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The increased use of UAVs (Unmanned Aerial Vehi-
cles) has heightened demands for an automated land-
ing system intended for a variety of tasks and emer-
gency landings. A key challenge of this system is find-
ing a safe landing site in an unknown environment us-
ing on-board sensors. This paper proposes a method
to generate a heat map for safety evaluation using im-
ages from a single on-board camera. The proposed
method consists of the classification of ground surface
by CNNs (Convolutional Neural Networks) and the
estimation of surface flatness from optical flow. We
present the results of applying this method to a video
obtained from an on-board camera and discuss ways
of improving the method.

Keywords: unmanned aerial vehicle, autonomous land-
ing, land cover classification, topographic mapping

1. Introduction

In the event of a large-scale disaster, such as a high-
magnitude earthquake, it is important to collect informa-
tion on damages and deliver relief supplies quickly. UAVs
are a promising means for accomplishing these tasks be-
cause they can be used even when roads become discon-
nected due to landslides [1]. However, it is necessary to
develop an automated landing system [2, 3] because the
delivery tasks would be performed in an unknown envi-
ronment in the event of a large-scale disaster. Automatic
detection of a safe landing site with on-board sensors is
the key technology for achieving successful automatic
landing in an unknown environment. Additionally, auto-
matic landing site detection is also useful for emergency
landing in case of an aircraft malfunction [4, 5]. Establish-
ing a method for such automatic detection is important to
enable the construction of next-generation transportation
systems with UAVs.

Many researchers have been tackling the problem of

automatic landing site detection using two approaches:
land cover classification and land surface topography.
In the first approach, the types of ground surface, such
as grass, trees, and roads are classified using on-board
sensors. In [6], camera images were used to classify
the surface into three classes by the Support Vector
Machine (SVM). In the second approach, the shape of
ground surface was estimated by on-board sensors, such
as LiDAR and cameras [7–10]. The elevation map or 3D
map of the surface is built to detect a flat area without
slopes as a safe landing site. In [11], both approaches
were used simultaneously for more reliable detection.
Since they targeted autonomous landing of a fixed-wing
UAV, grass was the only surface class to be classified for
impact mitigation purposes. However, for multi-rotor and
VTOL UAVs, it would be better to classify the surface
into multiple classes because they land vertically without
largely impacting any flat and solid surface, such as roads
and bare lands as well as grass. To the best of our knowl-
edge, no previous study have approached this problem in
terms of multiclass classification and topography.

This paper proposes a safe landing site detection
method that combines the two aforementioned ap-
proaches, namely surface classification and topographic
recognition, using images from a single on-board camera
on a UAV. In the proposed method, a camera image is
divided into small image tiles, and two safety scores for
each small tile are obtained respectively from CNNs that
classify the ground surface into nine classes and OF (Op-
tical Flow) that is used to estimate the degree of uneven-
ness of the ground surface. A heat map for safety evalu-
ation of image tiles is calculated by integrating these two
scores. This method requires no prior knowledge about
the environment like the method used in [11]. We apply
the method to actual on-board camera images to show that
successful detection of safe landing sites can be achieved
using this method, and discuss ways of enhancing the
method.
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Fig. 1. Approach and landing to a disaster-stricken area.

2. Safe Landing Site Detection

2.1. Scenario for Autonomous Landing
When a disaster strikes, all land routes to the affected

area may become inaccessible due to landslides, heavy
traffic, or other reasons. Even in such cases, UAVs can
approach and land in the target area to transport relief sup-
plies quickly as shown in Fig. 1. The following four flight
procedures for landing in a disaster-stricken area without
any prior knowledge about its environment are consid-
ered.

1) Flying to the target area using GPS location informa-
tion.

2) Determining a potential landing site with an on-
board camera while flying over the target area.

3) Approaching above the potential landing site.

4) Landing on the site while reconfirming the safety of
the landing point using camera and other equipment.

This paper focuses on procedure 2) and proposes a
method of detecting a safe landing site during a level flight
over the target area. The altitude in this procedure is as-
sumed to be about 100 m so that no flight maneuver is
required to avoid collision with trees, utility poles, build-
ings, and so on.

Further, the potential landing sites should satisfy the
following three requirements for safe landing of UAVs.

(1) It should not be a water-filled place, such as a river
or pond.

(2) It should not be a place that is difficult for people to
reach, such as the roof of a building.

(3) It should not be a non-flat place, such as a steep slope
or uneven surface.

Requirement (1) is necessary to avoid catastrophic dam-
age to UAVs, and requirement (2) is needed for people to
pick up the relief supplies that are delivered by UAVs. Re-
quirement (3) is also necessary because the risk of landing
failure is high in case of a non-flat surface.

To detect a site that satisfies the three requirements, we
need to know both the type and shape of the ground sur-
face. Moreover, an additional requirement should be con-
sidered for procedure 4) to avoid collision with moving
objects, such as people and vehicles. We will discuss this
requirement in Section 7.

2.2. Overview of the Proposed Method Using
Camera Images

We propose a method of automatic landing site de-
tection for procedure 2) by integrating classification of
the ground surface and estimation of the ground flatness.
Fig. 2 shows the processing flow of the proposed method:
the input image (a) taken from an on-board camera is di-
vided into image tiles whose size is 128× 128 pixels be-
fore the two processes classification by CNNs (b) and flat-
ness estimation by OF (c). The size of image tile is cho-
sen so that each tile corresponds to a 5× 5 m area of the
ground surface when a UAV flies at an altitude of 100 m.
It should be noted that the size is large enough for small
multi-rotor and VTOL UAVs to land there.

In the classification (b), each image tile is classified into
nine classes by CNNs, and a safety score is given to it
based on the classification results. In the flatness estima-
tion (c), the image tiles that can be considered flat based
on the OF between consecutive two images are detected,
and another safety score is given based on the flatness es-
timation results.

From (b) and (c), two kinds of safety scores in the form
of heat maps (d) and (e) are obtained and integrated to
draw a heat map (f) for safety evaluation. In the heat
map (f), the safety score for each image tile is calculated
by averaging the two scores in (d) and (e). If the score of
an image tile is higher than the threshold, the correspond-
ing area is detected as a safe landing site in the process (g),
and three image tiles with the highest scores are displayed
as three promising landing sites in the process (h).

3. Land Cover Classification by CNNs

If a landing site is detected only by evaluating the
ground surface flatness, it is difficult to avoid a place un-
suitable for landing, such as a water surface and an inac-
cessible roof of a building. To distinguish between suit-
able and unsuitable landing zones, it is necessary to know
the types of surface from on-board camera images.

In this paper, the types of ground surface were classi-
fied by CNNs. We used the Xception model that was pro-
posed recently in [12]. It shows better classification per-
formance compared to other network structures of CNNs.
To obtain nine class outputs, two fully-connected layers
were added to the Xception model that is denoted as base
model layer in Fig. 3. The input layer was also modified
so that 128× 128 pixel input images could be utilized.
We initialized the Xception model using the weights pre-
trained for ImageNet that are available in Keras, and we
fine-tuned its weights during training.
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Fig. 2. Proposed framework for landing site detection.

Fig. 3. Networks architecture for land surface classification.

Fig. 4. Examples of training data set: grass, bare land, trees,
water, wilderness, road, buildings, cars, and ships, in order
from the left column.

Surface image data for training and evaluating CNNs
were generated based on satellite images from Google
Maps. We created 128× 128 pixel images of the ground
surface as shown in Fig. 4. We classified them into nine
classes, namely grass, bare land, trees, water, wilderness,
road, buildings, cars, and ships. A total of 36088 train-
ing and evaluating data were created through rotation and
flipping processes. During the training, we also used dy-
namic data extensions, such as shifts, brightness and sat-
uration conversions, and Random Erasing [13]. Table 1
shows settings of the training parameters. Training was
performed on 95% of the data. The prediction accuracy
for the remaining 5% of the data was 98.5%. Fig. 5 de-
picts an example of the prediction result obtained by the
CNNs for a satellite image from Google Maps where the
image is divided into 128×128 pixel image tiles, and each
image tile is classified to one of the nine classes. The clas-
sification result seems accurate for most of the image tiles.

4. Detection of Flat Surface by Optical Flow

To satisfy requirement (3), we need to find areas with
no slope or unevenness. Computationally demanding 3D

Table 1. Learning parameters.

Image size 128×128
Input channel 3
Solver Adam
Base learning rate 1e-3
Batch size 32
Regularizer L2(1e-3)
Activation LeakyReLU
Dropout 0.5

Fig. 5. Classification results by trained CNNs (color figure
online).

reconstruction is unnecessary for detecting such a flat
ground area. In [14], a less computationally expensive
method for detecting flat areas was proposed using the
standard deviation of the norms of optical flow vectors.
We utilize and modify the method so that the detection
of flat areas is robust to flight speed changes by using the
coefficient of variation instead of the standard deviation.

Since the UAV in procedure 2) flies horizontally with
its on-board camera pointing downward, the optical flow
vector for an object that is located at high altitude is larger
than the one for an object at low altitude. Therefore, when
the ground surface is flat, the standard deviation is small,
and it is large when the surface is uneven. The results of
preliminary experiments showed that the standard devia-
tion of the optical flow vectors depends on the flight speed
of UAV even when the flight altitude is kept at a constant.
By using the coefficient of variation, robust detection of
flat areas can be achieved.

The optical flow is obtained from consecutive image
frames. SIFT features are calculated in the current and
previous frames and matched to obtain feature point pairs
PPPcurrent(i) and PPPprevious(i). The magnitude of the optical
flow F(i) is computed as follows:

F(i) = ‖FFF(i)‖ = ‖PPPcurrent(i)−PPPprevious(i)‖. . (1)
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(a) video images

(b) optical flow (c) detected area
(black: flat,

white: non-flat)

Fig. 6. Results of flat area detection.

We calculate the coefficient of variation CV for a rect-
angular image tile. We denote the location of an image
tile in the current image frame as (x,y), and assume that
there are n optical flow vectors in the image tile (x,y). The
coefficient of variation for the image tile (x,y) is obtained
by the following equation:

CV (x,y) =
σF(x,y)
F̄(x,y)

, . . . . . . . . . . (2)

where F̄(x,y) and σF(x,y) are respectively the average
and standard deviation of F(i) (i = 1, . . . ,n).

This section demonstrates the detection of flat tiles with
OF by introducing a threshold T for CV . The area of
tile (x,y) is judged to be flat if CV (x,y) < T . However,
CV itself will be used in the next section to generate a heat
map for safety evaluation.

Figure 6 shows the results of experiments with an arti-
ficially constructed environment. In the environment, the
left half area of the images (a) is flat, and a textured sheet
is put on the area to obtain optical flow vectors. In the
right half area, there are some objects on a flat surface: a
box whose top surface is flat in the lower area, some ob-
jects whose heights are small in the upper area, and some
tall objects in the center area. From the two images, opti-
cal flow vectors in Fig. 6(b) are obtained. In Fig. 6(c), the
white and black areas are considered non-flat and flat, re-
spectively. By using the coefficient of variation, flat areas
are extracted correctly.

Although this method generally assumes a horizontal
motion of the camera, the altitude and posture may vary
in actual flight. The influence of altitude fluctuation at
an altitude of about 100 m would be small because the
altitude control of UAVs can limit the fluctuation to about
5 m. For suppressing the influence of posture variation, a
gimbal mechanism can be attached to the camera, or the
image can be corrected by using other sensors, such as
IMU.

5. Integrated Heat Map

This section integrates the surface classification in Sec-
tion 3 and the flatness estimation in Section 4 to gen-

Table 2. Safety score.

Class Score
Grass 1.0

Bare land 1.0
Road 0.8

Wilderness −0.5
Cars −0.5
Ships −0.8
Trees −0.8

Buildings −1.0
Water −1.0

erate a heat map that represents safety evaluation for
128× 128 pixel image tiles. First, two heat maps that
are respectively based on the classification results and the
flatness estimation results were made by assigning safety
scores to each image tile. The scores for each tile were
calculated by merging properly the results of its surround-
ing tiles in order to detect safe landing sites more reliably.
Subsequently, an integrated heat map was obtained by av-
eraging the two scores.

5.1. Heat Map of CNNs Score
To generate a heat map from the results of the surface

classification, we define the safety score for each class as
shown in Table 2. The score assumes values from −1.0
to 1.0. A higher value indicates that the corresponding
class is more suitable for landing. The grass and bare
land are considered to be the safest for landing. The score
of road is set at 0.8 because there tend to be power lines
that are difficult to detect from an altitude of 100 m. Al-
though wilderness and cars are unsuitable for landing, we
could reach them to pick up relief supplies. Therefore, we
choose their scores as −0.5. The scores of trees and ships
are set at −0.8 since it is more difficult to reach them. The
water and buildings is set to the lowest value of −1.0 for
two reasons. First, they are really unsuitable for landing.
Second, when an image tile belongs to unlearned types
of the ground surface, the classifier in Section 3 tends to
classify it as water or buildings.

The score of a target 128× 128 pixel image tile is cal-
culated by combining the results of classification for the
surrounding image regions as shown below. At first, we
create eight 128× 128 pixel image regions by sliding a
target image tile by 64 pixels as shown in Fig. 7 and ap-
ply the classifier to them. We denote the target image tile
as i, four areas surrounded by a dashed line as bi, and
four areas surrounded by a dotted line as ri. The proba-
bility vectors ppp that are composed of the probabilities for
the nine classes are obtained for the image tile and the
eight image regions. These nine probability vectors are
added together with weights to obtain a modified proba-
bility vector pppm for the target image tile:

pppm(i) = 4ppp(i)+2
4

∑
bi=1

ppp(bi)+
4

∑
ri=1

ppp(ri), . . . (3)
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Fig. 7. Surrounding image regions for score calculation by
CNNs.

where the weights are chosen as 4 for the target image
tile, 2 for four areas surrounded by a dashed line, and 1
for four areas surrounded by a dotted line, according to
the degree of overlap with the target image tile. All the
components of the modified probability vector are multi-
plied by the corresponding scores in Table 2, and they are
added together to obtain a temporal score S̄C of the target
image tile. Repeating this process for every image tile, we
obtain temporal scores for all 128×128 pixel image tiles.

We then consider eight image tiles that surround a tar-
get image tile and denote them as si. An image tile would
be safer for landing if its surrounding tiles also have high
scores. The final score SC for the target image tile is ob-
tained by multiplying the temporal scores of the surround-
ing tiles by 0.1, summing them up, and adding that to the
temporal score of the target tile:

SC(i) = S̄C(i)+0.1
8

∑
si=1

S̄C(si). . . . . . . . (4)

We use the obtained score SC(i) for each image tile i to
draw a heat map of CNNs score (Fig. 8(d)). The final
score takes a value between −28.8 and 28.8 through the
processes mentioned above.

5.2. Heat Map of OF Score
To obtain a safety score based on the flatness estima-

tion for a 128 × 128 pixel image tile, we first consider
four 256× 256 pixel regions and denote them as li. The
four regions include the target image tile i in the lower
right, upper right, lower left, or upper left area as shown
in Fig. 9. The coefficients of variation CV for optical flow
vectors are calculated for these four regions, and we ob-
tain a temporal score for the target image tile by adding
them together:

S̄O(i) =
4

∑
li=1

CV (li). . . . . . . . . . . . (5)

The reason for considering the larger image regions is be-
cause increasing the image size is desired so that the im-
age contains enough number of optical flow vectors to cal-
culate the coefficient of variation CV .

To integrate the score from optical flow with the score
from CNNs classification properly, the range of OF score

needs to be the same as that of the CNNs score. The re-
sults of preliminary experiments showed that the value of
CV (li) is approximately between 0 and 0.05, that is, the
range of S̄O(i) is within 0 to 0.2. The final score SO from
OF is defined as:

SO(i) = −288
(
S̄O(i)−0.1

)
, . . . . . . . (6)

so that the range of the final score is from −28.8 to 28.8.
We use the obtained score SO(i) for each image tile i to
draw a heat map of OF score (Fig. 8(e)). Moreover, when
the number of optical flow vectors in a 256× 256 pixel
region li is less than 20, CV (li) is set at 0.025. If CV (li)
becomes larger than 0.05, it is set at 0.05.

5.3. Heat Map of Mixed Score
A safety score S for each 128×128 pixel image tile i is

defined in this paper as the average of the two scores SC
and SO:

S(i) =
1
2
(SC(i)+SO(i)). . . . . . . . . . (7)

The safety score S is utilized to draw an integrated heat
map as shown in Fig. 8(f). In this paper, an image tile i
is considered a safe landing site if S(i)≥ 14.4 (Fig. 8(g)).
Furthermore, the top three highest-scoring image tiles are
displayed as the promising landing sites, as shown in
Fig. 8(h).

The results of safe landing area detection depend on the
threshold of the judgment as well as the definition of the
score S. The threshold value was chosen in this paper as
14.4 such that the proposed algorithm works as follows:
when an image tile and its surrounding regions are grass
or bare land, the tile is judged as safe even for the OF
score of 0. On the other hand, when an image tile is clas-
sified as wilderness, cars, etc. and has a negative score of
CNNs, it is judged to be unsafe for any score obtained
from the OF. As described in the next section, this choice
of threshold results in successful detection of safe landing
area for the images obtained in experiments.

However, to confirm the safety according to the UAV’s
size and landing gears, the relationship between the OF
score and the actual height differences on uneven surfaces
should be examined carefully. Further investigation with
more images collected for various environments may lead
to more appropriate choice of the score S and its threshold.

6. Experimental Results

In this section, in order to examine whether safe land-
ing sites can be detected using the proposed method, we
apply it to actual on-board camera images that were taken
by a commercially available multi-rotor UAV, Mavic Pro
Platinum (DJI). The on-board camera is mounted on the
UAV with a gimbal mechanism. It can keep pointing
downward during flight. To obtain consecutive images,
a video was taken by the on-board camera when the UAV
flew over a park at an altitude of about 100 m.
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Fig. 8. Results of landing site detection (color figure online).

Fig. 9. Surrounding image regions for score calculation by OF.

Figure 8 shows the results of landing site detection by
the proposed method for one image frame during flight.
There is a large region of bare land in the input image (a),
that is suitable for landing. The region was classified cor-
rectly by the CNNs classifier as shown in (b). The cor-
responding image tiles exhibited high scores in the heat
map (d). As shown in (c) and (e), most image tiles in the
region were also detected as flat surfaces by using OF, al-
though the scores for some image tiles were low even in
the region due to few optical flow vectors. From the in-
tegrated heat map (f), effective detection of safe landing
area was achieved as shown in (g), and three promising
landing sites were displayed in (h). Moreover, for every
frame of the video, safe landing sites were detected suc-
cessfully in a similar way.

The rest of this section shows two examples where the
combination of land cover classification and flatness es-
timation works effectively for reliable detection of safe
landing sites. Fig. 10 shows a small sand hill whose
height is about 50 cm in the lower left part of the cropped

(a) cropped image (b) heat map by
CNNs score

(c) heat map by
optical flow

Fig. 10. An example in which integration with optical flow
is effective.

(a) cropped image (b) heat map by
CNNs score

(c) heat map by
optical flow

Fig. 11. An example in which integration with CNNs is
effective.

image (a). The image area was correctly classified as bare
land by the CNNs classifier, and the score from the CNNs
was high as in (b), although the area was unsuitable for
landing. On the other hand, the OF score for the area
was sufficiently low due to its unevenness as shown in
(c). Consequently, the area was not considered safe for
landing from the integrated heat map.

In Fig. 11, only the top of trees is illuminated by the
sunlight in (a). The score from the optical flow was un-
expectedly high as in (c) because almost all the feature
points that were used for optical flow calculation were lo-
cated at about the same height. On the other hand, CNNs
classifier correctly classified the brighter image tiles as
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trees and other image tiles incorrectly as water because
they are too dark due to shadows. Even so, the CNNs
score was sufficiently low in the heat map (b) because we
assigned low safety scores to those two classes as shown
in Table 2. Thus, the area was not detected as a safe land-
ing site based on the integrated heat map.

7. Discussion

As shown in the previous section, the proposed method
enables us to find an area suitable for landing. How-
ever, to achieve autonomous landing, there are many is-
sues that should be addressed, such as implementation
of the method to actual UAVs, enhancement of detec-
tion accuracy, and landing site tracking during descent
flight. This section discusses these issues from the fol-
lowing four points of view.

(1) Computational speed
The algorithm for landing site detection in Fig. 2 was

calculated offline from the video that was taken during the
experiments mentioned in Section 6. It took about 26 s
to finish the calculation from two consecutive images by
using a desktop PC (CPU: Intel Core i7-6700 (8 CPUs),
GPU: NVIDIA GeForce GTX970, Memory: 16 GB
2133 MHz). The flat area detection by OF took about 23 s,
while the classification by CNNs took about 3 s. This
is probably because we performed brute-force matching
with SIFT descriptors to obtain OF vectors. We could
reduce the computational time to a large extent by using
other OF algorithms [15–18]. For example, we have al-
ready checked through preliminary calculation that suf-
ficiently accurate and dense OF vectors can be obtained
within about 1.5 s using the Farneback algorithm [15].

It should be noted that we do not have to obtain the
detection results within the frame rate of the video. The
required computational speed depends on the total strat-
egy for landing, such as flight plan and final decision of
a landing point [2, 14]. If the whole computation for de-
tecting a landing point is finished within about 4.5 s by
using a more efficient OF algorithm, the UAV can keep
flying until the detection results are obtained, preparing
for final approach to the target area. In the future, we will
check the feasibility of implementation of the method by
using a compact, lightweight, high-speed embedded com-
puter that can be mounted on small UAVs, such as Jetson
Xavier NX (NVIDIA).

Moreover, an additional way of reducing the amount
of computation is reducing the image area processed for
landing site detection [11]. If we process land cover clas-
sification and flatness estimation sequentially, the area
that is judged to be definitely unsuitable for landing by
one of the two does not need to be processed by the other.
The image area to be processed can be also reduced by
using the results of the last few frames, if they overlap.

(2) Mapping and accumulation of detection results
In the proposed method, the landing sites are detected

independently in each frame. It is possible to improve the

Fig. 12. Result of semantic segmentation (color figure online).

efficiency of processing and the accuracy of detection by
accumulating the detection results, if the images in mul-
tiple frames overlap. To accumulate the results and use
them for landing control, we need to map them to the cor-
responding position on the ground. As described later, it
would be better to construct a 3D map [19] or an elevation
map using SLAM and other methods [20].

(3) Fine detection of safe landing area
The landing site detection by the proposed method is

performed only for each 128× 128 pixel image tile that
corresponds to 5× 5 m ground area. The detection for
smaller areas would enable us to know more accurate
shape of the region suitable for landing, and would allow
the UAVs to land in narrow areas.

We are currently developing a classifier for semantic
segmentation [21, 22] to classify the ground surface at the
pixel level. A preliminary result for the same input im-
age as in Section 6 is shown in Fig. 12. For fine terrain
recognition, a 3D map would be useful, if constructed.

(4) Landing site tracking during descent flight
In procedure 4) described in Section 2.1, a multi-copter

or VTOL type of UAV approaches one of the promising
landing sites while descending. It is desirable to construct
a 3D map using SLAM [23] because it is useful for de-
tecting flat areas even during descent flight and enables a
more detailed understanding of the ground shape.

An important requirement for safe landing in pro-
cedure 4) is detecting and avoiding moving objects,
such as people and vehicles in addition to the require-
ments (1)–(3) mentioned in Section 2.1. We are cur-
rently working on human detection from aerial images us-
ing Single Shot Multi-box Detection (SSD). As shown in
Fig. 13, preliminary results show that a person can be rec-
ognized from an image taken at an altitude of about 50 m.
The human detection would also be useful for finding peo-
ple in need of help in a disaster-stricken area [24].

8. Conclusion

In this paper, we proposed a method for detecting safe
landing sites with a monocular camera by combining
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Fig. 13. Human detection from an overhead shot image with
SSD.

ground surface classification and flatness estimation. Di-
viding a camera image into 128× 128 pixel image tiles,
each image tile was classified into nine classes by CNNs,
and its degree of flatness was estimated based on opti-
cal flow vectors. These results were integrated as a heat
map of safety score. The area with a score higher than a
threshold is considered suitable for landing. The experi-
mental results demonstrated that the proposed method can
achieve a successful detection from actual aerial images.
Finally, we discussed some issues that should be solved to
enable its practical application.
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