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To realize smart agriculture, we engaged in its system-
atization, from monitoring to harvesting tomato fruits
using robots. In this paper, we explain a method of
generating a map of the tomato growth states to mon-
itor the various stages of tomato fruits and decide a
harvesting strategy for the robots. The tomato growth
state map visualizes the relationship between the ma-
turity stage, harvest time, and yield. We propose a
generation method of the tomato growth state map, a
recognition method of tomato fruits, and an estimation
method of the growth states (maturity stages and har-
vest times). For tomato fruit recognition, we demon-
strate that a simple machine learning method using a
limited learning dataset and the optical properties of
tomato fruits on infrared images exceeds more com-
plex convolutional neural network, although the re-
sults depend on how the training dataset is created.
For the estimation of the growth states, we conducted
a survey of experienced farmers to quantify the ma-
turity stages into six classifications and harvest times
into three terms. The growth states were estimated
based on the survey results. To verify the tomato
growth state map, we conducted experiments in an ac-
tual tomato greenhouse and herein report the results.

Keywords: smart agriculture, agricultural robot, tomato
growth state map, recognition, estimation

1. Introduction

In agriculture, a decrease in the number of farmers, an
aging population, and a shortage of successors are signifi-
cant problems. In response to such urgent problems, smart
agriculture is expected to be an innovative method of uti-
lizing robot technology and information communication
technology. Some studies aiming to realize smart agri-
culture include the autonomous operation of agricultural
machinery, automation of harvesting, and monitoring of
the field environment and crops. For the autonomous
operation of agricultural machinery, Noguchi proposed a
robot farming system that utilizes intelligent robot vehi-
cles to automate farming activities from planting to sup-
plying products to consumers [1]. In addition to intel-

ligent robot vehicles, they described the importance of
simultaneous operations by developing a multiple robot
system, safety when using robots, and management sys-
tems. For the automation of harvesting, Kondo et al. de-
veloped an end-effector that could harvest a tomato clus-
ter [2]. In the results of harvesting experiments on a
high-density plant training system, the harvesting time
per cluster was 15 s, and the success rate of harvesting
was 50% (10 tomato clusters out of 20). Yaguchi et al.
developed an end-effector that grasped a fruit using grip-
pers and plucked it from the separation layer in the pedun-
cle [3]. They described the results of harvesting exper-
iments conducted on an actual farm, demonstrating that
the harvesting time was shortened by improving the har-
vesting motion. Yoshida et al. developed a robot that har-
vested a cluster of cherry tomatoes [4]. They focused
on detecting the peduncles that the robot required when
harvesting the clusters. The success rate of harvesting in
experiments at an actual farm was 95% with seven clus-
ters (19 tomato fruits out of 20 in seven tomato clusters).
For the monitoring of the field environment and crops,
Fukatsu et al. described a remote monitoring method that
responded flexibly and dynamically to changes in the field
environment for long-term field monitoring [5]. They es-
tablished field servers, which are small monitoring sen-
sor nodes, in some countries, and their effectiveness was
reported. Fukui et al. developed a robot that estimated
the volume of tomato fruits to create a database of fruit
growth [6]. The robot detected fruits using saliency-based
image processing and estimated the volume of the fruits.
Furthermore, they designed multiple indicators to evalu-
ate the precision of the estimation results. If the evaluation
results are unreliable, the position for re-measurement is
calculated. Studies aimed at realizing smart agriculture
are diversifying, and various approaches using robot tech-
nology and information communication technology have
been proposed.

Meanwhile, with the aging of agricultural workers,
quantifying the expertise of experienced farmers is a
significant concern. Choi et al. proposed a method of
quantifying the maturity stages using image analysis [7].
They followed the classification standard of the matu-
rity stages based on the color of the tomato fruit sur-
face as defined by the United States Department of Agri-
culture (USDA). Comparing the results of the proposed
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method and manual grading, the rate correctly classified
was 77.5% (93 tomato fruits out of 120). The USDA pro-
vides standards for both the maturity stages and size and
quality tolerance as a guide to support farmers in improv-
ing the quality and marketability of their crops. Quan-
tifying the maturity stages in these standards is synony-
mous with quantifying one of the farmers’ main stan-
dards. Kusui et al. proposed the Agri-Info Science plat-
form as a concrete system to address the necessity for
skill transfer in response to various food problems asso-
ciated with global population growth [8]. While many
of the deep learning methods for harvest decisions fo-
cus only on images, experienced farmers have multiple
criteria such as pruning and fruit thinning. The authors
focused on assessments based on these criteria and de-
veloped an e-learning-based support system that enables
inexperienced farmers to learn such advanced craftsman-
ship. Its effectiveness was demonstrated in an evalua-
tion experiment of the learning support system for kiwi
pruning operations. Wakamori et al. investigated the re-
lationship between daily leaf wilting and stem diame-
ter variation to estimate water stress on plants in water
stress cultivation [9]. They also indicated that deep learn-
ing estimation methods are inadequate. Instead of adopt-
ing such black-box approaches, cross-correlation analysis
was used to analyze the time lag correlation between leaf
wilt quantified by optical flow and change in stem diam-
eter as a water stress index. They demonstrated that the
analysis results were consistent with known plant water
transport mechanisms. Thus, to quantify the expertise of
experienced farmers, conducting surveys of their insights
and methods and experiments in an actual environment is
important.

Our studies on the realization of smart agriculture were
based on listening to the insights of experienced farm-
ers in cooperation with the Hibikinada Green Farm Co.,
Ltd. (hereinafter, Hibikinada Green Farm), which im-
plemented a long-term multi-stage cultivation of tomato
plants by incorporating the cultivation technology devel-
oped in the Netherlands [10, 11]. We aimed to realize a
system that uses robots to automate operations from the
monitoring of tomato plants to harvest their fruits. Fig. 1
shows an outline of this system. The robots move on a rail
installed in a tomato greenhouse. The monitoring robot
acquires the images of the cultivation area, and these data
are sent to a database in cloud computing. The states of
the tomato plants are estimated using these data. Sub-
sequently, the harvesting robot harvests only the mature
fruits. Thus, this system enables more efficient agricul-
ture.

In this study, we aimed to generate a map of the tomato
growth states that visualizes the relationship between the
maturity stages, harvest times, and yield. Experienced
farmers would designate the maturity stage of the tomato
fruits to be harvested, and the yield would be predicted
using this map. Furthermore, the harvesting robot can de-
termine a harvesting strategy based on this map.

In this paper, to generate the tomato growth state map,
we have described the generation method of the tomato

Fig. 1. Automation of monitoring the tomato plants and
harvesting the tomato fruits.

growth state map, the recognition method of the tomato
fruits, and the estimation method of the growth states
(maturity stages and harvest times). The recognition rate
(Accuracy) and detection rates (Precision, Recall, and F1-
score) of the classifiers generated using different machine
learning methods were compared. We focused on the
characteristics of tomato fruits using infrared imaging to
generate the classifiers. For the estimation method, we
consulted experienced farmers of the Hibikinada Green
Farm to decide the numbers of classifications for the ma-
turity stages and terms for the harvest times. Subse-
quently, the growth states were estimated based on the
results of the survey conducted to quantify their expertise.
The proposed method is described in Section 2, the verifi-
cation results of the tomato growth state map are detailed
in Section 3. The findings are discussed in Section 4, and
the conclusions are stated in Section 5.

2. Generation of the Tomato Growth State
Map

2.1. Outline of the Generation Method

Figure 2 shows a flowchart for the generation of the
tomato growth state map. The images (RGB, depth, and
infrared) acquired by the robot were used as input (pro-
cess (i), Fig. 2). First, pre-processing was conducted us-
ing depth imaging (process (ii), Fig. 2). Images focusing
only on tomato plants in the target cultivation area were
generated by removing the rear-row cultivation area and
background on the RGB and infrared images. Next, a
mosaic image composed of these images was generated
(process (iii), Fig. 2). Tomato fruits on the mosaic im-
age were detected (process (iv), Fig. 2), and the growth
states (maturity stages and harvest times) of the detected
fruits were estimated (process (v), Fig. 2). In addition,
the position of the detected tomato fruits in the cultivation
area was calculated using the coordinates in the mosaic
image and depth data. Subsequently, the tomato growth
state map was generated by adding the information of the
tomato fruits to the mosaic image (process (vi), Fig. 2).

In Ref. [10], we proposed a method of generating a mo-
saic image, which is a single image generated by over-
laying images with overlapping parts based on the results
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Fig. 2. Flowchart for the generation of the tomato growth
state map.

of feature point matching. As a generation condition,
the feature points extracted in the images must be distin-
guishable. However, objects (fruits, stems, leaves, etc.) in
the tomato greenhouse are crowded together so that the
matching rate is very low owing to similarities in the fea-
tures. Therefore, generating a mosaic image with a sim-
ple matching method using RGB images is difficult. The
proposed method improved the matching rate by limiting
the depth direction using infrared imaging and limiting
the search area of the feature points using the moving dis-
tance of the robot. Therefore, a mosaic image focusing on
the target cultivation area was generated. In this paper, we
present the steps to generate the tomato growth state map
from processes (iv)–(vi) (Fig. 2).

This section describes the methods of recognizing
tomato fruits and estimating their growth states. Pre-
vious studies on the recognition or detection of tomato
fruits proposed methods focusing on the color, shape, and
temperature of tomato fruits and methods using machine
learning. Teimourlou et al. proposed a method of recog-
nizing mature fruits using three color models (RGB, HIS,
and YIQ) based on 200 RGB images acquired in a tomato
greenhouse [12]. This method consists of two steps: re-
moving the background of the image and extracting the
mature fruits. The algorithm could extract 92%–96% of
mature fruits. Hatou et al. proposed a method of recog-
nizing mature and immature fruits using thermal imag-
ing [13]. To recognize the fruits in the cluster individu-
ally, they applied a method based on wire size reduction
and its effectiveness was demonstrated. Wang et al. pro-
posed a method of recognizing mature fruits using a stereo
vision system that employed the Otsu algorithm and ellip-
tic template method [14]. The success rate of recognizing
mature fruits was 99.3%, and the position of the fruits
was calculated using feature point matching. Fujiura et al.
proposed a method for recognizing mature and immature
fruits using a dichromatic 3D vision sensor [15]. This
sensor projected light of different wavelength bands and

Table 1. Comparison of previous studies.

First author Detection
(Rate [%])

Maturity
stage

Harvest
time

Fruit
position

Teimourlou
[12]

�

(92–96) 1 – –

Hatou
[13]

�
(–) 2 – –

Wang
[14]

�
(99) 1 – �

Fujiura
[15]

�

(–) 2 – �

Yamamoto
[16]

�

(88) 2 – –

the maturity stage was estimated using the difference in
reflectance at each wavelength depending on the matu-
rity stage. Yamamoto et al. proposed a method to detect
young fruits as well as mature and immature fruits us-
ing machine learning-based methods (decision tree and
X-means) [16]. The method achieved a Recall of 0.80
and Precision of 0.88.

To generate a map of the tomato growth states, we
must detect the tomato fruits and estimate the maturity
stages, harvest times, and position of the detected fruits.
Based on these factors, Table 1 shows a comparison of
some functions in previous studies. The functions in Ta-
ble 1 are described as follows: the “Detection (Rate [%])”
is whether or not the recognition or detection of tomato
fruits are possible and their results based on the evalua-
tion method of each study. The “Maturity stage” is how
many stages the detected fruit is classified under; when it
is one, only the mature fruits are classified and when it is
two, the mature and immature fruits are classified. The
“Harvest time” indicates whether or not the harvest time
is estimated for the detected fruits. The “Fruit position”
indicates whether or not the position of the detected fruit
is calculated based on the world coordinate system. In Ta-
ble 1, “�” means that the function was achieved, and “–”
means that it was not mentioned in the study. The method
proposed in this paper achieved all these functions. This
method recognizes tomato fruits regardless of the matu-
rity stages using infrared imaging and estimates the ma-
turity stages and harvest times using probability distribu-
tions quantified by combining the color value of the de-
tected fruits with the expertise of experienced farmers.

2.2. Tomato Fruit Recognition
2.2.1. Optical Properties of Tomato Fruits on Infrared

Images

We focused on the optical properties of tomato fruits
as a method of recognizing them. Some studies recog-
nized plant parts and evaluated maturity stages using the
optical properties of plants. Kondo and Monta et al. mea-
sured the spectral reflectance properties of each part of
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the plants (fruit, leaves, stems, etc.) using a spectropho-
tometer capable of measuring light from the visible spec-
trum to a wavelength of 2500 nm [17, 18]. Experimen-
tal results demonstrated that specific wavelength bands
are effective for recognizing specific plant parts. They
also reported that, as tomato fruits mature, the reflectance
from 500 to 600 nm decreases, and the reflectance around
the chlorophyll absorption band at 670 nm increases.
This indicates that the tomato fruit turns red as it ma-
tures. Li et al. classified tomato fruits into six matu-
rity stages and reported the changes in the response of
different reflection spectra to these various stages [19].
The responses change relatively significantly in the 400
to 700 nm range. Moreover, the responses in the six
maturity stages are almost the same in the near-infrared
range. Therefore, we focused on the optical properties
of tomato fruits in the near-infrared range to recognize
tomato fruits regardless of their maturity stages. Infrared
images were acquired using a Microsoft Kinect sensor
(hereinafter, Kinect), which is a time-of-flight camera that
obtains images by projecting infrared light and measuring
the time the projected light reaches an object and returns.

In addition, a known optical property of tomato fruits
is that the central part has a strong response to the pro-
jected light and the peripheral parts have a weaker re-
sponse. Ota et al. proposed a method of detecting tomato
fruits by focusing on their optical properties [20]. This
has been confirmed from experimental results of the re-
flection response of tomato fruits on the infrared image
acquired using Kinect (Appendix A). Furthermore, exper-
imental results have demonstrated that the infrared wave-
length band of Kinect is effective in recognizing tomato
fruits regardless of their maturity stage. In this proposed
method, classifiers are generated by utilizing the optical
properties of tomato fruits on infrared images.

2.2.2. Classifiers Utilizing the Optical Properties of
Tomato Fruits

Three methods were verified as classifiers generated by
utilizing the optical properties of tomato fruits on infrared
images. In the first (hereinafter, classifier 1), histograms
of oriented gradients (HOG) features were extracted from
the input image and the features were classified using a
support vector machine (SVM), which is a pattern recog-
nition model [21, 22]. The second (classifier 2) was gener-
ated by learning a five-layer convolutional neural network
(CNN) constructed by referring to the network architec-
ture of LeNet, which is the basis of the CNN [23]. The
third (classifier 3) was generated by transfer learning for
GoogLeNet, which is a 22-layer CNN that was pre-trained
using the ImageNet dataset [24, a]. We used MATLAB to
implement these classifiers.

Here, the dataset is described. Images of tomato
fruits or other objects (stems, leaves, etc.) were ex-
tracted from 50 infrared images acquired by a robot in
the Hibikinada Green Farm. Fig. 3 shows an example
of images of positive and negative data. For the posi-
tive data in Fig. 3(a), the images were extracted based

(a) Example of positive data

(b) Example of negative data

Fig. 3. Example of the dataset.

Table 2. Breakdown of the dataset.

Positive data Negative data

Training data 479 1536

Test data 205 658

Total 684 2194

on the center point of the fruits with the largest reflection
response to the infrared light. For the negative data in
Fig. 3(b), the images were extracted from parts other than
the tomato fruits on the infrared image. The resolution of
the dataset was 21× 21 pixel. It was defined as the reso-
lution at which the optical properties of the tomato fruits
on the infrared image (512×424 pixel) can be sufficiently
confirmed. A breakdown of the dataset is summarized in
Table 2. The numbers of positive and negative data were
684 and 2194, respectively. Among them, for the training
data, 479 were positive data and 1536 were negative data,
and for the test data, 205 were positive data and 658 were
negative data.

Classifier 1 was generated using the linear SVM with
the HOG features as the input. The output value in the
linear SVM was 1 (tomato fruits) or 0 (not a tomato fruit).
The HOG features were extracted by calculating the gra-
dient direction and intensity of the brightness of the input
image, creating histograms of the gradient for each cell,
and normalizing by block. The input image was divided
into blocks, and each block was composed of cells. The
dimension of the HOG features (DHOG) was calculated
using the following equation:

DHOG = NBPI
2Nblock

2Nbin, . . . . . . . . (1)

where NBPI is the number of blocks per image, Nblock is
the number of cells in a block width, and Nbin is the num-
ber of gradient directions. NBPI is calculated using the
following equation:

NBPI =

Nwidth

Ncell
−Nblock

Nblock −NBO
+1, . . . . . . . . (2)

where Nwidth is the number of pixels in the width of the in-
put image, Ncell is the number of pixels in a cell width, and
NBO is the number of cells overlapping adjacent blocks,
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Fig. 4. Comparison of accuracy by varying the Ncell and Nblock.

Fig. 5. Architecture of referencing the LeNet.

which is calculated using the following equation:

NBO =
Nblock

2
. . . . . . . . . . . . . . (3)

NBPI is rounded toward negative infinity and a valid
value only for a positive value. NBO is rounded toward
negative infinity when Nblock is one, and rounded toward
positive infinity when Nblock is one or more. In the ex-
traction of HOG features, although the ratio of width and
height in the size of the input image, block, and cell is
basically arbitrary, we defined that the ratio is the same in
this study. We fixed Nwidth and Nbin at 21 and nine, respec-
tively, and focused on Ncell and Nblock. To optimize these
parameters, we evaluated the recognition rate by varying
them. The results are shown in Fig. 4. The accuracy rep-
resents the correct rate of the classification results for the
categories (positive or negative) labeled on the test data. If
the HOG features cannot be extracted using Eq. (1) (e.g.,
Nblock is four and Ncell is six), no data exists. The high-
est accuracy is 0.965 when Nblock is three and the Ncell is
four, and Nblock is five and the Ncell is two. Here, focusing
on DHOG in these scenarios, the former is 729 and the lat-
ter is 2025 from Eq. (1). Moreover, the results are stable
when Ncell is one regardless of Nblock. Because Ncell is one
pixel, the histograms are calculated for each pixel, and
they are normalized by Nblock. Therefore, more charac-
teristics of tomato fruits on the infrared image can be ex-
tracted, and the recognition rate result is stable. However
because the histogram is created for each pixel, DHOG be-
comes large. Because the processing is faster when DHOG
is lower, we extract the HOG features with a Nblock of
three and Ncell of four.

For classifier 2, Fig. 5 shows the architecture of ref-
erencing the LeNet with the 5-layer CNN. The convo-

lutional layer (Conv.) and pooling layer (Pool.) are re-
peated twice, and finally, through the fully connected
layer (F.C.), the probability of being classified as tomato
fruits and other objects is the output. Although the sig-
moid function is used as an activation function in LeNet,
the ReLU function was used in this study. In addition, al-
though LeNet reduces the data size of each layer by sub-
sampling, max pooling was adopted in this study. For
the resolution of the images (32× 32, 28× 28, 14× 14,
10× 10, and 5× 5 pixel in Fig. 5), the number of feature
maps in this architecture (6 and 16 in Fig. 5), and the di-
mension of the fully connected layer (120 in Fig. 5), the
values of LeNet were referenced. Although the dataset is
21×21 pixel in Table 2, it was resized to 32×32 pixel to
follow the architecture of LeNet. The output was a value
in the range of 0.0 to 1.0, using the softmax function,
which was classified as tomato fruits and other objects.
The result depended on the setting of the threshold value
for the output. In this study, the threshold value was set
at 0.99. The network was trained using stochastic gradi-
ent descent with momentum with an initial learning rate
of 0.0001. The maximum number of epochs was set to 30.

For classifier 3, GoogLeNet, which is a 22-layer CNN,
was trained using ImageNet containing more than 14 mil-
lion images for general object recognition and was re-
trained using the training dataset shown in Table 2 for
tomato fruit recognition. The input image was resized
from 21× 21 to 224× 224 pixel, adjusted to be the same
as GoogLeNet. The output had a value in the range of 0.0
to 1.0 as with classifier 2. The threshold value in classi-
fier 3 was set to 0.99. The network learning method was
the same as for classifier 2.

Here, for the threshold value, if the threshold value
was changed, the results were changed. In this study, the
threshold value was determined by prioritizing the result
of the F1-score in the detection method described in Sec-
tion 2.2.3.

2.2.3. Evaluation of the Classifiers
Two approaches were used to evaluate the three clas-

sifiers: the recognition rate (focusing only on Accuracy)
when using the test data in Table 2, and the detection rates
(focusing on the Precision, Recall, and F1-score) when
detecting tomato fruits using the images acquired at the
Hibikinada Green Farm. The recognition rate was the
correct rate of the classification results for the categories
(positive or negative) labeled on the test data. The de-
tection method for the detection rates is shown in Fig. 6.
The infrared image (521× 424 pixel) was the input (pro-
cess (i), Fig. 6), and the sliding window method was
adopted to detect tomato fruits in the input image (pro-
cess (ii), Fig. 6). With this method, a small region was
scanned on the input image for each fixed pixel, and a
classification result (tomato fruits or other objects) was
output for each small region. Here, the number of fixed
pixels when scanning a small region was called a step.
The detection rates depended on the number of steps. In
this study, we set the number to 1 pixel (here, called the
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Fig. 6. Flowchart of tomato fruit detection.

entire search) to evaluate the classifiers, although the com-
putation times were large. The resolution of the small re-
gion was 21×21 pixel, which was the same as the dataset.
As shown in process (ii) of Fig. 6, one fruit may have two
or more recognition points. Therefore, we adopted the
mean shift method, which is an efficient and robust so-
lution to the mode search problem, to converge two or
more recognition points into one recognition point (pro-
cess (iii), Fig. 6) [25].

Table 3 shows the input dimensions of each classifier
and the results of the recognition and detection rates. Ac-
curacy was the result when the test data in Table 2 was
used, and Precision, Recall, and F1-score were the re-
sults when 30 infrared images were used (test data and
the 30 infrared images were different). The most accu-
rate as well as the highest F1-score, which had a trade-
off relationship with Precision and Recall, was classi-
fier 1. In this study, 50 infrared images were used to create
the dataset, although neural network with deep layers re-
quire more training data [a]. Therefore, when the entire
search was performed, the unlearned data was the input,
and the detection rates became lower than the recognition
rate. Moreover, these results indicated that high recogni-
tion and detection rates in classifier 1 could be obtained
even with a limited dataset and simple pattern recognition
model by focusing on the optical properties of the tomato
fruits and extracting the characteristics in advance. In this
study, classifier 1 was used as a method for recognizing
the fruits by considering the recognition rate, detection
rates, and input dimension.

2.3. Growth State Estimation
2.3.1. Survey of Experienced Farmers

The growth states (maturity stages and harvest times)
were added to the mosaic image based on the results
of the surveys of experienced farmers at the Hibikinada
Green Farm. These farmers can predict the yield in the
tomato greenhouses based on the tomato growth state map
by designating the maturity stages of the tomato fruits to
be harvested. Moreover, they can create a shipping plan
based on the demand forecasts from their clients and ad-
just production to reduce food loss by obtaining the har-
vest times for the fruits from this map.

Table 3. Comparison of the results in each classifier.

Classifier
(Dim.)

Recognition
rate

Detection rate

Accuracy Precision Recall F1-score

1 (769) 0.965 0.934 0.775 0.847
2 (1,024) 0.931 0.711 0.769 0.739
3 (50,176) 0.957 0.651 0.610 0.630

∗1Maturity stage: Green, Breakers, Turning, Pink, Light Red, Red
∗2Harvest time: 1st week, 2nd week, 3rd week, 4th week

Fig. 7. Examples of images used in the survey.

The numbers of classifications for the maturity stages
and terms for the harvest times were determined by dis-
cussions with experienced farmers. The USDA has cate-
gorized the maturity stages into six classifications based
on the color of the fruit surface: “Green,” “Breakers,”
“Turning,” “Pink,” “Light Red,” and “Red.” Choi et al.
used these as an index to assess the maturity stages, and
Li et al. used them to investigate the response of the re-
flectance spectra [7, 19]. We also focused on these six ma-
turity stages. Next, the harvest times are described. The
tomato growth state map in this study focused on the area
(80–120 cm from the ground in height) where the work-
ers can easily harvest the fruits. The harvest times within
this area are known to the farmers from the 1st to the 2nd
weeks. However, fruits are still harvested even after these
two terms; therefore, the harvest times are divided into
four terms: the 1st, 2nd, 3rd, and 4th weeks.

We conducted the survey with the cooperation of nine
experienced farmers at the Hibikinada Green Farm to
quantify the growth states based on their expertise.

In this survey method, the experienced farmers were
asked to select the maturity stages and harvest times
that they considered suitable for the fruits in the images
(Fig. 7). For example, for fruit number one in Fig. 7, the
experienced farmer selected Breakers for maturity stage
and 1st week as harvest time. In this survey, we asked nine
experienced farmers for their insights and used 50 images
existing 684 fruits in total (each image was structured as
shown in Fig. 7).
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Fig. 8. Example of survey results.

2.3.2. Survey Results and Their Quantification

The color value of the tomato fruits on the images used
in the survey was linked to the survey results of expe-
rienced farmers. Fig. 8 is an example showing the sur-
vey results for the maturity stages of respondents A, B,
and C for each tomato fruit. The results are summarized
by defining the color value on the horizontal axis and the
frequency of the number of respondents on the vertical
axis. Here, the hue on the horizontal axis is normalized
from 0.0 to 1.0. For example, for fruit number one in
Fig. 8, all respondents selected Red, so the frequency of
Red was three for hue 0.00.

The survey results for the maturity stages and harvest
times are shown in Figs. 9(a) and 10(a), respectively.
There were apparent false answers in this survey, e.g.,
Green as selected for mature fruits. Therefore, to quantify
the expertise of experienced farmers using these results,
we had to extract only the valid data. In this study, the
frequency of the number of respondents as valid data was
defined as one-third or more of the total number of respon-
dents, i.e., three or more. In this definition, for the harvest
times, since the frequency of selecting the 4th week was
low, it was redivided into three terms: 1st, 2nd, and 3rd
weeks.

The probability distribution of each valid data at each
maturity stage and harvest time was calculated based on
the probability density function f (x), as follows:

f (x) =
1√

2πσ2
exp

(
− (x−μ)2

2σ2

)
, . . . . (4)

where x is the color value (hue), μ is the average of
valid data at each maturity stage or harvest time, and σ
is their standard deviation. The analysis results of the ma-
turity stages and harvest times are shown in Figs. 9(b)
and 10(b), respectively. The maturity stages and harvest
times for the detected fruits were estimated by the ranges
using points intersections of the adjacent probability den-
sity functions for each maturity stage and harvest time.

(a) Results of maturity stages in this survey

(b) Probability distribution at each maturity stage

Fig. 9. Results of the maturity stages.

(a) Results of harvest times in this survey

(b) Probability distribution at each harvest time

Fig. 10. Results of the harvest times.
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Fig. 11. Estimation method of maturity stages and harvest times.

That is, the hue of each pixel in the detected fruit im-
age was inputted into the probability density function of
each maturity stage and each harvest time, and those with
the highest values are determined to be the maturity stage
and harvest time for the pixel. However, for Red and
Green in the maturity stages and the 1st and 3rd weeks
in the harvest times, to decide the thresholds in both ends,
we used 10σ (the quantification limit) of each probabil-
ity density function. Here, since the hue was normalized
from 0.0 to 1.0, the left end of Red and the 1st week were
negative, and one was added to these values.

2.3.3. Estimation Method
Figure 11 shows a method to estimate the maturity

stages and harvest times: “Term 1,” “Term 2,” and
“Term 3” represent the 1st, 2nd, and 3rd weeks, respec-
tively. The region in which the fruits were detected was
used as an input image (process (i), Fig. 11), and the im-
age was analyzed for each pixel based on the probabil-
ity distribution described in Section 2.3.2 (process (ii),
Fig. 11). The resolution of the input image was 10 ×
10 pixel based on the center coordinates of the detected
fruits. This was because 10× 10 pixel was half the reso-
lution of the fruit area (21× 21 pixel) on the image, con-
sidering that the target fruits overlapped with other fruits
in the clusters. The hue of each pixel was inputted to the
probability density function of each maturity stage and
each harvest time, and the maturity stage and harvest time
at which the value was the highest were the classification
results of the pixel. When the hue as an input fell outside
the threshold of the maturity stage and harvest time, i.e., if
it exceeded the quantification limit, that pixel was consid-
ered to be noise. The results analyzed for each pixel were
constructed into a histogram, and the one with the high-
est frequency was used as the maturity stage and harvest
time of the fruit (process (iii), Fig. 11). In the histogram
of the fruits in Ex. 1 of Fig. 11, the results indicated that
the distribution was high for Red as the maturity stage and
Term 1 as the harvest time.

3. Evaluation of the Tomato Growth State Map

To evaluate the effectiveness of the tomato growth state
map, we conducted experiments at the Hibikinada Green
Farm from July 6 to August 4, 2020, targeting 30 tomato
plants. The map was generated before harvesting work on
July 6, 2020, and the results are reported in this paper for
that date. A part of the tomato growth state map generated
on July 6, 2020 is shown in Fig. 12. This map was the re-
sult of tomato fruit detection and growth state estimation
performed on a mosaic image composed of 50 images.
The illuminance was measured every time the image was
acquired, and the average illuminance in the experiments
was 0.9k lx and the standard deviation was 0.4k lx. In
Fig. 12, the growth states (“M.S.” and “H.T.” mean the
maturity stage and harvest time, respectively) and the po-
sition (“Pos.” indicates the x, y, and z coordinates in the
world coordinate system; the unit is meter) are clearly
shown for three representative fruits among the detected
fruits, but all the detected fruits have the same informa-
tion.

Table 4 shows the detection rates (Precision, Recall,
F1-score) and the estimation results for the maturity
stages and harvest times. In this map, 136 tomato fruits
were confirmed and 104 could be detected. The number
of false recognition points was 11. For the detection rate
results, the F1-score was 0.829. The maturity stages and
harvest times of the detected fruits (104 fruits) were esti-
mated. Table 5 shows a comparison of the estimation re-
sults and actual number of harvested fruits. “Estimation”
is the estimation results for the proposed method and “Ac-
tual” is the actual results. Additionally, the term 4th week
is deemed invalid, as described in Section 2.3.2. However,
since there was one scenario in the actual results, this term
was added to Table 5. For the “Yield,” we compared the
number of actual harvested fruits and the estimation re-
sults based on the maturity stages Pink as designated by
experienced farmers on July 6, 2020. The Yield of the Es-
timation (53, Table 5) was the total number of Pink (14,
Table 4), Light Red (24, Table 4), and Red (15, Table 4)
tomato fruits in the tomato growth state map. For the har-
vest times, we compared the estimation results and actual
harvest times based on the date when the tomato growth
state map was generated (July 6, 2020) by recording the
growth states of the detected fruits after this date.

4. Discussion

4.1. Comparison with Previous Studies

Table 6 shows the results of this method for the func-
tions mentioned in Section 2.1. “Detection (Rate [%])”
refers to the F1-score in Table 4. For the six classifica-
tions in the “Maturity stage,” they represent Green, Break-
ers, Turning, Pink, Light Red, and Red as defined by the
USDA. To generate the tomato growth state map, this pro-
posed method achieved all the functions. In particular,
this study contributed to achieving the estimation of har-
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Fig. 12. Tomato growth state map.

Table 4. Results in the tomato growth state map.

Detection rates

Precision 0.904
( 104

115

)
Recall 0.765

( 104
136

)
F1-score 0.829

Maturity stages

Green 32

Breakers 5

Turning 14
Pink 14

Light Red 24

Red 15

Harvest times

1st week 66
2nd week 20

3rd week 18

Table 5. Comparison of estimation results and the actual
number of harvested fruits.

Estimation Actual

Yield 53 48

1st week 66 65
2nd week 20 38
3rd week 18 0

4th week – 1

vest time, which could not be achieved by previous studies
(Table 1).

4.2. Comparison of Detection Results and Actual
Harvest

In the experiments, 30 tomato plants were targeted,
and 205 tomato fruits were confirmed among the tomato
plants. However, 136 tomato fruits were confirmed in
the tomato growth state map. This was because of the
mosaic image generation method. Frequently, a mosaic
image was generated using images captured at a loca-
tion at which the distance from the camera to the ob-

Table 6. Evaluation of the proposed method.

Detection
(Rate [%])

Maturity
stages

Harvest
times

Fruit
position

Proposed
method

�
(83) 6 � �

Fig. 13. Existence of the occlusion of tomato fruits depend-
ing on the image acquisition position.

ject is sufficiently large. In contrast, in the tomato green-
house, the distance from the camera to the tomato plants
(tomato fruits, leaves, stems, etc.) was relatively close,
and this distance was not constant. Therefore, when the
images were overlaid, they had discontinuities between
them [10]. In addition, since the mosaic image used a
single-viewpoint image, some fruits could not be con-
firmed in the image owing to occlusion between fruits in
the tomato clusters or owing to leaves or stems. How-
ever, the mosaic image was generated using images cap-
tured at adjacent points and with overlapping regions, i.e.,
multi-viewpoint images were acquired for certain tomato
fruits or clusters. Fig. 13 shows the scenario in which
images were acquired at positions P1 and P2. Figs. 13(i)
and (ii) indicate the viewpoints of the cultivation area in
the tomato greenhouse from the front and top views, re-
spectively. For position P1, fruits number one to three of
the center tomato cluster in Fig. 13(iii) were confirmed.
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In contrast, for position P2, all the tomato fruits, i.e.,
fruits numbers one to five of the center tomato cluster in
Fig. 13(iv), were confirmed.

Therefore, we examined the actual tomato fruits and
detected tomato fruits in each of the 50 images used to
generate the mosaic image for this study. Each fruit in
these images was identified and counted: 198 fruits were
identified out of an actual count of 205, while 165 fruits
out of the 198 were detected with the proposed method.
Seven fruits could not be completely confirmed owing to
occlusion. We can conclude that when generating the mo-
saic image, each fruit can be identified based on the po-
sition information of the fruits, and information on the
hidden fruits is then added to the map.

4.3. Estimation Results
The total number of fruits at the Pink maturity stage

or higher designated by the experienced farmers was 53,
whereas the actual fruits harvested were 48. The work-
ers harvest each tomato fruit in approximately 4 s, but the
time to judge its maturity stage is only a moment. There-
fore, in some scenarios, the tomato fruits to be harvested
are missed, or a decision to not harvest it is made. The
actual number of harvests without variation can be esti-
mated using this estimation method based on the expertise
of experienced farmers.

For harvest time, 66 fruits were estimated to be the 1st
week whereas 65 fruits were actually harvested so that the
estimated results were equivalent to the actual results. In
contrast, for the 2nd and 3rd weeks in Table 5, the esti-
mated result was 20 fruits for the 2nd week and 18 fruits in
the 3rd week, but in the actual harvest, there were 38 fruits
for the 2nd week. In the survey to quantify the expertise
of experienced farmers, we asked them to make decisions
based on the images; however, they also cultivated tomato
plants in consideration of daily changes in temperature,
humidity, and other factors. Therefore, we observed that
they had difficulty making an estimation only by judging
the images.

In addition, one fruit was harvested in the 4th week
and it required four weeks to attain maturity. Thus some
tomato fruits grow irregularly. On the other hand, almost
all of the tomato fruits from 80 to 120 cm from the ground
were harvested within two weeks based on the date when
the tomato growth map was generated. The position of
the tomato fruits on the map and harvest times may be
closely related. In the future, we will propose an esti-
mation method that considers images and environmental
factors such as temperature and humidity, as well as focus
on the position of tomato fruits, to clarify the relationship
between fruit position and harvest time.

5. Conclusion

In this study, we aimed to realize a system that uses
robots to automate farming processes by monitoring the
growth states to harvest tomato fruits. The generation

method for a map of the tomato growth states, used for
the growth management of tomato plants and decision of
harvesting strategies for robots, is described in this paper.
The tomato growth state map was evaluated through ex-
periments in an actual tomato greenhouse, and we demon-
strated its effectiveness.

For tomato fruit recognition, we demonstrated that a
simple machine learning method with a limited learning
dataset exceeded the recognition results of the more com-
plicated CNN using the optical properties of tomato fruits
on infrared images. Although the sliding window method
was applied to evaluate these classifiers, the method is in-
ferior to other deep learning detection methods in terms of
computation times [26, 27]. To implement the proposed
method in the system, we must consider the computation
times.

For growth state estimation, the maturity stages and
harvest times were quantified based on a survey of ex-
perienced farmers. The proposed method proved to be ef-
fective for short-term estimations (the number of harvests
on a certain day and the harvest time of the 1st week). In
addition, we observed that even experienced farmers have
difficulties estimating the long-term state of the fruits and
harvest times for the 2nd week or 3rd week when using
only image information. Further studies are underway to
analyze both the images and environmental factors (tem-
perature, humidity, etc.) and position of the tomato fruits
to evaluate fruit growth states for both short- and long-
term estimations. In addition, in the estimation method,
the highest frequency of growth state was used as the out-
put result from the histogram of each pixel in the input
image, but this method could not utilize the distribution
of the histogram. A future task we must consider is an
estimation method using the distribution of each pixel on
the input image.
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Fig. 14. Outline and evaluation method of the experiments
to investigate the reflection response of tomato fruits.

Appendix A. Reflection Response of Tomato
Fruits on Infrared Images

This appendix describes the experiments conducted to
investigate the reflection response of tomato fruits to the
infrared light projected by Kinect. In these experiments,
we investigated the reflection response when the maturity
stages were changed and the distance between the Kinect
and tomato fruits was changed.

The outline and evaluation method for the experiments
are shown in Fig. 14. The experiments were conducted
one at a time with tomato fruits placed on a desk. The
distance between the tomato fruits in the target cultivation
area and the Kinect mounted on the robot was between 60
to 80 cm when the robot moved on rails in the tomato
greenhouse. Therefore, for the distance d between the
tomato fruits and the Kinect in Fig. 14(b), three scenarios
were considered: 60, 70, and 80 cm. For each distance,
30 tomato fruits were used: five tomato fruits each for six
different maturity stages (Green, Breakers, Turning, Pink,
Light Red, and Red).

To evaluate the reflection response, the 21×21 pixel re-
gion centered on the middle of the tomato fruit in the im-
age, which was the position that responded most strongly
to infrared light, was extracted from the infrared image
(processes (i) and (ii), Fig. 14). Here, 21× 21 pixel was
the resolution of tomato fruits when d was 60–80 cm.
With a horizontal line (0◦) that passed through the cen-
ter point of the extracted image and lines that were tilted
by 45◦, 90◦, and 135◦ from the horizontal line, the pixel
rows corresponding to the four lines were extracted (pro-
cess (iii), Fig. 14). The extracted pixel rows were used
to evaluate the response of tomato fruits to the infrared
image (process (iv), Fig. 14). Here, the data type of the
infrared image acquired by Kinect was uint (unsigned in-
teger) 16, but for convenience, by normalizing from 0.0
to 1.0, this value was used as the response for each posi-
tion of the pixel row.
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(a) Darkroom

(b) Tomato greenhouse

Fig. 15. Response results of each pixel row for six different
maturity stages at a d of 60 cm.

Experiments were conducted in two places, i.e., in a
darkroom and in a tomato greenhouse, to confirm the
changes in the response owing to the difference in the ef-
fect of ambient light. The illuminance in the darkroom
was 0.0 lx, and the illuminance in the tomato greenhouse
was 8.2k lx. The illuminance in the tomato greenhouse
was the average of 90 image acquisitions (six (maturity
stages) × five (number of tomato fruits) × three (d)), and
the standard deviation of 0.7k lx.

Figure 15 shows the response results of each pixel

(a) d = 60 cm

(b) d = 70 cm

(c) d = 80 cm

Fig. 16. Response results for each maturity stage when the
d changed in the darkroom.

row for six different maturity stages at the d of 60 cm.
The response results for each pixel row in Fig. 15 were
the average value for each position of five tomato fruits.
Figs. 15(a) and (b) show the results for the darkroom and
greenhouse, respectively. Fig. 16 shows the response re-
sults of each maturity stage of the tomato fruits in the
darkroom, and Fig. 17 shows the results in the tomato
greenhouse for a changing d. The response results at each
maturity stage in Figs. 16 and 17 are the average values at
each position of all pixel rows for five tomato fruits.

The figures indicate that the response to infrared light
exhibited the same tendencies regardless of the maturity
stages of the tomato fruits in Fig. 15, i.e., the response at
the center of the fruits was high and the surrounding area
was weaker than the center of the fruits. In addition, under
the conditions of these experiments, we confirmed that the
same tendency in reflection response in both the darkroom
and tomato greenhouse. Figs. 16 and 17 indicate that the
intensity of reflection response changed, but the transition
of reflection response did not change even if the distance
between tomato fruits and the Kinect changed.
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(a) d = 60 cm

(b) d = 70 cm

(c) d = 80 cm

Fig. 17. Response results for each maturity stage when the
d changed in the tomato greenhouse.
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