColorJET method: The ColorJET method is the
method proposed by Eitel et al. [12]. It processes in
the following order: (1) linear transform (normalize)
a depth image such that its values reach the range
of 0–255, and (2) map the normalized image on a
JET color map. In the above-mentioned processing,
a minimum value is allocated to blue, a median value
to green, and a maximum value to red. Fig. 5(c)
shows the image encoded using the ColorJet method.

In the dual-stream type network proposed by Eitel
et al., it is most appropriate to use the images encoded
by the ColorJET method rather than those encoded by the
surface normal method or the HHA method [12]. To im-
prove the performance of dual stream type network mod-
els, this study uses the ColorJET method to encode the
depth images.

2.6. Dual Stream Type Networks
2.6.1. Model Proposed by Eitel et al.

The model proposed by Eitel et al. uses both RGB im-
ages and depth images to recognize objects [12]. The
model is composed of an RGB stream to learn RGB im-
ages, a depth stream to learn depth images, and a section
to integrate both stream outputs and function as a classi-
fier. Each stream, consisting of five convolutional layers,
has a CaffeNet-based structure [26]. Eitel et al. used the
ColorJET method as a preprocessing method for inputting

the depth images. Eitel et al. reported that the use of the
above-mentioned method has made their model more ac-
curate in comparison with those that use only RGB im-
ages.

2.6.2. Dual Stream VGG-16
Dual Stream VGG-16 (DS-VGG16) combines

VGG-16, a highly accurate object recognition CNN, with
the model proposed by Eitel et al. [13]. Fig. 6 shows
the structure of DS-VGG16. This method achieves a
99.9% accuracy in tests using the RGB-D Object Dataset
published by Washington University [14]. Similar to the
model proposed by Eitel et al., this model is composed of
(a) an RGB stream for RGB images, (b) a depth stream
for depth images, and (c) an integration section, in which
the outputs of both streams are integrated. Each stream
has a structure for VGG-16 instead of CaffeNet.

2.7. FPGA
The FPGA is a large-scale integration circuit reconfig-

urable by users, and is configured to allow building an
arbitrary digital circuit by place-and-routing a look-up ta-
ble, a flip flop, a digital signal processor, and random ac-
cess memory (RAM).

An FPGA, which can be efficiently installed to real-
ize the desired functions, can suppress wasteful energy
consumption as compared to a GPU, thus suppressing the
power consumption and heating. Another computation
source that can suppress the power consumption and heat-
ing as compared to a GPU is an application specific inte-
grated circuit (ASIC), which has a disadvantage in that,
once produced, it cannot be modified, making it obsolete
for use in robot applications for which new algorithms
are applied every day. An FPGA, the circuit of which
is rewritable and more suitable for robot applications than
ASIC, is widely used as a robot computing device [3, 16–
18, 27, 28].
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Fig. 6. Structure of DS-VGG16.

Table 1. Comparison between BNN and conventional neu-
ral networks.

BNN Neural network
Weight Binary number Floating point

representation Wbi = Sign(Wi) number
The sum of u = ∑n

i=1 xbiWbi +b u = ∑n
i=1 xiWi +b

neurons outputs Replaceable Required
of each layer with XNOR multiplication
Activation Binary number Floating point number
function y = Sign(u) y = f (u)
output

2.8. Binarized Neural Network
A binarized neural network (BNN) is a quantifica-

tion method effective for installing neural network hard-
ware, as proposed by Hubara et al. [19]. Whereas con-
ventional neural networks are installed using floating-
point numbers, such floating-point arithmetic requires
enormous hardware resources. To cope with the above-
mentioned problem, a BNN realizes a neural network with
fewer hardware resources than floating-point numbers by
binary-quantifying the floating-point numbers.

Table 1 shows the differences between the conven-
tional neural network and a BNN. In a BNN, the weight
parameters and activation function outputs at the time of
a forward propagation are made binary using values of 1
and −1. Hubara et al. concluded that a BNN has nearly
the same accuracy as a 32-bit neural network.

In realizing a BNN with hardware, the use of 1 and 0
instead of 1 and −1 enables us to reduce the bit width of
variables as well as replace multiplications with XNOR
operations. Table 2 shows the multiplications using val-
ues of 1 and −1, which require two bits. On the other
hand, Table 3 shows the XNOR operations using 1 and 0.
Because Tables 2 and 3 have the same structure in which
the −1 in Table 2 are replaced with 0, we may regard a
multiplication of 1×−1 in the network as an XNOR op-
eration of 1 and 0. By so doing, we can install a BNN
with values of 1 and −1 in use as XNOR operations of 1
and 0 in the circuit.

Table 2. Multiplication table.

Input A Input B Output
−1 −1 1
−1 1 −1

1 −1 −1
1 1 1

Table 3. XNOR truth table.

Input A Input B Output
0 0 1
0 1 0
1 0 0
1 1 1

Only ColorJET Proposed

Noise

(a) (b)

Fig. 7. Comparison between (a) depth image applied with
ColorJET only and (b) depth image applied with RMF as
well.

3. Proposed Method

3.1. Depth Image Preprocessing Method
This study uses the ColorJET method, which is report-

edly an effective method for preprocessing depth images.
One of the problems with the ColorJET method is that
it is susceptible to missing values (noises). Fig. 7(a)
shows a depth image as preprocessed by applying only the
ColorJET method. In Fig. 7(a), where noise constitutes
outliers in the depth image, the value area is shifted to-
ward the minimum and maximum values on the JET color
map, and thus the image is represented in the same color
in most areas.

In this study, therefore, the application of the RMF
prior to the ColorJET method is proposed. Fig. 7(b)
shows a depth image acquired by applying the proposed
method, where noise is removed in advance such that we
can allocate most of the value area of the JET color map
to objects and the background.

3.2. Binarized Dual Stream VGG-16
In this study, a BDS-VGG16 model is proposed. Fig. 8

shows the model structure of the network. This model is
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Fig. 8. Structure of BDS-VGG16.

Table 4. Differences between DS-VGG16 and BDS-VGG16.

DS-VGG16 BDS-VGG16 Note
Convolutional layer Binarized convolutional layer For reduction of weight memory size and the number of multipliers.
Max pooling layer Binarized max pooling layer Not changed. This layer does not use weights and multipliers.
Fully connected layer Binarized fully connected layer For reduction of weight memory size and the number of multipliers.
N/A Batch normalization layer For training stability, BN layers are inserted.

Binarized 
Conv.
Layer
Unit

Binarized 
Max

Pooling
Layer
Unit

Binarized 
Fully

Connected
Layer Unit

Binarized 
Final Fully
Connected
Layer Unit

Binarized
Input
Layer
Unit

(a) (b) (c) (d) (e)

RGB Stream
Depth Stream
Inference Result

Inference 
Result

Fig. 9. Operation flow of each unit of BDS-VGG16.

based on DS-VGG16. Table 4 shows the differences be-
tween DS-VGG16 and BDS-VGG16. Both DS-VGG16
and BDS-VGG16 consist of fully connected layers to in-
fer objects from the outputs of both the RGB stream and
depth stream. In the BDS-VGG16, its convolutional layer
and fully connected layer are made binary by means of the
BNN method, as shown in Table 4. To stabilize the learn-
ing of the proposed network model, it also has a batch nor-
malization layer inserted between the convolutional layer
and the fully connected layer [29].

3.3. Circuit Architecture
Figure 9 shows the units in the circuit architecture pro-

posed in this study and their operation flow. The circuit
architecture has an RGB stream to treat RGB images and
feature maps, and a depth stream to treat depth images and
feature maps. Each unit contains a binarized input layer,
binarized convolutional layer unit, binarized max pooling
layer unit, binarized fully connected layer unit, and bina-
rized final fully connected layer unit. To save on the cir-
cuit area, this circuit architecture uses the same binarized
convolutional layer unit for the computations of the con-
volutional layer by changing the inputs and weights each
time. In particular, the binarized input layer unit, bina-
rized convolutional layer unit, binarized fully connected

layer unit, and binarized final fully connected layer unit
contain a BN layer connected in the later stage of each
layer of the network model shown in Fig. 8. Regarding
such BN layers, Yonekawa et al. reported that BN layers
can be realized in a BNN through simple additions [30].
Therefore, we adopted their proposed method in our pro-
posed network model. The circuit was improved into a
dual stream based on the architecture proposed by Naka-
hara et al. and that proposed by Yonekawa et al. [30, 31].

3.3.1. Binarized Input Layer Unit
Figure 10 shows the binarized input layer unit. The

unit performs the convolutional operations of the input
layer. In Fig. 10, xc,ch and xd,ch denote the ROIs in the
ch-th channel cut out of the input RGB image and the
depth image, respectively, and wc,ch and wd,ch denote the
weights in the ch-th channel of the RGB stream and the
depth stream, respectively. Here, CH denotes the num-
ber of input channels and the number of filters, which are
fixed at 3. In addition, K denotes the filter size, which is
also fixed at 3. Finally, B denotes a BN value, and fc and
fd denote the output feature maps corresponding to the
ROIs in the current attention.

With the three input channels being integers of 0–255
and wc,ch and wd,ch being binary, this circuit can realize
multiplications of xc,ch ×wc,ch and xd,ch ×wd,ch with the
selector. The adder tree in the later stage seeks a total sum
of the multiplications of xc,ch×wc,ch and xd,ch×wd,ch. The
BN values are added at the end.

The ROI is input into this circuit by sliding it over the
input image. The circuit also operates as pipelining. The
above-mentioned operations are processed in parallel for
RGB images and depth images.

3.3.2. Binarized Convolutional Layer Unit
Figure 11 shows the binarized convolutional layer unit.

In Fig. 11, fc,ch,n, and, fd,ch,n denote the ROIs in the n-th
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channel cut out of the feature maps of the RGB stream
and the depth stream, respectively; in addition, wc,ch,n and
wd,ch,n denote the weights in the n-th channel of the RGB
stream and the depth stream, respectively. In this circuit,
K is fixed at 3, and CH varies with the layers.

With the inputs to this unit fc,ch,n and fd,ch,n being
both binary, they can be computed at the XNOR gate.
In this circuit, the multiplications of fc,ch,n ×wc,ch,n and
fd,ch,n ×wd,ch,n are conducted in parallel using as many
XNOR gates as the number of CHs in each stream.

The adder tree seeks the total sum of the multiplica-
tions of fc,ch,n ×wc,ch,n and fd,ch,n ×wd,ch,n. Whereas fea-
ture maps and weights are represented by 0 and 1 in this
circuit, a constant is added in the comparator to compare
them with the reference value of 0. In this circuit, a con-
stant and a BN value are added simultaneously.

The above-mentioned operations are processed in par-
allel for both RGB and depth images.

3.3.3. Binarized Max Pooling Layer Unit
Figure 12 shows the binarized max pooling layer unit.

In this circuit, K is fixed at 2, and ch denotes the channel
to be processed.

With the input values to this unit being 0 or 1, max
pooling can be represented using an OR gate. The OR op-
erations are processed in parallel for both RGB and depth
images.
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Fig. 11. Binarized convolutional layer unit.

3.3.4. Binarized Fully Connected Layer Unit
Figure 13 shows the binarized fully connected layer

unit. In the circuit diagram, fc,n and fd,n denote the fea-
tures of the RGB and depth streams, respectively; wc,n and
wd,n denote their weights. Each stream has N features,
and n is an index for them.

As in other units, the RGB and depth streams are si-
multaneously processed in this unit.

3.3.5. Binarized Final Fully Connected Layer Unit
Figure 14 shows the binarized final fully connected

layer unit. This unit represents the integration section
(Fig. 8(c)), where the RGB stream and the depth stream
are integrated together. In Fig. 14, input f denotes an in-
tegration of fc and fd , and y denotes the output of the unit.

In this unit, outputs are not made binary and their com-
putation values are treated as class probabilities.

4. Experiments

4.1. Datasets Setup
This study evaluates the recognition accuracies of net-

work models using the RGB-D Object Dataset [14].
Fig. 15 shows a part of the dataset. This dataset contains
51 classes of objects, and household articles such as ap-
ples (Figs. 15(a)(b)), bananas (Figs. 15(c)(d)), and cof-
fee mugs (Figs. 15(e)(f)) were selected as objects. The

392 Journal of Robotics and Mechatronics Vol.33 No.2, 2021



FPGA Implementation of a Binarized Dual Stream CNN

… …

… …

�� ,1,1 �� ,1,2

�� ,1,3 �� ,1,4

…

OR

…

4
�� ,1

�� ,��,1 �� ,��,2

�� ,��,3 �� ,��,4

OR4
�� ,��

RGB Stream

�� ,1,1 �� ,1,2

�� ,1,3 �� ,1,4

…

OR

…

4
�� ,1

�� ,�ℎ ,1 �� ,�ℎ ,2

�� ,�ℎ ,3 �� ,�ℎ ,4

OR4
�� ,�ℎ

Depth Stream

��

��

Feature Map
(RGB Stream)

��

Feature Map
(Depth Stream)

��

�� ,�ℎ ,1 �� ,�ℎ ,2

�� ,�ℎ ,3 �� ,�ℎ ,4

OR4
�� ,�ℎ

�� ,��,1 �� ,��,2

�� ,��,3 �� ,��,4

OR4
�� ,��

Fig. 12. Binarized max pooling layer unit.

dataset consists of 207,920 pairs of data, each pair of
which consists of RGB images and their corresponding
depth images. Figs. 15(a), (c), and (e) show examples of
RGB images, and Figs. 15(b), (d), and (f) show examples
of depth images. In this study, we randomly selected 75%
of the data pairs from each class to make them learn the
data and the remaining 25% of data pairs as test data.

4.2. Evaluate Effectiveness of RMF in
Preprocessing Depth Images

Here, we evaluate the effectiveness of applying the
RMF and ColorJET methods to depth images for the net-
work learning. We verify the effectiveness by using only
the depth images in the RGB-D Object Dataset described
in Subsection 4.1. In the experiments, we provided two
Binarized VGG-16s and had one of them learn the depth
images applied using only the ColorJET method, and had
the other one learn the depth images applied using both
the RMF and ColorJET methods to compare their post-
learning test accuracies.

Table 5 shows the experimental results, from which we
can see that the network model that learned the dataset us-
ing the ColorJET method after the RMF achieved a better
learning accuracy than the model that learned the dataset
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Table 5. Test accuracies of ColorJET only method and
method using both RMF and ColorJET.

Methods Depth

Only ColorJET 58.5%
RMF and ColorJET 61.5%

using only the ColorJET method. Applying both the RMF
and ColorJET methods to depth images is more effective
in improving the network learning accuracy than applying
the ColorJET method only.

4.3. Experiments Evaluating Recognition Accuracy
of BDS-VGG16

We experimentally evaluated the recognition accuracy
of BDS-VGG16. During the experiments, we evaluated
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Table 6. Comparison of test accuracies between BDS-
VGG16 and other methods.

RGB RGB-D

Eitel et al. (2015) [12] 92.1% 94.1%
Schwarz et al. (2015) [32] 84.1% 91.3%

Binarized VGG-16 86.5% –

DS-VGG16 (RMF + ColorJET) (2018) [13] – 99.9%
BDS-VGG16 (RMF + ColorJET) (Ours) – 99.3%

Table 7. FPGA synthesis results of BDS-VGG16.

BDS-VGG16
XCVU190 XCZU9EG

Resource usage Available Resource usage Available
BRAM 2,589 (68.49%) 3,780 2,628 (288.16%) 912

FF 91,797 (4.27%) 2,148,480 159,111 (29.03%) 548,160
LUT 141,548 (13.18%) 1,074,240 176,556 (64.42%) 274,080
DSP 1 (0.06%) 1,800 0 (0%) 2,520

the recognition accuracy using the learning data and test
data, as selected in Subsection 4.1. Randomly selected
learning data (90%) are used for the network learning, and
the remaining data (10%) are used as validation.

Table 6 shows the experimental results. We com-
pared them with the test accuracies of Eitel’s model [12],
Schwarz’s model [32], and DS-VGG16 [13] and found
that the accuracy of the proposed BDS-VGG16 remained
0.6% lower than that of DS-VGG16, which seems at-
tributable to the fact that the binary network as a whole
has narrowed the value areas of the units in the network
so much as to decline its expressive power. However,
the proposed network model achieved an accuracy 12.8%
higher than Binarized VGG-16, which seems attributable
to the effects of learning the depth images as well owing to
its dual stream structure. Its accuracy improved by 5.2%
compared to Eitel’s model and by 8.0% compared to the
Schwarz’s model. We can see from the above-mentioned
experimental results that the proposed BDS-VGG16 has a
higher accuracy than Eitel’s or Schwarz’s models.

4.4. Evaluation of Circuit Resource Usage in
Installing FPGA

We evaluated the resources required by the circuit to in-
stall an FPGA based on the creation of its circuit architec-
ture. In this study, we created a circuit with a high-level
synthesis (HLS) using the Xilinx SDx 2018.3 [d]. The
target devices were an XCVU190 and XCZU9EG. The
XCVU190 is a relatively large FPGA, and the XCZU9EG
is an SoC incorporating a CPU as a processing system
(PS) and an FPGA as a programmable logic (PL), allow-
ing the chip to easily enable communication between the
FPGA and the robot through the CPU. It is also installed
in our service robot, which is under development [7].

Table 7 shows the circuit synthesis results, from which
we can see that the proposed circuit can be installed on an
FPGA such as an XCVU190.

Table 8. Summary of BRAM usage required by network.

Number of Input image size
channel 48×48 96×96 112×112 128×128 224×224

64 30.15% 34.98% 35.80% 36.90% 57.29%
128 53.84% 60.96% 65.57% 68.64% 102%
192 79.77% 89.42% 95.56% 99.73% N/A
256 102% N/A N/A N/A N/A

5. Installation of FPGA

We found that our proposed BDS-VGG16 was too large
for the FPGA of the XCZU9EG installed in a robot.
Therefore, we propose BDS-VGG16 Tiny, whose input
image size is smaller and whose channels are fewer than
those of a BDS-VGG16. We first checked the network
size to determine whether it could be installed on the
XCZU9EG. Next, we proposed a network and installed
it on an FPGA to evaluate its inference speed and power
efficiency, among other factors.

5.1. Check Installable Network Size on XCZU9EG
We checked the network size to determine whether it

could be installed on the XCZU9EG. We can see from
Table 7 that the resource shortage of BRAM makes it dif-
ficult to install the proposed network on the XCZU9EG.
The proposed method uses BRAM to store the weight pa-
rameters and input images. Therefore, in this subsection,
we check the BRAM resource to be consumed by varying
the input image size and the number of channels in the
middle layers.

Table 8 shows the BRAM usages required by the net-
work. N/A indicates that no tests have been conducted.
We can see from Table 8 that the network model with
an input image with a pixel resolution of 128 × 128
and 192 channels achieves the highest BRAM usage and
that the largest-scale network can be installed on the
XCZU9EG as the target FPGA.

5.2. Proposed BDS-VGG16 Tiny
In this study, we propose BDS-VGG16 Tiny based on

the results shown in Table 8. Fig. 16 shows the proposed
network model. The said network has been changed in
terms of the following points from BDS-VGG16: (1)
the input image size has been changed to a resolution
of 128× 128, and the data size has become one-quarter
the original size, (2) the number of channels has been
changed to 192 in all convolutional layers except for the
input layer, and (3) as Nakahara et al. have reported, re-
placing the average pooling layers with fully connected
layers except for the final layer in the BNN will produce
nearly the same effect [31]. We replaced the binarized
fully connected layers prior to the final layer with bina-
rized average pooling layers.

Figure 17 shows the binarized average pooling layer
unit to be used in BDS-VGG16 Tiny. In these circuits,
average pooling is realized using the adder tree and the
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selector. The kernel size K has a pixel resolution of 8×8,
and the number of channels in the input feature map is 1.

Finally, we propose the circuit configurations for in-
stalling an FPGA in BDS-VGG16 Tiny. Fig. 18 shows the
operation flows of the units used to realize BDS-VGG16
Tiny.

5.3. High-Level Synthesis Results
We conducted a high-level synthesis of the pro-

posed BDS-VGG16 Tiny with an Xilinx SDx 2018.3 for
XCZU9EG as the target device. Table 9 shows the syn-
thesis results, from which we can see that the proposed
model can be installed in an XCZU9EG.

5.4. Evaluation Experiments on Recognition
Accuracy of BDS-VGG16 Tiny

We applied BDS-VGG16 Tiny to learn the images and
compared its recognition accuracy with that of other bi-

Table 9. Synthesis results.

BDS-VGG16 Tiny
XCZU9EG

Resource usage Available

BRAM 909.50 (99.73%) 912
FF 51,449 (9.39%) 548,160

LUT 76,195 (27.80%) 274,080
DSP 1 (0.04%) 2,520

Table 10. Comparison of accuracies among BDS-VGG16
Tiny and other binary methods.

RGB RGB-D

Binarized VGG-16 86.5% –
BDS-VGG16 (RMF+ColorJET) (Ours) – 99.3%

BDS-VGG16 Tiny (RMF+ColorJET) (Ours) – 91.2%

nary networks. We conducted the experiments using the
dataset set up, as described in Subsection 4.1, in the same
way as indicated in Subsection 4.3. Table 10 shows the
experimental results, from which we can see that the ac-
curacy of BDS-VGG16 Tiny has declined by 8.1% com-
pared to that of BDS-VGG16, which seems attributable to
the changes in the input image size and in the number of
channels. However, the recognition accuracy of the pro-
posed network model has improved by 4.7% compared to
that of the binary VGG-16.

5.5. Comparison of Performance of BDS-VGG16
Tiny with Other Computing Devices

We compared the inference speed and efficiency of
BDS-VGG16 Tiny when installed in other computing de-
vices. First, we installed BDS-VGG16 Tiny in the other
computing devices (embedded CPU, CPU, and GPU) and
measured their inference speeds and power consump-
tions. In measuring the inference speeds and power con-
sumptions, we used an ARM Cortex-A53 incorporated
in XCZU9EG as an embedded CPU. We used a laptop
PC with the specifications shown in Table 11 to mea-
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Table 11. Specifications of laptop PC used in experiments.

CPU Intel Core i7-7850HK
Memory 32 GB

GPU NVIDIA GeForce GTX 1080 8 GB
OS Ubuntu16.04

Language Python 3.5
Framework Chainer 1.17.1

Table 12. Comparison of recognition speeds and power efficiency.

ZCU 102 Laptop PC (AlienWare)

This research (ZCU102) Embedded-CPU Idling CPU GPU Idling
XCZU9EG (ARM Cortex-A53) (Core i7-7850HK) (Nvidia GTX 1080)

Inference speed [msec/frame] 12.5 1,456.9 N/A 58.8 23.3 N/A
(fps) (80.0) (0.69) (17.0) (42.9)

Power consumption [W] 21.3 20.7 20.5 89.2 92.4 32

Efficiency [fps/W] 3.756 0.033 N/A 0.191 0.464 N/A

sure the inference speeds and power consumptions of the
CPU and GPU. In measuring the inference speeds, we
seek the average time of inferring single data 100 times
with BDS-VGG16 Tiny installed in the FPGA, embedded
CPU, CPU, and GPU. A single dataset contains RGB im-
ages and depth images already applied with the RMF and
ColorJET methods. The inference speed measurements
of BDS-VGG16 Tiny installed in the FPGA include the
communication time between the PS and PL, and those
of BDS-VGG16 Tiny installed in the GPU include the
time require to transfer data to the GPU memory. We
measured the power consumption of BDS-VGG16 Tiny
installed in the FPGA and in the embedded CPU by con-
necting a voltmeter and an ammeter between the FPGA
board and the AC adaptor. In measuring the power con-
sumption of BDS-VGG16 Tiny installed in the CPU and
GPU, we connected a wattmeter between the AC adaptor
and electric outlet of the PC.

Table 12 shows the measurement results. “Frame”
in Table 12 refers to processing an RGB image as well
as a depth image. We can see from Table 12 that the
inference speed of BDS-VGG16 Tiny installed in the
FPGA is approximately 117-times faster than that in-
stalled in the embedded CPU, approximately 4.7-times
faster than that installed in the CPU, and approximately
1.9-times faster than that installed in the GPU. The effi-
ciency of BDS-VGG16 Tiny installed in the FPGA is ap-
proximately 114-times higher than that installed in an em-
bedded CPU, approximately 20-times higher than that in-
stalled in the CPU, and about 8-times higher than that in-
stalled in the GPU. We can tell from the above-mentioned
measurement results that BDS-VGG16 Tiny installed in
the FPGA is superior in terms of both speed and efficiency
to those installed in the CPU and GPU.

5.6. ROS Installation
In this study, we built an object recognition system by

connecting BDS-VGG16 Tiny installed in an FPGA to an
ROS.

5.6.1. System Structure
Figure 19 shows the system structure. Each program

was installed as a node in the ROS, where the nodes co-
ordinate their operations by publishing and subscribing
data, called topics. The operation flow of the system is as
follows. (1) An Intel RealSense (RGB-D camera) [e] is
used to photograph the objects. (2) The realsense driver
node receives the RGB images and depth images from
the RealSense and publishes them as respective topics.
(3) The crop imgs node subscribes the RGB images and
depth images and trims and publishes them. (4) The recur-
sive median filter node subscribes the depth images, re-
moves their noises with the RMF, and publishes noiseless
depth images. (5) The pre pro node subscribes the RGB
images and depth images, resizes both of them, and pub-
lishes both images after applying ColorJET to the depth
images. (6) The inference hw node subscribes both im-
ages and sends them to the FPGA through socket com-
munications. (7) The PS unit installed in the PS of the
FPGA receives the RGB images and depth images and
sends them to the PL installed in BDS-VGG16 Tiny. (8)
BDS-VGG16 Tiny installed in the PL of the FPGA infers
the object classes from their RGB and depth images. (9)
The PS unit installed in the PS of the FPGA receives the
inference results and transmits them to the inference hw
node through socket communications. Finally, (10) the
inference hw node publishes the inference results.
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Fig. 19. Object recognition system installed in ROS.

5.6.2. System Evaluation Experiments
We experimentally verified that the system operates in

real time. During the experiments, we checked the sys-
tem’s operation period by measuring the output cycle of
the Results Topic when RealSense operates at a specified
30 fps. To check whether RealSense operates at 30 fps, we
checked the operation period of the realsense driver node
by measuring the output cycle of the original RGB Image
Topic as well. We measured the output cycle 10 times in
a row to determine its average and dispersion. We used a
laptop PC having the specifications shown in Table 11 as
the operating environment for the ROS.

The experimental results show that the output cycle of
the Results Topic is 24.321 fps on average and 1.1851×
10−2 fps2 in terms of dispersion when the output cycle of
the original RGB Image Topic is 29.912 fps on average
and 1.4609× 10−4 fps2 in terms of dispersion. We can
see from the above-mentioned experimental results that
the proposed system can conduct processing operations
in real time.

6. Conclusion

In this study, we proposed Binarized Dual Stream
VGG-16 (BDS-VGG16), which is a hardware-oriented
object recognition model. We succeeded in installing it in
an FPGA by reducing the memory where the weight pa-
rameters are stored, and by replacing multiplications with
XNOR operations by making the weights and activation
function outputs binary by referring to a BNN. The pro-
posed BDS-VGG16 is inferior in terms of object recog-
nition accuracy by only 0.6% in comparison to a conven-
tional DS-VGG16.

We have further proposed BDS-VGG16 Tiny, a small
BDS-VGG16 model, and installed it in an XZCU9EG, an
SoC with a CPU and a middle-scale FPGA on a single
chip, allowing it to be installed in a service robot. As the
results indicate, the processing speed was approximately
117-times higher than that of the embedded CPU, approx-
imately 4.7-times higher than that of the CPU, and ap-
proximately 1.9-times higher than that of the GPU. It also
achieved a power efficiency of approximately 114-times
higher than that of the embedded CPU, approximately
20-times higher than that of the CPU, and approximately
8-times higher than that of the GPU. In addition, the pro-
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posed system installed in an ROS was proven to be capa-
ble of real-time processing.

The issues to be addressed in the future include pre-
processing the depth images at a much higher speed by
installing the proposed system in an FPGA, and propos-
ing a new network capable of detecting objects as well
by combining the proposed system with You Only Look
Once [33] and a single-shot multibox detector [34].
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