
Nguyen, A. et al.

Paper:

Fast Euclidean Cluster Extraction Using GPUs
Anh Nguyen∗, Abraham Monrroy Cano∗, Masato Edahiro∗, and Shinpei Kato∗∗

∗Graduate School of Informatics, Nagoya University
Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan

E-mail: {anh, amonrroy, eda}@ertl.jp
∗∗Graduate School of Information Science and Technology, The University of Tokyo

7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
E-mail: shinpei@pf.is.s.u-tokyo.ac.jp

[Received October 21, 2019; accepted February 20, 2020]

Clustering is the task of dividing an input dataset into
groups of objects based on their similarity. This pro-
cess is frequently required in many applications. How-
ever, it is computationally expensive when running
on traditional CPUs due to the large number of con-
nections and objects the system needs to inspect. In
this paper, we investigate the use of NVIDIA graph-
ics processing units and their programming platform
CUDA in the acceleration of the Euclidean clustering
(EC) process in autonomous driving systems. We pro-
pose GPU-accelerated algorithms for the EC problem
on point cloud datasets, optimization strategies, and
discuss implementation issues of each method. Our
experiments show that our solution outperforms the
CPU algorithm with speedup rates up to 87X on real-
world datasets.

Keywords: Euclidean clustering, GPGPU, point cloud,
autonomous driving systems

1. Introduction

A point cloud is a data structure containing a large num-
ber of 3D points. These can be obtained using 3D scan-
ners like LiDAR [a]. Point clouds are important resources
for autonomous driving systems, as they contain informa-
tion on the driving environment such as locations of ob-
stacles or road signs. However, processing unorganized
point clouds is computing-intensive due to the number
of points. To reduce the time to process point clouds,
we can use a method called clustering. This method di-
vides a point cloud into distinct groups of points called
clusters based on their similarities. In this paper, we use
the Euclidean distance to determine the similarities: when
the Euclidean distance between two points is less than a
threshold, they belong to the same cluster. Fig. 1 shows a
result of the Euclidean clustering (EC) on a point cloud.
This EC plays an important role in various object detec-
tion applications, but it is also a computing-intensive task.
Its long execution time is not appropriate for current au-
tonomous driving systems since modern 3D scanners used

Fig. 1. The Euclidean clustering on the point cloud dataset.

by those systems generate high-resolution point clouds
at high frequencies. Failing to perform the clustering on
them quickly may result in errors.

The EC problem described above can be solved by a
graphical approach. In this approach, we represent a point
cloud as a graph in which every point is a vertex and edges
connect two vertices with distances less than the thresh-
old. The EC problem then becomes identifying all con-
nected components of the graph. This is known as the
connected-component labeling (CCL) problem. The CCL
problem can be solved by data-parallel algorithms such as
the ones proposed by Hawick et al. [1] or Komura [2].

In this paper, we study the use of NVIDIA graphics
processing units (GPUs) and their programming platform
named Compute Unified Device Architecture (CUDA) [b]
that converts point clouds into graphs and uses them to
perform a fast EC on the point cloud dataset. Our ap-
proach leverages features of NVIDIA GPUs including
high memory bandwidth and fast on-chip memory to ac-
celerate the clustering process. We also conducted experi-
ments to evaluate the performance of our solutions on our
synthetic datasets and real-world datasets.

In summary, our paper makes the following contribu-
tions.

1. We present designs and implementations GPU-
accelerated algorithms for the EC problem on point
cloud datasets.

2. Our algorithms’ performance is compared with each
other and with the algorithm implemented in the
Point Cloud Library (PCL) via experiments on syn-
thetic and real-world datasets.

548 Journal of Robotics and Mechatronics Vol.32 No.3, 2020

https://doi.org/10.20965/jrm.2020.p0548

© Fuji Technology Press Ltd. Creative Commons CC BY-ND: This is an Open Access article distributed under the terms of
the Creative Commons Attribution-NoDerivatives 4.0 International License (http://creativecommons.org/licenses/by-nd/4.0/).

http://creativecommons.org/licenses/by-nd/4.0/

Fast Euclidean Cluster Extraction Using GPUs

3. We also analyze the impact of factors of a point cloud
on the performance of our algorithms.

4. Based on experimental results, we discuss the po-
tential and the remaining problems of the proposed
algorithms.

The rest of this paper is organized as follows: Section 2
reviews previous approaches to the EC problem we are
working on. Section 3 describes the CPU-GPU system
used in this paper. Our approaches are explained in Sec-
tion 4 while experiments are described in Section 5. Sec-
tion 6 discusses lessons we learned from this work. Fi-
nally, the conclusion is presented in Section 7.

2. Related Work

The problem we described in Section 1 is a sub-
problem of the general 3D point cloud segmentation prob-
lem. It has been studied extensively over decades, re-
sulting in the development of various segmentation tech-
niques such as [3–6]. These techniques target specific
cases of the clustering problem and attempt to extract
cluster information from point clouds efficiently and pre-
cisely with minimum requirements of the input parame-
ters. Other methods focus on the clustering process in
systems with low computational demands. For example,
the range image-based segmentation technique proposed
by Bogoslavskyi et al. [7] or Moosmann et al. [8] creates a
range image from the input 3D point cloud and segments
pixels of the image. However, their applications are lim-
ited to specific cases due to assumptions about the struc-
ture of the input point cloud.

The presence of the threshold Euclidean distance dth al-
lows us to use scan line [9] to solve the EC problem. This
algorithm propagates the label of each point to its neigh-
bors using a process similar to the breadth-first search
(BFS). The key point of this algorithm is the assumption
that the input point cloud is composed of elliptical layers.
Under that assumption, the neighbor search is performed
by examining points from consecutive layers, rather than
the whole point cloud. Nevertheless, in general, we have
no idea about the structure of the input point cloud. If the
point cloud is not composed of elliptical layers, scan line
will not work.

General point clouds may require clustering techniques
that make no assumption about their inner structure.
DBSCAN [10] appears to be a good choice in such cases.
This algorithm also runs a BFS-like process to propagate
the label of each point to its neighbors. The neighbor
search is performed by an R∗-tree [11]. DBSCAN de-
tects noise by examining the number of a point’s neigh-
bors. This algorithm has the computational complex-
ity O(n× log(n)), and it has demonstrated its efficiency
in discovering clusters with arbitrary shapes from large
datasets. The Euclidean cluster extraction (ECE) algo-
rithm presented by Rusu [12] is similar to DBSCAN.
The major difference is that ECE, unlike DBSCAN, does
not identify noise during the label propagation step. In-

stead, clusters that have less than a specific number of
points are filtered out after that step. Besides, this
algorithm uses a kd-tree [13] to organize points and
perform the neighbor search. ECE has the computa-
tional complexity O(n × log(n)), and it is implemented
in the PCL library [14], one of the most popular li-
braries for processing point clouds. Despite being effi-
cient and simple, ECE executes poorly even on high-end
machines. A GPU-based version of ECE is implemented
in the same library by Buys and Rusu as a class named
pcl::gpu::EuclideanClusterExtraction. This class uses a
GPU-based octree to accelerate the neighbor search step
of ECE but leaves the rest of the clustering to the CPU.
The code, however, is incomplete. It contains runtime
errors and its performance is worse than its CPU coun-
terparts. Besides, in many cases, its results are incorrect
compared with the ones generated by the CPU alone.

In this paper, we propose several fast GPU-based ap-
proaches for the EC problem in general point clouds. Our
techniques leverage features of modern GPUs to acceler-
ate the clustering process. Additionally, we investigate
the impact of the inner structure of point clouds on the
performance of our algorithms.

3. The Architecture of NVIDIA GPUs and
CUDA

GPUs are widely used as co-processors for CPUs. An
NVIDIA GPU is composed of a scalable array of stream-
ing multiprocessors (SM), which can execute a number
of GPU threads concurrently. GPU threads are organized
into warps, blocks, and grids. Each warp contains 32 GPU
threads on the same SM. Multiple warps form a block and
multiple blocks form a grid. There are several types of
GPU memory, but in this paper we focus on three major
types: the global memory, the shared memory, and the
registers. The global memory has the largest capacity and
is accessible for all GPU threads. Though it also has the
highest latency, the access to the global memory can be
enhanced by the coalesce constraint: when threads in a
warp access addresses that fall within the same aligned
transaction, their accesses are grouped into one transac-
tion and the throughput is increased. The shared memory
is an on-chip memory with higher bandwidth and lower
latency memory than the global memory. However, it is
small and only available for threads in the same block.
Finally, the register is the fastest GPU memory type, but
its numbers per block are limited and cannot be shared
among different threads.

To harness the computing power of the NVIDIA GPUs,
developers may use CUDA, a parallel computing platform
and programming model for NVIDIA GPUs. A program
written in CUDA has two parts: the host part executed by
the CPU, and the kernel part handled by the GPU. The
host side allocates buffers on the GPU global memory for
the input and output data and launches GPU kernels to re-
quest the GPU to do specific tasks. Blocks of threads are
distributed to available SMs so GPU threads in each block

Journal of Robotics and Mechatronics Vol.32 No.3, 2020 549

Nguyen, A. et al.

Table 1. Notation list.

Notation Description
P The array of input points
C The array storing labels of points
dth The threshold of the EC clustering

d(p,q) The distance between point p and q
|S| The number of elements in a set S

run concurrently to finish the task. Input/output data can
be made accessible to the GPU/CPU via explicit memory
copies between the host and the GPU memory, or via di-
rect access with the unified memory. CUDA also provides
atomic functions to prevent GPU threads from race con-
ditions when they are working on the same GPU memory
area.

4. Approaches

In this section, we explain our three approaches for the
EC problem using NVIDIA GPUs and CUDA C: vertex-
based, edge-based, and matrix-based. Here we assume
the GPU memory is large enough to hold both the point
cloud and data structures to be created. All three methods
take a point cloud P composed of n points as an input, and
output an array C containing labels of every point from the
input. P is copied to the GPU global memory in advance.
Initially, each point is given a unique label, which is equal
to the index of the point in P, i.e., C[i] = i.

Table 1 lists all frequently used notations through this
section.

4.1. The Vertex-Based Method
In this method, we first build an undirected graph in the

form of an adjacency list from the point cloud. There-
after, we propagate the labels of each point to all of its
neighbors.

4.1.1. Data Structures
We use two integer arrays for representing the adja-

cency list: the starting locations of neighbor lists S and
the indices of neighbors N. The indices of neighbors of
a vertex i can be accessed by traversing from N[S[i]] to
N[S[i+1]−1].

4.1.2. Algorithms
The first stage, building the adjacency list, is described

in Algorithm 1.
The exclusive scan [15] on S produces an array contain-

ing the writing location of each GPU thread in the neigh-
bor list N. It also determines the number of entries in N
for the host side to allocate enough GPU memory for the
output of this step.

We use the vertex-based CCL algorithm [1] for the sec-
ond stage. This algorithm propagates labels of vertices

Algorithm 1 Building an adjacency list using the GPU.
1: Allocate the integer array S of |P| entries.
2: Launch a GPU kernel of n threads. Thread i counts the num-

ber of neighbors of the point P[i] and writes that number to
S[i].

3: Perform an exclusive scan on S.
4: Allocate the integer array N of S[n] entries.
5: Launch a GPU kernel of n threads. Thread i write the indices

of neighbors of the point P[i] to N at locations starting at S[i].

in the graph to their neighbors in parallel. To avoid con-
flict when multiple GPU threads try to update the label
of one point, this algorithm uses the CUDA’s atomicMin
function. This function ensures that all points receive the
smallest possible label. It also helps GPU threads avoid
the circular label assignment, in which two neighbors A
and B keep exchanging their labels back and forth.

4.1.3. Implementation and Optimization
We use the exclusive scan provided by Thrust [c] for

the first stage. For the second stage, the parallel vertex-
based CCL algorithm uses a variable md located in the
global memory to record the state of the clustering. To
prevent GPU threads from accessing md frequently, we
use two more variables mt and mb. mt is a local variable
defined by every thread while mb is located in the shared
memory. Both of them are set to false prior to the loop on
the adjacency list. If a thread detects changes in labels,
it sets mt to true. After that, if a thread has mt = true, it
sets mb to true. At the end of the kernel execution, md is
only changed to true by the thread 0 in each block when it
finds that mb = true. Coalesced access is used intensively
to maximize global memory bandwidth.

4.1.4. Implementation Issues
First, CUDA’s atomicMin may serialize the accesses to

the label of the same vertex and slow down the cluster-
ing process. Second, accesses to arrays N and C under-
utilize the global memory bandwidth since they are non-
coalesced. Third, the workload among GPU threads may
not be balanced if the sizes of the vertices’ adjacency lists
differ. In such cases, some of the GPU threads may con-
clude their work earlier than others do and are wasted dur-
ing the rest of the kernel. Finally, branch divergence may
occur when threads in a block follow different branches
when comparing the label of a vertex with the labels of its
neighbors.

4.2. The Edge-Based Method
This method is also composed of two stages: building

an edge-set from the point cloud and the clustering being
run on the edge-set.

4.2.1. Data Structures
The edge set E is an array each element of which is a

pair of indexes of points that are neighbors to each other.

550 Journal of Robotics and Mechatronics Vol.32 No.3, 2020

Fast Euclidean Cluster Extraction Using GPUs

We use an array of CUDA’s int2 for E in our implementa-
tion. int2 is a vector data structure of CUDA derived from
the basic integer type. Its components are aligned and are
accessible via the fields x and y. We use it to store the
indices of two vertices of each edge during the clustering.

4.2.2. Algorithms
The algorithm for the first stage of this method is simi-

lar to Algorithm 1 with the following changes.

• In steps 2 and 5, only neighbors whose indices are
larger than i are counted. Others are ignored.

• In step 4, an array E of type int2 instead of type int
is allocated in the GPU memory.

• In the final step, each GPU thread writes both the
index of the point it is tasked with and the neighbor
of that point to E.

In the second stage, we apply the edge-based CCL al-
gorithm [1] to adjust labels of points in parallel. Again,
the CUDA’s atomicMin function is used by GPU threads
to avoid circular label assignments and conflicts between
GPU threads. The algorithm ends when the system
records no changes in the labels anymore.

4.2.3. Implementation and Optimization
We use the same technique as the vertex-based method

with the shared variable mb to avoid frequent access to the
GPU global memory during the clustering stage. Besides,
accesses to the point cloud P in the first stage and the edge
set E in the second stage are coalesced again.

4.2.4. Implementation Issues
First, access to the label array C in the second stage

is non-coalesced and may reduce the bandwidth of the
global memory. Second, similar to the vertex-based
method, the atomicMin may serialize operations of a large
number of GPU threads and cause performance degrada-
tion.

4.3. The Matrix-Based Method
Both the previous two methods face a similar problem:

the performance degradation caused by the atomicMin
function. In the matrix-based approach, we aim to re-
duce the effect of atomic operations on the overall per-
formance by isolating the clustering process among GPU
thread blocks. To that end, we do not try to propagate the
label of each point to its neighbors as do the two previous
methods. Instead, we merge cluster labels as follows: if
two clusters C0 and C1 have two points c0 ∈C0 and c1 ∈C1
and d(c0,c1) < dth, then the labels of all points in one
cluster are changed to the label of the other. We perform
the clustering by repeatedly assigning GPU thread blocks
to merge labels until no labels can be merged anymore.
An adjacency matrix M is used to track the relationship of

Fig. 2. An example of matrix partition when b = 4 and |R|=
32. Matrix 32× 32 M is divided into 4 × 4 sub-matrices.
Each sub-matrix describes the relationship between labels
of two groups or between labels in one group in the case
the sub-matrix is on the main diagonal of M. For instance,
the (8,20) sub-matrix (the one in the cycle) describes the
relationship between labels of the groups 8 and 20. These
sub-matrices are grouped into eight layers. The number in
each sub-matrix displays its layer index value.

labels during this process. M(i, j) = 1 means the clusters i
and j are mergeable and 0 means they are not.

To isolate the merging process among GPU blocks, we
divide the label list into small non-overlapped groups of b
consecutive labels. Each group is identified by the index g
of the initial label of the group in the label list. The rela-
tionship between labels in two groups g0 and g1 is deter-
mined by a b×b sub-matrix starting from row g0 and col-
umn g1 of the matrix M. Sub-matrices are further grouped
into non-overlapped layers such that sub-matrices in one
layer share no common label. Layers are then evaluated
one by one by the GPU. Fig. 2 is an example of this par-
tition method on a 32×32 adjacency matrix.

4.3.1. Data Structures
We use the following data structures in the GPU mem-

ory in addition to the arrays P and C.

• R: the array of remaining labels.

• M: the adjacency matrix of labels in R. M(i, j) = 1
if labels R[i] and R[j] are mergeable and 0 otherwise.

• L: the array containing locations of labels in R. The
index of a label c in R is L[c].

4.3.2. Algorithms
Algorithm 2 provides an overview of the matrix-based

EC.
Initially, the number of labels is |P|. The matrix M cre-

ated on those labels may exceed the capacity of the GPU
global memory. To reduce the size of the matrix M, we
first merge contiguous points in P. Algorithm 3 explains
this step in detail.

The status array in the GPU shared memory is for track-
ing the status of all labels in each iteration. It is reset to

Journal of Robotics and Mechatronics Vol.32 No.3, 2020 551

Nguyen, A. et al.

Algorithm 2 The matrix-based EC on the GPU.
1: Run procedure INITIAL EC.
2: Run procedure BUILD MATRIX.
3: Define md := true.
4: While md = true, set md := false and perform steps 5–9.
5: while md = false, perform steps 6–9.
6: Evaluate a layer of the adjacency matrix M.
7: If md = true, run procedure UPDATE and go back to step 4.
8: If md = false and the current layer is not the final one, move

to the next layer and go back to step 7.
9: if md = false and the current layer is the final one, copy the

result back to the host memory and conclude.

Algorithm 3 The procedure INITIAL EC. The local index of a
thread in a GPU block and the index of a block are denoted by tid
and bid, respectively. In our implementation with CUDA, we use
a 1D grid of 1D blocks, so tid = threadIdx.x and bid = blockIdx.x.

1: Launch a GPU kernel of n/b blocks of b threads each. Each
thread performs steps 2–12.

2: Get the coordinates of the point p := P[tid +bid ×b].
3: Define integer arrays sp, labels, status in the shared memory.

Each array has b elements.
4: Pre-load points to the shared memory sp[tid] := p.
5: Initialize local labels labels[tid] := tid.
6: For j from 0 to b−2, perform steps 7–11.
7: Zero-out status by status[tid] := 0.
8: Get the coordinates of the current point q := sp[j].
9: Get the current labels of points cc := labels[tid] and rc :=

labels[j].
10: If tid > j and d(p,q) < dth and rc �= cc, set status[cc] := 1.
11: If status[cc] = 1, set labels[tid] := rc.
12: Update new label of the point by C[i] := bid ×b+ labels[tid].

unchanged at the beginning of each iteration. The func-
tion syncthreads() must be called after every read/write
operation on arrays. This ensures that labels and the sta-
tus of labels are always correctly updated by all threads at
the end of each iteration. The condition tid > j is to avoid
circular label changes.

The procedure BUILD MATRIX creates the remaining
label list R, updates the label list C, and builds the ma-
trix M. It is described in Algorithm 4.

After obtaining the remaining label list R and the ma-
trix M, the system starts iterating over the layers of M and
merges column labels with row labels of all sub-matrices
in each layer. Merging labels in layer 0 is similar to the
initial EC in which the input column labels and the row
labels are the same. However, instead of computing the
pair-wise distances of points, threads access sub-matrices
on the main diagonal of M to obtain information about the
relationship between labels. On other layers, the process
is slightly different because the column labels and row la-
bels of each sub-matrix are not the same. Algorithm 5 ex-
plains how threads in a GPU block evaluate a sub-matrix
in such layers. Again, the function syncthreads() is
called after every read/write operation of threads to make
sure labels are updated correctly. Fig. 3 shows an example
of this algorithm.

If labels are merged, the procedure UPDATE rebuilds

Algorithm 4 The procedure BUILD MATRIX.
1: Allocate an integer array L of n+1 elements. Zero out L.
2: Launch a GPU kernel of n threads. Thread i marks L[C[i]] :=

1.
3: Perform an exclusive scan on L.
4: Allocate R as an integer array of L[n] elements.
5: Launch a GPU kernel of L[n] threads. Thread i sets R[i] := i.
6: Launch a GPU kernel of n threads. Thread i updates C[i] :=

R[C[L[i]]].
7: Allocate an integer array M of size |R|×|R| in the GPU mem-

ory. Zero-out M.
8: Launch a GPU kernel of n threads. Thread i searches for all

neighbors P[j] of the point P[i] and set M[C[i]+C[j]×|R|] :=
1.

Algorithm 5 Merging column labels to row labels of a sub-
matrix (g0,g1) by a GPU block of b threads. The local index of
thread in the block is denoted by i. In our implementation with
CUDA C, we use 1D block so i = threadIdx.x.

1: Threads in the block define an integer array status of b ele-
ments in the shared memory.

2: Define local variables cl := i and c := g1 + i.
3: Define local variable mt and shared variable mb. All of them

are initially set to false.
4: Loop b−1 times. In the j-th loop, thread i performs steps 5–

8.
5: Define r := g0 + j.
6: Zero-out status[i] := 0 and status[i+b] := 0.
7: If M[r×|R|+ c] = 1, set status[cl] := 1 and mt := true.
8: If status[cl] = 1, change cl := i+b.
9: If mt = true, perform steps 10–12.

10: Update the new label R[c] := r + cl −b.
11: Set mb := true.
12: If i = 0 and mb = true, set md := true.

arrays R, L, C, and M. In this procedure, duplicated la-
bels are removed for the GPU blocks to merge the remain-
ing unique labels without conflicts. This procedure is ex-
plained in Algorithm 6. We repeat the entire process until
no further change in the remaining label list R is made.

4.3.3. Implementation and Optimization
We use the parallel exclusive scan and sort provided by

Thrust again. The shared memory and registers are used
temporarily to store points’ coordinates and intermediate
labels while labels are being merged. By doing so, GPU
threads do not have to access the global memory when
computing pairwise distances or when changing labels of
points in a group. Besides, accesses to adjacency sub-
matrices by threads in a block as well as to point coor-
dinates on P are coalesced to maximize the GPU global
memory bandwidth.

4.3.4. Implementation Issues
This method requires significant GPU memory for

holding the adjacency matrix M. If points in the cloud
are far from each other, most of the matrix’s entries are 0
and a large amount of GPU global memory is wasted. Be-
sides, with a large graph, the GPU memory may not be
sufficient to contain the entire matrix.

552 Journal of Robotics and Mechatronics Vol.32 No.3, 2020

Fast Euclidean Cluster Extraction Using GPUs

Fig. 3. Clustering on a 4×4 sub-matrix using a GPU block
of 4 threads. Thread Ti handles the label of column i. After
passing one row, a syncthreads() is called to make sure all
threads in the block finish changing labels before moving to
the next row.

Algorithm 6 The procedure UPDATE rebuilds R, C, L, and M
on the GPU. The global index of threads is denoted by i. In our
implementation with CUDA C, i = threadIdx.x + blockIdx.x ×
blockDim.x.

1: Launch a GPU kernel of n threads. Thread i updates the label
of point i-th by performing C[i] := R[L[C[i]]].

2: Zero-out L.
3: Launch a GPU kernel of |R| threads. Thread i sets L[R[i]] := 1.
4: Perform an exclusive scan on L.
5: Allocate the new remaining list R′ of L[n] integer elements.
6: Launch a GPU kernel of |R′| threads. Thread i sets R′[i] := i.
7: Launch a GPU kernel of n threads. Thread i updates label

C[i] := L[C[i]].
8: Allocate the new adjacency matrix M′ of |R′| × |R′| integer

entries. Zero-out this matrix.
9: Launch a GPU kernel of |R| threads. Thread i performs

steps 10–13.
10: Get the column index c := i and the new column index of the

new column label nc := L[R[c]].
11: For r from 0 to c−1, perform steps 12–13.
12: Get the new row index of the new row label nr := L[R[r]].
13: If M[r×|R|+ c] = 1, set M′[nr×|R′|+nc] := 1 and M′[nc×

|R′|+nr] := 1.
14: Replace R by R′ and M by M′ and free old buffers.

4.4. Range Search and Exhaustive Search
A key step in all three methods is searching for the

neighbors of every point when building graph structures.
This can be done by exhaustive searches, in which each
GPU thread computes the Euclidean distance between
one point and all other points, and compares them with
dth. This approach can be optimized by using the GPU’s
shared memory to store the coordinates of points handled

Algorithm 7 Building a grid of voxel on the point cloud P using
the GPU.

1: By parallel reduction, determine the boundaries of the box
that contains the entire point cloud.

2: Determine the number of required voxels.
3: For each point in P in parallel, compute the index of the voxel

that the point belongs to. The results are stored in an array
vid.

4: Allocate an array pid of |P| elements containing the index of
points in P.

5: Use Thrust’s parallel sort to sort the key vid and value pid.
6: Allocate an integer array of |P|+1 elements named mark.
7: For i from 0 to |P| − 1 in parallel, if vid[i] < vid[i + 1], set

mark[i] := 1.
8: Exclusive scan mark. The value k of the last element

mark[|P|] is the number of non-empty voxels.
9: Allocate two integer arrays: V of k elements and S of k + 1

elements.
10: For i from 0 to |P| − 1 in parallel, if vid[i] < vid[i + 1], set

V [mark[i]] := vid[i] and S[mark[i]+1] := i+1.

by threads in the same block. However, the number of
comparisons in that case is still n2; thus, it decreases the
overall performance on a large point cloud.

A better option for the neighbor search in large point
clouds is using range search on a voxel grid. In this ap-
proach, we first use a grid of dth × dth × dth cubes to or-
ganize the point cloud. Algorithm 7 explains a simple
method for building the grid.

This algorithm produces three arrays: pid – the indexes
of points sorted by voxel indexes, V – the indexes of non-
empty voxels, and S – the starting location of indexes of
points that belong to each voxel. We can obtain indexes of
points in a voxel i by iterating from pid[S[i]] to pid[S[i +
1]− 1]. To look for neighbors of a point p, we inspect
points in voxels included by the sphere that takes p as the
origin and dth as the radius. Points that belong to other
voxels may be excluded, thereby reducing significantly
the number of comparisons.

5. Evaluation

5.1. System Configuration and Datasets

We now evaluate the performance of the PCL’s CPU-
based method, the exhaustive search (ES) GPU-based
methods, and the range search (RS) GPU-based meth-
ods. As mentioned in Section 2, the GPU-based ECE
method implemented in the PCL library is incomplete.
It caused runtime errors when processing our synthetic
datasets, and produces results different from other meth-
ods. Hence, we did not use that method in our experi-
ments. The specifications of the PC used in our experi-
ments are as follows: CPU Intel Core i7-4790 3.6 GHz
× 8, 16 GB RAM, GPU NVIDIA GTX Titan X Maxwell
with max clock rate 1.08 GHz and 12 GB GDDR5 mem-
ory, CUDA Driver / Runtime Version 9.1, and Ubuntu
16.04 LTS OS. Evaluations are performed on our syn-
thetic dataset and real-world dataset assembled during ex-

Journal of Robotics and Mechatronics Vol.32 No.3, 2020 553

Nguyen, A. et al.

Table 2. Values of factors for generating synthetic point clouds.

Experiment Size Cluster number Point degree Point distance
Size variation 4096 to 262144 128 32 4

Cluster number variation 262144 16 to 8192 32 4
Point degree variation 262144 128 1 to 2048 4

Point distance variation 65536 1024 32 1 to 1024

1

10

100

1000

10000

4096 8192 16384 32768 65536 131072 262144

Ex
ec
ut
io
n
tim

e
[m

s]
(lo

g-
sc
al
e)

Number of points
ES Edge-based
ES Matrix-based

ES Vertex-based
RS Edge-based

RS Matrix-based
RS Vertex-based

PCL

Fig. 4. Execution time of clustering methods in the size-
variation test (ES: exhaustive search, RS: range search).

periments of the Autoware project [d]. We generate our
synthetic point clouds using four factors as follows.

• Size: the number of points in the point cloud.

• Cluster number: the number of clusters in the point-
cloud. This must not exceed the size of the point
cloud.

• Average point degree: the average number of neigh-
bors of a point. The product of the point degree and
the cluster number must not exceed the size of the
point cloud.

• Point distance: this value is to adjust the distribu-
tion of clusters’ members in the input point cloud. A
point cloud with point distance D has points at in-
dices i, i+D, i+2×D that belong to the i-th cluster.
Due to this arrangement, the point distance must not
exceed the cluster number.

The values of the four factors above in each experiment
are listed in Table 2. The execution time is measured
in milliseconds. It includes both the CPU and the GPU
processing times and the time spent on transferring data
between memory areas. The PCL’s CPU-based method
is used as a baseline method to evaluate other methods.
Hence, their speedup rates are defined as the ratio of the
CPU-based method’s execution time to that of the GPU-
based methods.

5.2. Experiment Results
5.2.1. Size of the Point Cloud

First, we study the effect of the size of the point cloud
on clustering methods. The results of this experiment are
shown in Figs. 4 and 5.

1

10

100

4096 8192 16384 32768 65536 131072 262144

Sp
ee

du
p
ra
te

(lo
g-
sc
al
e)

Number of points
ES Edge-based
ES Matrix-based

ES Vertex-based
RS Edge-based

RS Matrix-based
RS Vertex-based

Fig. 5. Speedup rate of the GPU methods over the PCL
library’s method in the size-variation test (ES: exhaustive
search, RS: range search).

Fig. 6. Breakdown of execution time of the ES matrix-based
method.

In all cases, the GPU-based methods’ execution times
are less than those of the PCL method. However, the
difference between ES methods and the PCL’s method is
less significant when the point cloud becomes larger. We
can observe a considerable decrease in the speedup rates
of those methods in Fig. 5 as the cloud has more than
32768 points. This is explained by the computation cost
of the exhaustive search. Due to the large number of pair-
wise distances examined, this cost increases quickly as
the number of points increases. For instance, we can ob-
serve this change of the GPU ES matrix-based method
from Fig. 6. In the largest point cloud, the build ma-
trix stage takes about 99.9% of the total execution time
of this method. RS methods use range search instead of
exhaustive search, so the speedup rates of the RS edge
and matrix-based methods keep increasing even in later
cases. An exception is the RS vertex-based method. Its
speedup rate also decreases at some points. This is due
to the huge global memory access in the clustering phase

554 Journal of Robotics and Mechatronics Vol.32 No.3, 2020

Fast Euclidean Cluster Extraction Using GPUs

10

100

1000

10000

16 32 64 128 256 512 1024 2048 4096 8192

Ex
ec
ut
io
n
tim

e
[m

s]
(lo

g-
sc
al
e)

Number of clusters
ES Edge-based
ES Matrix-based

ES Vertex-based
RS Edge-based

RS Matrix-based
RS Vertex-based

PCL

Fig. 7. The execution time of clustering methods as the
cluster number changes (ES: exhaustive search, RS: range
search).

0.1

1

10

100

1000

16 32 64 128 256 512 1024 2048 4096 8192

Sp
ee

du
p
ra
te

(lo
g-
sc
al
e)

Number of clusters
ES Edge-based
ES Matrix-based

ES Vertex-based
RS Edge-based

RS Matrix-based
RS Vertex-based

Fig. 8. The speedup rate of clustering methods as the cluster
number changes (ES: exhaustive search, RS: range search).

of this method: when examining an edge e, GPU threads
have to inspect vertices of e twice, while it is only once
for the two other RS methods.

5.2.2. Number of Clusters
In this experiment, we inspect how the execution time

of clustering methods changes when the number of clus-
ters changes. The results are shown in Figs. 7 and 8.

When the number of clusters increases while the size of
the point cloud remains unchanged, the number of mem-
bers in each cluster decreases. In such cases, all clustering
methods need less time for building data structures and
adjusting labels. Therefore, all of their execution times
tend to decrease. However, the changes when using the
ES methods are minimal. This is because about 90% of
their execution times are for building graph structures, and
the cost of that step remains similar as the size of the point
cloud is fixed. In the two final cases, their speedup rates
over the PCL method are less than 1, which means they
are even slower than the PCL method.

5.2.3. Point Degree
Figure 9 shows the execution times of the clustering

methods when the point degree changes from 1 to 2048.
The execution time of the PCL’s clustering increases

rapidly as the point degree increases. This is because the
cost of searching neighbors increases as the point degree
increases. The ES methods’ results remain almost un-
changed due to the same reason to the previous experi-
ment.

10

100

1000

10000

100000

1 2 4 8 16 32 64 128 256 512 1024 2048

Ex
ec
ut
io
n
tim

e
[m

s]
(lo

g-
sc
al
e)

Point's degree
ES Edge-based
ES Matrix-based

ES Vertex-based
RS Edge-based

RS Matrix-based
RS Vertex-based

PCL

Fig. 9. The execution time of clustering methods as the
point degree changes (ES: exhaustive search, RS: range
search).

0
20
40
60
80

100
120
140
160
180

1 2 4 8 16 32 64 128 256 512 1024 2048

Ex
ec
ut
io
n
tim

e
[m

s]
Point's degree

Set input Build graph Clustering

(a) The edge-based method

0
5

10
15
20
25
30
35
40
45

1 2 4 8 16 32 64 128 256 512 1024 2048

Ex
ec
ut
io
n
tim

e
[m

s]

Point's degree
Set input

Initial clustering
Build matrix
Clustering

(b) The matrix-based method

0
20

400
420
600
620
800
820
100
120
200

4 6 1 3 45 86 51 463 625 246 4061 6013

Ex
ec
ut
io
n
tim

e
[m

s]

Point's degree
Set input Build graph Clustering

(c) The vertex-based method

Fig. 10. The execution time of each stage in RS GPU-based
methods.

Figure 10 details how the execution time of each stage
in RS methods change. In the building step of all three
methods, a larger point degree increases the number of
candidate points and the number of indices written to the
output data structures. These result in longer execution
times during the building stages of all RS methods. Con-
versely, the time differences in the clustering stage of the
three methods are significant. In the edge-based method,
because both the number of clusters and the size of the
point cloud are fixed, each point can reach its final label
in fewer iterations. However, that does not mean the clus-

Journal of Robotics and Mechatronics Vol.32 No.3, 2020 555

Nguyen, A. et al.

1

10

100

1000

1 2 4 8 16 32 64 128 256 512 1024

Ex
ec
ut
io
n
tim

e
[m

s]
(lo

g-
sc
al
e)

Average point distance
ES Edge-based
ES Matrix-based

ES Vertex-based
RS Edge-based

RS Matrix-based
RS Vertex-based

PCL

Fig. 11. The execution time of clustering methods as the
average point distance changes (ES: exhaustive search, RS:
range search).

tering stage will be faster. The reasons behind that are
more edges are processed and more time may be spent
on each iteration due to the effect of atomicMin. In our
experiment, this stage has the lowest execution time at
the 32 and 64 point degrees. A similar occurrence is
found when using the vertex-based method. Nonethe-
less, with this method points are examined by more GPU
threads. Hence, its execution time at the clustering stage
increases faster than other methods. Threads in different
GPU blocks in the matrix-based method do not intervene
in others’ operations. Besides, global memory accesses
in this method are accelerated by shared memory and co-
alesced constraint. For those reasons, its clustering stage
does not change during the experiment.

5.2.4. Average Point Distance
We now keep the size of point cloud at only

65536 points and the cluster number at 1024. This al-
lows us to experiment on a wider range of point distance
values. A larger point cloud may cause an out-of-GPU-
memory error as the point distance increases, and a small
point distance cannot highlight the changes that occur in
the execution times of matrix-based clustering methods.
The execution times of the methods in this experiment are
shown in Fig. 11.

All methods, except the matrix-based methods, have
their results almost unchanged. Fig. 12 shows the exe-
cution time of each stage in the matrix-based methods.
While the set input and the initial clustering steps remain
approximately the same between cases, the building ma-
trix stage becomes slightly slower when the point distance
is larger than 64 and the clustering stage increases rapidly
from point distance 32 to 1024.

The increase of the step building matrix can be ex-
plained by the number of remaining clusters after the ini-
tial clustering step. After that step, all points that belong
to the same cluster in a group are given the same label.
The more labels remain, the larger the matrix becomes
and the more time is spent on initializing it. As for the
clustering step, its goal is to reduce the number of la-
bels until they cannot be further reduced. If members in
a cluster remain close to each other in the cluster list, a
large number of labels can be removed with each itera-
tion. In such cases, the clustering will finish after several

1

10

100

1000

1 2 4 8 16 32 64 128 256 512 1024

Ex
ec
ut
io
n
tim

e
[m

s]
(lo

g-
sc
al
e)

Average point distance
Set input

Initial clustering
Build matrix
Clustering

(a) The exhaustive method

0.1

1

10

100

1000

1 2 4 8 16 32 64 128 256 512 1024

Ex
ec
ut
io
n
tim

e
[m

s]
(lo

g-
sc
al
e)

Average point distance
Set input

Initial clustering
Build matrix
Clustering

(b) The range search method

Fig. 12. The execution time of stages in matrix-based meth-
ods in the point distance experiment.

iterations. Otherwise, the number of iterations increases,
and each iteration lasts longer on the larger data structure.
Those result in the longer clustering step. For instance,
our RS matrix-based method needs only two iterations
with 4.5 ms to finish the first point cloud, but requires
10 iterations and 156 ms for the last case. Besides, if too
many labels remain after the initial step, the system may
fail to allocate enough GPU memory for the matrix. Other
methods do not have this problem because no matter how
the points are distributed, their input data structures for
the clustering step are still the same.

5.2.5. Real-World Data
We now perform clustering methods on streaming data

from real-world datasets. Those datasets are collected
during the experiments of the project Autoware. LiDAR
scanners were set on top of vehicles that move on spe-
cific routes. While moving, the scanners scan the environ-
ment around the vehicle and continuously produces point
clouds in real time. Those point clouds are published as
ROS [16] messages, and recorded into bag files. We then
use our simulation application of project Autoware to play
back those bag files and publish point clouds at the same
rate as when they are collected by the LiDAR scanners.
As our object detection module receives a point cloud, it
invokes a callback function to perform the clustering and
publishes the results. Hence, the point clouds are continu-
ously copied from the host memory and the GPU memory,
while the results are moved in the opposite direction. We
run clustering methods on three datasets collected by the
ZMP RoboCar (PHV) from Nagoya University in Nagoya
City, Japan. Those datasets can be found at the Auto-

556 Journal of Robotics and Mechatronics Vol.32 No.3, 2020

Fast Euclidean Cluster Extraction Using GPUs

Table 3. Datasets used in the real-world experiment.

Dataset LiDAR type
Duration Average

[s] point number
nagoya 2017-12-11 VLP-16 Velodyne VLP16 1116 3798

nagoya 2017-12-11 HDL-32E Velodyne HDL32E 1131 6085
nagoya 2017-12-11 HDL-64E Velodyne HDL64E 1331 21785

nagoya 2017-12-11 HDL-64E high res Velodyne HDL64E 1331 34254

ware’s rosbag store [e]. Their information is described in
Table 3.

First, we evaluate the performance of clustering meth-
ods. The results are summarized in Figs. 13 and 14.

In the first two datasets, there is not much difference be-
tween clustering methods’ performance in sequences with
small numbers of points. In some cases, the PCL’s method
is even faster than others are. However, in later datasets
when the number of points in each sequence increase, it
cannot compete with other GPU-based clustering meth-
ods. Differently from experiments on synthetic datasets,
the ES matrix-based method is the fastest method in the
first and the second datasets with the average speedup
rate 2.2X and 3.5X respectively. It is only surpassed by
the RS matrix-based method in the last dataset, when the
size of input point clouds becomes too large that make the
building data step become significantly longer. Matrix-
based methods have better performances than edge and
vertex-based methods. This can be explained by the prop-
erties of the LiDAR scanner. It rotates at high speed and
continuously projects beams that reflect from objects to
create points. Hence, points that belong to the same ob-
ject tend to stay close together in the point cloud. As a
result, the number of labels is quickly reduced after each
iteration of the matrix-based method and the clustering
process ends quickly.

To evaluate the precision of our GPU-based method in
each dataset, for each point cloud processed, we com-
pared the number of extracted clusters as well as the
number of points in each cluster between the GPU-based
methods and the baseline PCL CPU-based method. The
precision of a GPU method is defined as the number
of matched point clouds over the total number of point
clouds processed. In all four datasets, the result of our
measurements are similar: the clusters extracted from
each point cloud by the GPU methods are always the same
as the ones extracted by the PCL CPU method.

6. Discussion

In this section, we discuss factors that affect the perfor-
mance of our EC methods, their limitations, and opportu-
nities.

To date, our GPU-based clustering methods have
proved their efficiency by delivering significant speedup
rates over the PCL’s EC while maintaining precision. The
edge and vertex-based methods use CUDA’s atomicMin

0

50

100

150

200

250

300

0 100 200 300 400 500
0

2

4

6

8

Ex
ec
ut
io
n
tim

e
[m

s]

Nu
m
be

ro
fp

oi
nt
s(

x1
00

0)

Sequences
ES Edge-based

ES Matrix-based
ES Vertex-based
RS Edge-based

RS Matrix-based
RS Vertex-based

PCL
Number of points

(a) nagoya 2017-12-11 VLP-16

0

100

200

300

400

0 100 200 300 400 500
0

3

6

9

12

15

18

Ex
ec
ut
io
n
tim

e
[m

s]

Nu
m
be

ro
fp

oi
nt
s(

x1
00

0)

Sequences
ES Edge-based

ES Matrix-based
ES Vertex-based
RS Edge-based

RS Matrix-based
RS Vertex-based

PCL
Number of points

(b) nagoya 2017-12-11 HDL-32E

0

500

100

200

300

4000

0 400 500 600 100 800
0

3

42

51

65

10

13

Ex
ec
ut
io
n
tim

e
[m

s]

Nu
m
be

ro
fp

oi
nt
s(

x4
00

0)

Sequences
ES Edge-based

ES Matrix-based
ES Vertex-based
RS Edge-based

RS Matrix-based
RS Vertex-based

PCL
Number of points

(c) nagoya 2017-12-11 HDL-64E

0

500

1000

1500

2000

2500

3000

0 100 200 300 400 500
0

10

20

30

40

50

60

70

Ex
ec
ut
io
n
tim

e
[m

s]

Nu
m
be

ro
fp

oi
nt
s(

x1
00

0)

Sequences
ES Edge-based

ES Matrix-based
ES Vertex-based
RS Edge-based

RS Matrix-based
RS Vertex-based

PCL
Number of points

(d) nagoya 2017-12-11 HDL-64E high res

Fig. 13. The execution time of the clustering methods on
real-world dataset (ES: exhaustive search, RS: range search).

to propagate labels, but that function could serialize the
operations of GPU threads. Hence, these methods’ perfor-
mance decreases significantly in point clouds which have
high point degrees and a large number of members in each
cluster. The matrix-based methods are more stable in such

Journal of Robotics and Mechatronics Vol.32 No.3, 2020 557

Nguyen, A. et al.

(a) nagoya 2017-12-11 VLP-16

(b) nagoya 2017-12-11 HDL-32E

(c) nagoya 2017-12-11 HDL-64E

(d) nagoya 2017-12-11 HDL-64E high res

Fig. 14. The speedup rate of the GPU-based clustering
methods over the PCL’s on real-world dataset (ES: exhaus-
tive search, RS: range search).

cases. They isolate work of GPU blocks, and leverage
shared memory and synchronization among threads in a
block to adjust labels. Nonetheless, their performance de-
pends heavily on the distribution of points in the input.
The further the average point distance is, the slower these
methods become. Meanwhile, the edge and vertex-based
methods are not affected by that factor.

The performance of clustering methods also depends
on how graph data structures are built. This phase in
ES methods is affected mostly by the size of the input
point cloud as it decides the number of comparisons and
global memory accesses. That factor has less effect on the
same phase of the RS methods since these methods reduce
the range of the neighbor search to a specific area around
each point. Instead, the point degree alters the cost of this
phase in RS methods. However, the difference is not al-
ways significant, especially in small point clouds with less
than eight thousand points. For those reasons, estimat-
ing the computational complexity of GPU-based methods
is challenging. The results obtained from the experiment
on real-world datasets of Section 5.2 suggest an average
computational complexity of O(k× log(n)) for RS meth-
ods, in which k is much smaller than n. This may be ap-
plied to general point clouds collected from the real-world
by LiDARs. As for ES methods, the experiment on size
variation in Section 5.2 found that, on large point clouds,
most of the ES methods’ execution time is consumed for
building graph structures. The complexity of this stage is
O(n2/p), in which p is the number of GPU cores, since
they examines n2 pair-wise distances in parallel. Conse-
quently, the average complexity of the ES methods should
be O(n2/p) as well. Further investigations are required to
validate those estimations.

The major limitation of the GPU-based methods is the
memory cost for graph data structures. Among cluster-
ing methods, the matrix-based methods often require the
largest memory space for the adjacency matrix. Besides,
currently, our GPU-based methods do not support clouds
that are larger than the GPU memory capacity. Therefore,
it is necessary to investigate extending those methods to
larger clouds to completely solve the fast clustering prob-
lem on point cloud datasets.

For the reasons above, the ES methods appear to be
good choices for small clouds in the range of four thou-
sand to eight thousand points. For larger clouds, RS meth-
ods are better options since building graph data structures
in those methods are much faster than in the ES meth-
ods. In general, the edge-based and vertex-based meth-
ods are good options for point clouds that have low point
degrees and small numbers of members per cluster. The
edge-based methods require the smallest memory space,
so they can fit on systems with limited GPU memory.
The matrix-based methods are preferred for clouds with
high point degrees, large-size clusters, and small average
point distances, such as the one produced by the LiDAR
scanner in our final experiment. However, their mem-
ory space requirement may become a burden for the GPU
global memory. With clouds having less than four thou-
sand points, PCL’s ECE is the most efficient clustering

558 Journal of Robotics and Mechatronics Vol.32 No.3, 2020

Fast Euclidean Cluster Extraction Using GPUs

method among the clustering methods. It is the only so-
lution for the point clouds that exceed the GPU global
memory capacity.

7. Conclusion

In this paper, we have presented our GPU-based clus-
tering methods. They can provide a speedup rate up to
97X over the CPU-based clustering method implemented
in the PCL on synthetic datasets, and up to 87X on a real-
world dataset. We also discussed how the inner struc-
ture of a point cloud affects the performance of our al-
gorithms. Despite having higher performance, their mem-
ory requirement prevents them from being applied in large
point clouds. Finding how to enable these algorithms to
run on point clouds that exceed the GPU memory is nec-
essary to bring those algorithms to real-life systems.

References:
[1] K. A. Hawick, A. Leist, and D. P. Playne, “Parallel graph com-

ponent labelling with GPUs and CUDA,” J. Parallel Computing,
Vol.36, Issue 12, pp. 655-678, 2010.

[2] Y. Komura, “GPU-based cluster-labeling algorithm without the use
of conventional iteration: Application to the Swendsen-Wang multi-
cluster spin flip algorithm,” Compu. Phys. Comm., Vol.194, pp. 54-
58, 2015.

[3] B. Douillard et al., “On the segmentation of 3D LIDAR point
clouds,” Proc. of 2011 IEEE Int. Conf. on Robotics and Automa-
tion, Shanghai, pp. 2798-2805, 2011.

[4] M. Liu, “Efficient segmentation and plane modeling of point-cloud
for structured environment by normal clustering and tensor vot-
ing,” Proc. of 2014 IEEE Int. Conf. on Robotics and Biomimetics
(ROBIO 2014), Bali, pp. 1805-1810, 2014.

[5] A. Golovinskiy and T. Funkhouser, “Min-cut based segmentation
of point clouds,” Proc. of 2009 IEEE 12th Int. Conf. on Computer
Vision Workshops (ICCV Workshops), Kyoto, pp. 39-46, 2009.

[6] T. Rabbani, F. A. van den Heuvel, and G. Vosselman, “Segmen-
tation of point clouds using smoothness constraint,” Proc. of Int.
Archives of Photogrammetry, Remote Sensing and Spatial Infor-
mation Sciences, p. 36, 2006.

[7] I. Bogoslavskyi and C. Stachniss, “Fast range image-based segmen-
tation of sparse 3D laser scans for online operation,” Proc. of 2016
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS),
pp. 163-169, 2016.

[8] F. Moosmann, O. Pink, and C. Stiller, “Segmentation of 3D lidar
data in non-flat urban environments using a local convexity crite-
rion,” Proc. of 2009 IEEE Intelligent Vehicles Symposium, Xi’an,
pp. 215-220, 2009.

[9] D. Zermas, I. Izzat, and N. Papanikolopoulos, “Fast segmentation
of 3D point clouds: A paradigm on LiDAR data for autonomous
vehicle applications,” 2017 IEEE Int. Conf. on Robotics and Au-
tomation (ICRA), Singapore, pp. 5067-5073, 2017.

[10] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based
algorithm for discovering clusters a density-based algorithm for
discovering clusters in large spatial databases with noise,” Proc.
of the 2nd Int. Conf. on Knowledge Discovery and Data Mining
(KDD’96), pp. 226-231, 1996.

[11] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger, “The R∗-
tree: an efficient and robust access method for points and rectan-
gles,” Proc. of the 1990 ACM SIGMOD Int. Conf. on Management
of data (SIGMOD ’90), pp. 322-331, 1990.

[12] R. B. Rusu, “Semantic 3d object maps for everyday manipulation
in human living environments,” Ph.D. thesis, Computer Science De-
partment, Technische Universität München, 2009.

[13] J. L. Bentley, “Multidimensional binary search trees used for as-
sociative searching,” Commun. ACM, Vol.18, No.9, pp. 509-517,
1975.

[14] R. B. Rusu and S. Cousins, “3D is here: Point Cloud Library
(PCL),” Proc. of 2011 IEEE Int. Conf. on Robotics and Automa-
tion, Shanghai, pp. 1-4, 2011.

[15] M. Harris, S. Sengupta, and J. D. Owens, “Parallel prefix sum (scan)
with CUDA,” H. Nguyen (Ed.), “GPU Gems 3,” NVIDIA Corpora-
tion, 2007.

[16] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R.
Wheeler, and A. Ng, “ROS: an open-source Robot Operating Sys-
tem,” ICRA Workshop on Open Source Software, Vol.3, pp. 1-5,
2009.

Supporting Online Materials:
[a] Velodyne LiDAR. https://velodynelidar.com/ [Accessed October 20,

2019]
[b] NVIDIA CUDA (Compute Unified Device Architecture). https:

///developer.nvidia.com//cuda-zone [Accessed October 20, 2019]
[c] Thrust Library. https:///developer.nvidia.com//thrust [Accessed Oc-

tober 20, 2019]
[d] Autoware.AI. https:///www.autoware.ai [Accessed October 20, 2019]
[e] Autoware Data. https:///data.iter4.jp [Accessed October 20, 2019]

Name:
Anh Nguyen

Affiliation:
Graduate School of Informatics, Nagoya Univer-
sity

Address:
711 National Innovation Complex (NIC), Furo-cho, Chikusa-ku, Nagoya
464-8601, Japan
Brief Biographical History:
2014 Received Bachelor degree from College of Information and
Engineering, Ritsumeikan University
2014-2015 Software Engineer, FPT Software
2017 Received Master degree from Graduate School of Informatics,
Nagoya University
2017- Ph.D. Student, Nagoya University

Name:
Abraham Monrroy Cano

Affiliation:
Graduate School of Informatics, Nagoya Univer-
sity

Address:
711 National Innovation Complex (NIC), Furo-cho, Chikusa-ku, Nagoya
464-8601, Japan
Brief Biographical History:
2008 Received B.E. from School of Engineering, National Autonomous
University of Mexico
2016 Received M.S. from Graduate School of Informatics, Nagoya
University
2016- Ph.D. Student, Nagoya University
Main Works:
• A. M. Cano, E. Takeuchi, S. Kato, and M. Edahiro, “An Open
Multi-Sensor Fusion Toolbox for Autonomous Vehicles,” IEICE Trans. on
Fundamentals of Electronics, Communications and Computer Sciences,
Vol.E103.A, pp. 252-264. 10.1587/transfun.2019TSP0005, 2020.
• K. Sakivama, S. Kato, Y. Ishikawa, A. Hori, and A. Monrroy, “Deep
Learning on Large-Scale Multicore Clusters,” Proc. of 2018 30th Int.
Symp. on Computer Architecture and High Performance Computing
(SBAC-PAD), Lyon, France, pp. 314-321, 2018.
• M. Hirabayashi, A. Sujiwo, A. Monrroy, S. Kato, and M. Edahiro,
“Traffic light recognition using high-definition map features,” Robotics
and Autonomous Systems, Vol.111, pp. 62-72,
10.1016/j.robot.2018.10.004, 2018.
• K. Minemura, H. Liau, A. Monrroy, and S. Kato, “LMNet: Real-time
Multiclass Object Detection on CPU using 3D LiDAR,” Proc. of 2018 3rd
Asia-Pacific Conf. on Intelligent Robot Systems (ACIRS), pp. 28-34, 2018.

Journal of Robotics and Mechatronics Vol.32 No.3, 2020 559

Nguyen, A. et al.

Name:
Masato Edahiro

Affiliation:
Professor, Graduate School of Informatics,
Nagoya University

Address:
C3-1 (631), Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
Brief Biographical History:
1985- NEC Corporation
2011- Nagoya University
Main Works:
• “A clustering-based optimization algorithm in zero-skew routings,” Proc.
of Design Automation Conf., pp. 612-616, 1993.
Membership in Academic Societies:
• The Institute of Electrical and Electronics Engineers (IEEE)
• The Operations Research Society of Japan (ORSJ)
• Information Processing Society of Japan (IPSJ)
• The Institute of Electronics, Information and Communication Engineers
(IEICE)

Name:
Shinpei Kato

Affiliation:
Associate Professor, Graduate School of Infor-
mation Science and Technology, The University
of Tokyo
Founder & CTO, Tier IV, Inc.

Address:
7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
13F Sumitomofudosan-Hongo Building, 3-22-5 Hongo, Bunkyo-ku,
Tokyo 113-0033, Japan
Brief Biographical History:
2008 Received Ph.D. from Keio University
2009-2012 Postdoctoral Scholar, Keio University, The University of
Tokyo, Carnegie Mellon University, and University of California, Santa
Cruz
2012-2016 Associate Professor, Graduate School of Information Science,
Nagoya University
2017- Associate Professor, Graduate School of Information Science and
Technology, The University of Tokyo
Main Works:
• Y. Suzuki, Y. Fujii, T. Azumi, N. Nishio, and S. Kato, “Real-Time GPU
Resource Management with Loadable Kernel Modules,” IEEE Trans. on
Parallel and Distributed Systems, Vol.28, No.6, pp. 1715-1727, 2017.
• M. Yabuta, A. Nguyen, S. Kato, M. Edahiro, and H. Kawashima,
“Relational Joins on GPUs: A Closer Look,” IEEE Trans. on Parallel and
Distributed Systems, Vol.28, No.9, pp. 2663-2673, 2017.
Membership in Academic Societies:
• The Autoware Foundation, Board of Directors

560 Journal of Robotics and Mechatronics Vol.32 No.3, 2020

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

