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As a possible extension of a drone application, trans-
portation of a cable-suspended load is expected. The
model of a drone with a suspended load is a nonlin-
ear underactuated system that is known to be diffi-
cult to analyze and control. This paper applies the
linearization method, known as hierarchical lineariza-
tion, to the system. We observed that, via the hier-
archical linearization scheme, the system can be lin-
earized exactly and the controller can be designed si-
multaneously. There are two features of this approach.
First, the controller exactly considers the system non-
linearity, and the feedback controller is based on the
linear control theory. Second, it is possible to derive
the analytical solution of the closed-loop system. We
have demonstrated these features via numerical simu-
lations.

Keywords: drone, cable-suspended load, hierarchical
linearization, differential flatness

1. Introduction

With the advancement of microprocessors, the technol-
ogy for drones, such as quadrotors, developed rapidly in
the past decade. As a result, several applications and con-
trol methods have been proposed, as reviewed in [1, 2].

Transportation of external loads using drones is one of
the most important applications [3, 4]. For example, trans-
port of a cable-suspended load is an excellent way to re-
tain the agility of a drone, and hence this type of drone
has been actively studied [5–9].

Palunko et al. proposed the first practical controller for
a drone with a cable-suspended load in [5]. Their study
utilized adaptive control to endure a change in the center
of gravity and proposed a dynamic programming-based
trajectory generation to obtain a swing-free motion. A
generation of a feasible reference trajectory is a funda-
mental problem in the application of a nonlinear underac-
tuated system because the stabilizing controller can easily
be extended to the reference trajectory tracking control.
A geometric approach to design the feasible trajectory is
introduced in [6], and a stabilizing controller for the tra-
jectory is proposed in [6, 7]. Other approaches propose

reinforcement learning [8] and nonlinear model predictive
approach [9] as solutions to this control problem.

An approach based on a geometric property, known as
differential flatness, was applied to generate a feasible ref-
erence trajectory in [6, 7]. A system is differentially flat
if there exists a set of virtual outputs such that the system
states and inputs can be expressed in terms of the flat out-
put and a finite number of its time derivatives [10, 11].
This system property is advantageous not only in con-
troller design [10] and state estimation [12], but also in
the reference trajectory generation.

A drone with a suspended load is a nonlinear underac-
tuated system, and it is known that the system is differ-
entially flat. Therefore, the differential flatness-based ap-
proach is one of the most valuable ways to control the sys-
tem. Differential-flatness means that a cable-suspended
drone system is diffeomorphic to a linear system with
a higher number of dimensions. This approach requires
higher-order time derivatives of inputs to construct the
diffeomorphism. In many cases, the differential flatness
feature is utilized to design a feedforward control input or
a feasible reference trajectory. In this case, we need an
additional nonlinear controller to develop feedback con-
trol.

In this study, we adopted hierarchical linearization to
establish decoupled linear subsystems. Hierarchical lin-
earization was first introduced in [13]. It is a method that
has an idea similar to that of linearization via a dynamic
extension based on differential flatness. In particular, the
dynamic extension gives a dynamics on the input to ex-
tend the relative degree. In contrast, our approach embeds
the feedback controller into the input to extend the rela-
tive degree of the flat output [13, 14]. In other words there
is no need to consider the input extension, and hence, the
size of the linearized system is essentially equal to that of
the original one. Therefore, the linear control theory was
utilized to design the stabilizing controller.

Despite the abovementioned advantages of hierarchical
linearization, the applicable systems’ class is unclear and
the design method of the hierarchical structure has not
yet been established. In this study, we revealed that hi-
erarchical linearization could be applied to a drone with a
cable-suspended load by constructing a specific linearized
system. Additionally, we analyzed the singularities that
occur during the linearizing procedure.
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Fig. 1. A drone with a suspended load.

The reminder of this paper is organized as follows. Sec-
tion 2 introduces the dynamics model of a drone with a
suspended load. In Section 3, the linearized system and
stabilizing controller are derived via the idea of hierarchi-
cal linearization. Section 4 illustrates the results of nu-
merical simulations to verify the effectiveness of the pro-
posed control structure and discusses the features of the
proposed approach. Finally, Section 5 provides conclud-
ing remarks.

2. Suspended Load Model

A model of a drone with a load suspended by a stiff ca-
ble is shown in Fig. 1. We assumed that the cable weight
is negligible. The load is modeled as a point mass and
its attitude is not considered. With these assumptions, the
dynamic model of a cable-suspended drone load was de-
veloped by Sreenath et al. [6, 7] as follows:

ẋL = vL, . . . . . . . . . . . . . . . (1)
(mB +mL)(v̇L +ge3) = (p · f Re3 −mBl( ṗ, ṗ))p, (2)
ṗ = ω × p, . . . . . . . . . . . . . . (3)
mBlω̇ = −p× f Re3, . . . . . . . . . . (4)
Ṙ = RΩ̂, . . . . . . . . . . . . . . . (5)
JBΩ̇+Ω× JBΩ = M. . . . . . . . . . . (6)

The symbols used herein are explained in Table 1. (·, ·)
indicates the inner product, and ·̂ : R

3 → so(3) is defined
such that âb = a×b, ∀a,b∈R

3. Eqs. (1) and (2) represent
the dynamics of the load, p illustrates the direction of the
load with respect to the drone, and Eqs. (3)–(4) represents
the load dynamics. Eqs. (5)–(6) are the drone attitude dy-
namics. The position of the drone is calculated using

xB = xL − l p, . . . . . . . . . . . . . (7)

and the velocity vB is calculated by substituting Eqs. (2)
and (3) into a time derivative of Eq. (7).

The system has eight degrees of freedom with configu-
ration space SE(3)× S2. In this study, the torsion of the
cable is ignored; hence, the angular velocity ω around p
is 0.

Table 1. Variables and their symbols.

ΣW ,ΣB Coordinate frame of world and body.
xL,vL ∈ R

3 Position and velocity vectors of the center of
load in ΣW .

xB,vB ∈ R
3 Position and velocity vectors of the center of

mass of the drone in ΣW .
R ∈ SO(3) Rotation matrix that represents a posture of

the drone in ΣW .
Ω ∈ R

3 Angular velocity of the drone in ΣB.
ω ∈ R

3 Angular velocity of the suspended load in ΣW .
p ∈ S2 ⊂ R

3 Unit vector from the drone to the load in ΣW .
f ∈ R Magnitude of the thrust force of the drone.
M ∈ R

3 Moment vector for the drone in ΣB.
mB ∈ R Mass of the drone.
mL ∈ R Mass of the suspended load.
JB ∈ R Inertia matrix of the drone in ΣB.
l ∈ R Cable length.
e1,e2,e3 ∈ R

3 Unit vectors along the x,y,z coordinate in ΣW .
q ∈ R

4 Unit quaternion corresponding to R.
x ∈ R

19 State consisting of [qT ,ΩT ,xT
L ,vT

L , pT ,ωT ]T .
u ∈ R

4 Input consisting of [ f ,MT ]T .

3. Hierarchical Linearization

In this section, first, we present the algorithm of hier-
archical linearization. Following this, we prove that the
target system is linearizable via hierarchical linearization
by deriving the linear subsystems specifically. Finally, the
features of the proposed method are compared with those
of the existing methods and the singularities that appeared
in the procedures are analyzed.

3.1. Brief Idea of Linearization
Hierarchical linearization consists of two ideas called

“directional decoupling” and “autonomization.” Direc-
tional decoupling generates a subsystem that is isolated
from the other subsystems. The rest of the subsystem
may be effected from the subsystem. This is the mean-
ing of “directional.” In this procedure, the subsystem be-
comes the Brunovsky canonical form. “Autonomization”
is defined as a procedure to make the isolated subsystem
autonomous by designing and applying a feedback con-
troller. For the rest of the subsystem, an autonomized
subsystem serves as an exogenous signal generator. It is
worth mentioning that the input designed in the autono-
mization procedure is no longer input for the remaining
subsystem. Therefore, the geometric properties including
the linearizability of the rest of the subsystem change via
autonomization. Hierarchical linearization is an exact lin-
earization method that repeats directional decoupling and
autonomization. It is summarized as follows.

Algorithm: Hierarchical linearization [13, 14]

1. Directional decoupling: choose a function, and apply
a partial feedback linearization to the function.
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2. Autonomization: design and apply a controller to the
subsystem linearized in Step 1.

3. If there is no input or no remaining freedom, then
exit, else go back to Step 1.

This recursive loop is repeated at most the number of in-
puts. Therefore, this algorithm completes within a finite
number of steps. Note that the choice of a function at
the directional decoupling step, called virtual output, is
an open problem. As discussed in [13, 14], although the
hierarchical linearization method expands the class of lin-
earizable nonlinear systems, it depends on the choice of
virtual outputs.

3.2. Exact Linearization of a Drone with a
Suspended Load

Fist, we transform the system into a state-space model
as follows:

ẋ = f0(x)+g01(x)u1 +g02(x)u2 +g03(x)u3 +g04(x)u4,

where x is the state vector consisting of the unit quater-
nion of attitude q = [q0,q1,q2,q3]T , Ω and ω indicate the
angular velocities of drone and load, respectively, p is
the unit vector of load direction, xL = [xLx,xLy,xLz]T and
vL = [vLx,vLy,vLz]T are the position and the translational
velocity of the load. The time derivative of q is calculated
as

q̇ =
1
2

⎡
⎣ −q1 q0 q3 −q2

−q2 −q3 q0 q1
−q3 q2 −q1 q0

⎤
⎦

T

Ω.

The number of states is 19, and there are two norm con-
straints: ‖q‖= 1 and ‖p‖ = 1. Because the cable rotation
around p is ignored, the number of dimensions to be con-
trolled is 16.

As revealed by Ishikawa et al. [15], the number of in-
puts must be greater than or equal to that of the dimen-
sions of equilibria set for asymptotic stability with a time-
invariant continuous state feedback controller. The equi-
libria set of the quadcopter system is given by{

x
∣∣∣∣ vL = 0,Ω = 0,ω = 0,
‖q‖ = 1,q1 = q2 = 0, p = [0,0,−1]T

}
.

The degree of freedom of the equilibria set is four, which
corresponds to xLx, xLy, xLz and the rotation around the
xBz-axis. This is equal to the number of inputs. Hence, we
naturally chose xLx, xLy, xLz and the rotation angle around
the xBz-axis as a controlled output. Indeed, these param-
eters are known as flat outputs for cable suspended drone
systems. Therefore, we also adopted these variables as
virtual outputs.

3.2.1. First Layer

As a virtual output for the first layer, we choose

h1 = xLz − zd(t),

where zd(t) denotes a time function of the desired load
altitude. The time derivative of h1 is calculated as follows:

ḣ1 = vLz − żd(t)
ḧ1 = L̄ f0 ḣ1

+
[

Lg01 ḣ1 Lg02 ḣ1 Lg03 ḣ1 Lg04 ḣ1
]
⎡
⎢⎣

u1
u2
u3
u4

⎤
⎥⎦

where Lab is a Lie derivative of b along with a vector
field a calculated using ∂ b

∂ x a, and L̄ab := Lab+∂ b/∂ t. In
this layer, we are only concerned with zL dynamics, and
hence there appears only the thrust force term in its second
time derivative; therefore Lg02 ḣ1 = Lg03 ḣ1 = Lg04 ḣ1 =
0. The dynamics with respect to h1 is transformed into a
Brunovsky canonical form with a two-dimensional state
as follows:

ξ̇1 : =
d
dt

[
h1
ḣ1

]
=

[
0 1
0 0

]
ξ1 +

[
0
1

]
v1,

=: A1ξ1 +B1v1, . . . . . . . . . . (8)

where v1 is a virtual input given by canceling the nonlin-
earity in ḧ1 as follows.

u1 =
v1 + z̈d(t)− L̄ f0 ḣ1

Lg01 ḣ1
. . . . . . . . . . (9)

This input transformation has a singularity at β1 :=
Lg01 ḣ1 = 0 and is detailed further in Section 3.3.

So far, the dynamics of ξ1 is directionally decoupled
from the other dynamics. This means that the other dy-
namics do not affect ξ1 dynamics; instead they are af-
fected by ξ1 and v1. Based on the linear control theory,
we can easily establish a stabilizing controller as follows:

v1 = F1ξ1, . . . . . . . . . . . . . . (10)

where F1 is a feedback gain applied to ensure that the
closed-loop system is asymptotically stable. By substitut-
ing the designed virtual input into Eq. (8), the subsystem
of ξ1 becomes autonomous. The autonomization of the
first layer is thus completed.

Note that, in the ordinary exact linearization method,
the design of a feedback controller is executed after the
linearization is completed. On the other hand, in our lin-
earization process, the design of feedback controller pre-
cedes the remaining linearization.

Finally, this entire system can be represented as fol-
lows:

ẋ = f1(x)+g12(x)u2 +g13(x)u3 +g14(x)u4, (11)

f1(x) = f0(x)+g01(x)
v1 + z̈d(t)−L f0 ḣ1

Lg01 ḣ1
,

g1i(x) = g0i(x) (i = 2,3,4).

3.2.2. Second Layer

Based on the discussion of the equilibria set, we choose
the following functions as virtual outputs for the second
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layer:

h2 = xLx − xd(t),
h3 = xLy − yd(t),
h4 = ψ −ψd(t),

where xd(t) and yd(t) are the horizontal references of the
load position. The first term of h4 denotes the yaw angle
ψ and ψd(t) is its reference.

We calculated the time derivatives of virtual outputs un-
til the second layer inputs u2, u3, u4 appeared as follows:

h(6)
2 = L̄

(6)
f1

h2 +
(
Lg12L

(5)
f1

h2

)
u2

+
(
Lg13L̄

(5)
f1

h2

)
u3 +

(
Lg14L̄

(5)
f1

h2

)
u4,

h(6)
3 = L̄

(6)
f1

h3 +
(
Lg12L

(5)
f1

h3

)
u2

+
(
Lg13L̄

(5)
f1

h3

)
u3 +

(
Lg14L̄

(5)
f1

h3

)
u4,

ḧ4 = L̄
(2)
f1

h4 +
(
Lg12L̄ f1h4

)
u2

+
(
Lg13L̄ f1h4

)
u3 +

(
Lg14L̄ f1h4

)
u4,

where L̄
(i)
a b is a recursive calculation of Lie derivative

defined as L̄a(L̄
(i−1)

a b) and L̄
(1)

a b := L̄ab.
Using this calculation, we confirmed the relative de-

grees of the virtual outputs with respect to Eq. (11) to
be 6, 6, and 2 respectively. This means that there ex-
ists static feedback transformation that realizes 14 dimen-
sional Brunovsky canonical form with the linearizing in-
dices 6, 6, and 2. Furthermore, the decoupling matrix is

β2 =

⎡
⎢⎢⎣

Lg12L̄
(5)
f1

h2 Lg13L̄
(5)
f1

h2 Lg14L̄
(5)
f1

h2

Lg12L̄
(5)
f1

h3 Lg13L̄
(5)
f1

h3 Lg14L̄
(5)
f1

h3

Lg12L̄ f1h4 Lg13L̄ f1h4 Lg14L̄ f1h4

⎤
⎥⎥⎦

. . . . . . . . . . . . . . . . . . . . (12)

As defined in Eq. (11), f1 includes v1(t), and therefore β2

consists of v1 and its time derivatives v̇1, . . . ,v
(6)
1 . Gener-

ally, high-order time derivatives are difficult to calculate;
however, in this method, v1 has been designed at an au-
tonomization step. Therefore, the i-th time derivative of
v1 is calculated as

v(i)
1 = F1ξ (i)

1 = F1(A1 +B1F1)(i)ξ1, . . . . (13)

where A1 and B1 are system matrices defined in Eq. (8).
If we apply the dynamic extension to the system, then
the time derivatives of the actual inputs are required to
construct the linearizing transformation. Compared to
this, the proposed approach realizes a static feedback con-
troller, which only requires state information.

Applying the following input transformation, we get:

⎡
⎣ u2

u3
u4

⎤
⎦ = β−1

2

⎛
⎜⎜⎜⎝−

⎡
⎢⎢⎢⎣

L̄
(6)
f1

h2

L̄
(6)
f1

h3

L̄
(2)
f1

h4

⎤
⎥⎥⎥⎦+

⎡
⎣ v2

v3
v4

⎤
⎦
⎞
⎟⎟⎟⎠ . (14)

Subsequently, we obtain the linear subsystems as follows:

h(6)
2 = v2, . . . . . . . . . . . . . . (15)

h(6)
3 = v3, . . . . . . . . . . . . . . (16)

h(2)
4 = v4. . . . . . . . . . . . . . . (17)

The number of states is 19, and there are norm constraints
for the unit quaternion q, the direction of the load p, and
the angular velocity ω . Hence, the number of states to
be controlled is 16. Therefore, we achieved an exact lin-
earization via a static feedback transformation.

3.3. Discussions
In this section, we discuss the singularity of the pro-

posed method and compare it to other methods.
First, let us discuss the comparison with the dynamic

extension-based controller. As mentioned in the pre-
vious section, the essential degree of dynamics is 16.
The relative degree of the flat outputs (xLx,xLy,xLz,ψ) is
(2,2,2,2), respectively; therefore, the system transforms
into four linear subsystems with two dimensions follow-
ing the standard static feedback linearization method. In
comparison, the dynamic feedback linearization extends
the linearizable dimension by considering the fourth time
derivative of u1 = f . Owing to this dynamics exten-
sion, the essential freedom of dynamics becomes 20, and
the relative degree of the flat outputs becomes (6,6,6,2).
Hence, the extended system is diffeomorphic to a linear
system.

Both the dynamic extension and the proposed ap-
proaches appear as time derivatives of input; however,
there is one critical difference between them. The dy-
namic extension approach requires the values of the high-
order differentials of u1 to calculate the diffeomorphism.
In contrast, in the proposed method, because the time
derivative of v1 is represented as Eq. (13), time deriva-
tive itself becomes unnecessary while calculating the ac-
tual input. Therefore, our approach can avoid a redundant
time delay in the dynamic extension approach by adding
dynamics into the input.

Second, let us compare the existing controller provided
by Sreenath et al. [6, 7]. In their studies, the differen-
tial flatness is utilized to design the admissible reference
trajectory, and a stabilizing controller for the trajectory
has been proposed. In their method, a detailed additional
analysis needs to be conducted to guarantee exponential
stability. In our approach, the exponential stability is triv-
ially guaranteed by the linear control theory, except in the
case of the singularity explained in the remaining of the
section. Moreover, we can represent the solution of the
closed-loop dynamics analytically because the system is
described with a static nonlinear transformation and a lin-
ear dynamical system.

Finally, we discuss the singularity that appears in the
input transformation. From a physical viewpoint, the first
layer consists of the dynamics of xLz with thrust input.
In Eq. (9), the input transformation is singular at β1 :=
Lg01 ḣ1 = 0, and it is satisfied when p3 = 0 or (p,Re3)= 0.
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The first condition implies that the altitude of the load is
equal to that of the drone. The second condition is the case
where the load is on the rotor plane, and such a situation
should be avoided to prevent the rotor from involving the
cable.

The singularity in the second layer is formed as
det(β2) = 0. The numerator of det(β2) is represented as

R(3,3)N2
1 N2

2 ,

where

N1 = v1 +g+ z̈d,

N2 = (mL +mB)N1 + lmB(ω,ω)p(3).

R(3,3) = 0 means the drone rotated by π/2 rad, and the
direction of the thrust force is in the x-y plane in ΣW . In
this case, xBz cannot be controlled by the thrust, and it
is reported in [14] that the same singularity appears in
the drone controller realized via hierarchical linearization.
The singularity N1 = 0 implies that the acceleration of the
load is −g. It is a free-fall condition of the load, which
should be avoided in practical usage. The last singular-
ity N2 = 0 implies the first-layer singularity (p,Re3) = 0.
The detailed derivation of this equality is provided in the
appendix.

In summary, there are four singular conditions repre-
sented by ẍLz = −g, p3 = 0, R(3,3) = 0, or (p,Re3) = 0.
These singularities correspond to the situations that we
want to avoid in practical usage. Hence, the existence of
these singularities is admissible as a controller. In par-
ticular, we need to consider these singularities when de-
signing the reference trajectories. Our approach is easy
to check that the system is singular because the analytical
solution of the closed-loop system can be derived owing
to the controller structure. This feature is demonstrated in
the next section.

4. Numerical Simulations

In this section, we present the numerical simulation re-
sults obtained using the proposed controller, and discuss
the features of the proposed approach. The first feature
is that the proposed linearization is exact and linearized
subsystems are entirely decoupled. Second, based on our
approach, the analytical solution of the closed-loop sys-
tem can be derived. Further, owing to this analytical so-
lution, we can check in advance whether the solution is
singularity free. These features are discussed by simulat-
ing saddle-shaped trajectory tracking.

The physical parameter and controller gains are de-
tailed in Table 2, where Fi is the feedback gain for the i-th
linear subsystem, and the provided values are rounded off.
The gains are calculated as the linear quadratic regulator
with the following cost function,

Ji =
∫ ∞

0
ξ T

i ξi + v2
i dt i = 1, . . . ,4,

where all weights are set as 1 to discuss the validity of the
proposed control structure. Note that the weights of the

Table 2. Physical parameters and controller gains.

mB [kg] 0.2
mL [kg] 0.1
JB [kg m2] diag(2,2,4)×10−3

l [m] 1

F1, F4

[
−1.0 −1.7

]
∈ R

1×2

F2, F3
[−1.0 −4.4 −9.1

−11.4 −9.1 −4.4]
∈ R

1×6

cost function can be tuned properly for practical usage.
We chose the saddle shape as the reference trajectory,

xd(t) = 3cos
(

2πt
T

)
,

yd(t) = 3sin
(

2πt
T

)
,

zd(t) = 2cos
(

4πt
T

)
+2,

ψd(t) = 0,

where T is a time period.
First, we set the initial state as follows:

x(0) =
[

1,0,0,0,03,03,03,0,0,−1,03
]T

, . (18)

where 03 = [0,0,0]. From the initial state, we calculate
the initial value of the linearized state

ξ1(0) =
[ −4 0

]T
, . . . . . . . . . (19)

ξ2(0) =
[ −3 0 2.4 0 −1.9 0

]T
, . (20)

ξ3(0) =
[

0 −2.7 0 2.2 0 −1.7
]T

, (21)

ξ4(0) =
[

0 0
]T

, . . . . . . . . . . (22)

where ξi is the state of the i-th linear subsystem. Next,
we derived the solution of the linear differential equation
corresponding to the linearized subsystems as follows,

ξi(t) = exp((Ai +BiFi)t)ξi(0), i = 1, . . . ,4

where Ai,Bi are the Brunovsky canonical forms corre-
sponding to Eqs. (8) and (15)–(17). Subsequently, the
time evolution of the original state was calculated by the
property of differential flatness (for details, refer to [6,
16]). To obtain a sample of the time evolution of the origi-
nal state, the load position was calculated as the analytical
solution, as depicted in Fig. 2. Note that Fig. 2 shows the
transient response calculated analytically from the initial
state as well as the response on the reference trajectory.

Moreover, we can check the singularities during the
time evolution in advance. Fig. 3 depicts the transition
of β1 and det(β2), respectively. Each value transitions in
positive real, due to which, there is no singularity.

Next, we check the singularity when the time period
of the reference trajectory is changed. As discussed in
Section 3.3, one of the singularities is ẍLz = −g. In the
case of the saddle-shaped trajectory defined in Eqs. (19)–
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5 10 15 20
Time [s]

-3-2
-1
1
2
3
4

xLx
xLy

xLz

Fig. 2. The time evolution of the load position calculated us-
ing the analytical solution of the nonlinear differential equa-
tion with time period T = 7.

(a) The time evolution of the value of β1 := Lg01 ḣ1.

(b) The time evolution of the value of det(β2).

Fig. 3. The responses of the value for singularity check with
time period T = 7. Singularity does not exist because each
value does not cross 0.

(22), this singularity is satisfied at T =
√

32π2/g. The
magnitude of the vertical acceleration increases when the
time period T becomes faster. Therefore, the time period
T should be larger than

√
32π2/g ≈ 5.67. On the refer-

ence trajectory, the singularity condition p3 = 0 is equal
to ẍLz = −g. On the other hand, the relations between the
time period and the remaining conditions (p,Re3) = 0 and
R(3,3) = 0 are too complex to be checked analytically.
However, by considering the natural assumption that the
cable is tensioned on the smooth reference trajectory, the
load remains lower than the drone with respect to the
body-fixed frame. This implies that (p,Re3) �= 0. When
we design the reference trajectory such that ẍLz > −g,
R(3,3) is not zero because the thrust force points to-
wards the upper half-space, which cancels the gravita-
tional force. These intuitive analyses were verified nu-
merically as follows.

To evaluate the reference trajectory, the initial state was

T=7

0 0.2 0.4 0.6 0.8 1
-1
0

1

2

3

4

Normalized time
(a) The time evolution of the value of β1 := Lg01 ḣ1.

0 0.2 0.4 0.6 0.8 1
-1.0× 1014
-5.0× 1013

0

5.0× 1013
1.0× 1014
1.5× 1014
2.0× 1014

Normalized time
(b) The time evolution of the value of det(β2).

Fig. 4. These graphs show the singularity check by the value
of β1 := Lg01 ḣ1 and det(β2) with the time period variations.
The horizontal scale is normalized by time period t/T . The
trajectory in the case of T = 5 goes through a singular state.

considered on the reference trajectory. Fig. 4 shows the
values of Lg01 ḣ1 and det(β2) in one cycle with a differ-
ent T . The reference trajectory faster than T = 6 becomes
singular. The 3-dimensional plot of the reference load tra-
jectory and the position of the drone in these time periods
are depicted in Fig. 5. Note that the drone position when
it moves faster than in the case of T = 6 goes under the
reference load position. This analysis gives us an index to
choose an appropriate trajectory, but note that this anal-
ysis works on the reference trajectory. For the transient
response, the analysis is more complicated because the
conditions are a function of the linear controller and the
initial state.

Finally, we present the numerical simulation results
controlled by Eqs. (9), (10), and (14) with time period
T = 7, as shown in Figs. 6 and 7. Fig. 6 graphs a one-
cycle state response after the convergence to the reference
trajectory to observe the generation of a periodic motion.
Note that the norm constraints ‖q‖ = 1 and ‖p‖ = 1 are
satisfied, and the angular velocity of the load is (p,ω)= 0.
In Fig. 7, the flat outputs converge to zero, and hence, the
load position converges to the reference trajectory. The
deviation of the time response is defined as

hi(t)−Li(t) i = 1, . . . ,4,

where Li is the linear system response corresponding to
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(a) Perspective view.

(b) Above view. (c) Front view.

Fig. 5. Reference trajectories with a time period from 5 to
7 seconds, respectively. The solid line is the load reference
trajectory, whereas the dashed lines are the drone trajecto-
ries.

the i-th linearized system with the corresponding initial
state. The error remains zero in each graph, and therefore,
we can conclude that the coupling among the flat outputs
is adequately canceled.

5. Conclusion

In this study, we revealed that the exact linearization
method, called hierarchical linearization, is applicable to
a drone with a cable-suspended load. The proposed ap-
proach has a singularity in the input transformation to de-
couple the subsystems. A detailed analysis of the singu-
larity was conducted, and the physical interpretation of
the singular state was provided.

One of the advantages of exact linearization is that the
analytical solution of the nonlinear system can be ob-
tained. The procedure to derive the analytical solution
of the closed-loop system is demonstrated in Section 4.
Moreover, the singularity of the input transformation was
evaluated using the proposed solution. The singularity
analysis provides valuable information for designing the
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(a) Time evolution of xL.
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(b) Time evolution of q and its norm value.
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(c) Time evolution of p and its norm value.
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(d) Time evolution of ω and the value of (p,ω).

Fig. 6. Results of the numerical simulation. The one-period
data after the trajectory converges to the reference is de-
picted. (b), (c), and (d) depict that the two norm constraints
and the rotation angle around p maintain an approximately
constant value.

reference trajectory. For the selected trajectory, a numeri-
cal simulation of the trajectory tracking control based on
hierarchical linearization was conducted. Through this
simulation, we proved the validity of the proposed lin-
earization approach and that the proposed controller can
achieve trajectory tracking.
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(a) Time evolution of h1 and the deviation from the linear simulation.
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(b) Time evolution of h2 and the deviation from the linear simulation.
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(c) Time evolution of h3 and the deviation from the linear simulation.
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(d) Time evolution of h4 and the deviation from the linear simulation.

Fig. 7. Results of the numerical simulation. The virtual
output converges to zero, and its time response is equal to
the corresponding linear response.
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Appendix A. A Proof that NNN222 === 000 Equals
(((ppp,,,RRReee333))) === 000

The dynamics of the center of mass of the system is

(mB +mL)ẍc = mBẍB +mLẍL

= f Re3 − (mB +mL)ge3,

where xc is the center of mass. By substituting the relation
Eq. (7) into the second equality, the z-axis term is

(mB +mL)(ẍLz +g)−mBl p̈(3)− f R(3,3) = 0. (23)

The dynamics of xLz is

mBẍLz = mB
(
ḧ1 + z̈d

)
= mB (v1 + z̈d) = FLz −mBg,

where FLz is a force acting on xLz. From the last equality,
we get

FLz

mB
= v1 +g+ z̈d = N1.

Therefore,

N2 = (mL +mB)(ẍLz +g)+ lmB(ω,ω)p(3). . (24)

Now by calculating p̈, we get

lmB(ω,ω)p = −mBl p̈+ p× (p× f Re3). . . (25)

Finally, we transform N2 using Eqs. (25) and (23). Then,
we have

N2 = (mL +mB)(ẍLz +g)−mBl p̈(3)
+(p× (p× f Re3))(3)

= f ((p× (p× f Re3))(3)+R(3,3)) .

The vector p× (p×Re3) is depicted in Fig. 8, and this
indicates that (p× (p× f Re3))(3)+ Re3 = 0 if and only
if (p,Re3) = 0. �
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Fig. 8. Geometric relation of p, Re3, and p×(p×Re3). The
two small circles indicate the same length.
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