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Object tracking is widely utilized and becomes indis-
pensable in automation technology. In environments
containing many objects, however, occlusion and false
recognition frequently occur. To alleviate these is-
sues, in this paper, we propose a novel object track-
ing method based on moving horizon estimation incor-
porating probabilistic data association (MHE-PDA)
through a probabilistic data association filter (PDAF).
Since moving horizon estimation (MHE) is accom-
plished through numerical optimization, we can en-
sure that the estimation is consistent with physical con-
straints and robust to outliers. The robustness of the
proposed method against occlusion and false recogni-
tion is verified by comparison with PDAF through sim-
ulations of a cluttered environment.

Keywords: moving horizon estimation, probabilistic data
association, object tracking, occlusion, misrecognition

1. Introduction

1.1. Object Tracking

Object tracking is indispensable in automation technol-
ogy. Early implementations occurred in radar systems and
now it is widely utilized in vision-based systems. Motion
capture systems typically measure the position and orien-
tation of target objects with a fast sampling rate. They
are commonly used for motion analysis of humans and
robots [1-3], as well as for visual feedback motion con-
trol of unmanned aerial vehicles, mobile robots and hu-
manoid robots [4-7]. In automobile and traffic systems,
typical examples are the fixed-point observation of the
flow of traffic [8—10] as well as the on-board detection
and tracking of preceding vehicles, lane lines, road sig-
nals, and traffic participants [11-13].

1.2. Occlusion and Misrecognition

Occlusion is a major issue for such vision-based mea-
surement, in which some observations are lost because
they are hidden by other objects. Occlusion will cause
deterioration of object tracking performance of, for ex-
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ample, traffic monitoring systems as well as on-board de-
tection and tracking systems of automobiles.

To address this issue, various studies have been con-
ducted [14, 15]. Multiple sensors or robots are fused
utilizing model-based estimation to compensate for the
duration of occlusion [16-18]. Wang et al. [19] com-
bined a monocular camera with an ultrasonic sensor uti-
lizing an extended Kalman filter (EKF) to develop a three-
dimensional tracking system. Yun et al. also applied an
EKF to measure the quick motion of fingers, which fre-
quently occlude each other [20]. Lee used deep learning-
based vehicle detection and speeded up robust feature
(SURF) matching for position estimation [21]. Takahashi
etal. [22] proposed moving horizon estimation (MHE) for
vehicle tracking utilizing only some of the features avail-
able during occlusion, in which the weight of the occluded
feature is set to be zero to exclude the missing features.

To consider association ambiguity, domain knowledge-
aided moving horizon estimation (DMHE) has hith-
erto been combined with multiple hypothesis tracking
(MHT) [23,24]. This approach realized accurate track-
ing performance and robustness using a physical road
constraint. Ishikawa et al. [25] suppressed the influ-
ence of outliers on observations due to false observa-
tions by dynamically changing the weight of MHE based
on predictions. When multiple-sensors are utilized, the
measurement cycles of sensors are different, but un-
measured observations can be deemed to be occlusion.
Liu et al. proposed multi-rate moving horizon estimation
(MMHE) [26] to incorporate missing observations. In
these methods, data association and state estimation were
separated; the accuracy of data association strongly af-
fects estimation performance.

Another issue is false recognition, in which other ob-
served features are wrongly associated with the target fea-
ture. Fig. 1 depicts two typical situations with many ob-
servations, in which the validation region computed by
prior estimation is introduced to narrow down the obser-
vations. In Fig. 1(a), several features, including the tar-
get feature, are observed. In Fig. 1(b), the target feature
is occluded, and only false features are observed. Both
cases may cause erroneous associations, which would im-
pair estimation performance. To address this issue, the
authors hitherto proposed an MHE utilizing an artificial
potential function [27]. The proposed estimation method
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Fig. 1. Possible relationships between the validation region
and observations.

is robust against occlusion and false recognition, but still
strongly relies on association accuracy.

1.3. Probabilistic Data Association

For algorithms in which object tracking and Bayesian
estimation are separated, the failure of data association
causes deterioration of the subsequent estimation. To ad-
dress this issue, Abe et al. [28] embedded an artificial po-
tential field for each observation into the objective func-
tion of MHE, in which the simultaneous optimization of
data association and state estimation was realized; how-
ever, a priori probabilistic distribution was not incorpo-
rated. Probabilistic data association filter (PDAF) is one
of the most reliable methods for mitigating false recog-
nition and occlusion [29, 30]. PDAF utilizes a stochas-
tic association measure, which weights the probability for
each observation with respect to prediction, to cope with
both occlusion and false recognition. Chen et al. [31] pro-
posed a combined interactive multiple-model probabilis-
tic data association algorithm (C-IMM-PDA) in which
distance weighting was utilized together with a Kalman
filter. However, using this filter means that it is gen-
erally difficult to explicitly include physical constraints.
Yang et al. [32] combined PDAF with a particle filter
(PF) to deal with multiple objects subject to non-Gaussian
noise. It can incorporate nonlinearity and constraints;
however, PF generally requires a huge number of parti-
cles to achieve an optimal estimation of high accuracy.

1.4. Proposed Method

To achieve robust estimation against misrecognition
and occlusion, in this paper, moving horizon estimation
- probabilistic data association (MHE-PDA) is proposed,
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Fig. 2. The relationship between the center of gravity and
each object feature.

in which probabilistic data association is integrated into
the evaluation function of the MHE, so that the maximum
likelihood estimation is obtained through numerical opti-
mization.

Since PDAF assumes a Gaussian distribution on sys-
tem and observation noise, non-Gaussian noise or outliers
will reduce the accuracy of estimation. Since the opti-
mal state estimate is numerically obtained in MHE-PDA,
it can naturally include constraints. Thus, we can expect
that appropriate constraints might improve estimation per-
formance by alleviating the influence of noise which does
not adhere to a Gaussian distribution.

This paper is based on our preliminary report [33], in
which PDA was incorporated into the framework of MHE
to reflect the probability on each observation. Importantly,
herein, constraints on system noise are introduced which
mitigate the effects of large deviations and misrecognition
caused by false observations which do not obey a Gaus-
sian assumption.

2. Object Model [33]

This section describes the state space representation of
an object to be tracked.

2.1. State Equation

We consider a discrete time system, with a state space
model represented by Eq. (1):

xlk+ 1] = f (x[k],ulk]) +Gv[k], . . . . . . (1)

where x[k] € R” is a state, u[k] € R™ is an input, f € R"
is a vector valued function, v[k] € R" is a system noise
vector subject to v[k] ~ .4#7(0,Q) for a covariance matrix
0 € R™" and G € R™" is a coefficient matrix of system
noise.

2.2. Output Equation

We consider a tracking problem for an object on which
feature points are attached. Fig. 2 depicts an object with
three feature points. Since the position of a feature moves
along with the translation and rotation of the object, a fea-
ture point is described as a vector-valued function repre-
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senting the coordinate transformation. Let s be the num-
ber of feature points of the object to be tracked, and y;[k]
(i=1,...,s) be the observed position vector of a feature
point, described as a function of the state x[k] as follows:

yilk| = h;i (x[k])+wilk], . . . . . . ... (2

where h;(x[k]) is the position vector of an observed fea-
ture point, and w; k] is an observation noise vector subject
to w; ~ A (0,R,,), and R, is a covariance matrix.

Let y[k] € R? be an observation vector comprising y;[k]
as follows:

T

Yk = KTy KT (3)

Then, the output equation is represented as a lumped form
by Eq. (4):

Ykl =h(xk])+wk]. . . . ... ... @

where h(x[k]) is a lumped vector valued function repre-
sented by
T

h(xlk])) = [ (x[k)T,. . kDT, . )

w € R? is an observation noise vector subject to w ~
A (0,R) and described as

T

wik] = [wik]",...owdkT] . (6)

and R € R?*%9 is a covariance matrix.

3. Probabilistic Data Association Filter [33,34]

This section presents a probabilistic data association fil-
ter (PDAF), which can accommodate multiple feature ob-
servations and cope with occlusion.

3.1. Prediction Step

The predicted state estimate X~ [k] is represented by
Eq. (7):

kl=f(&k—1]uk—-1)). . . . . ... ()
For the extended linearization of f,
af
A=~ ®)

the predicted error covariance matrix P~ [k] is represented
by

P k] =A[KPKATK| +GQG" . . . . . . (9
Similarly, for the extended linearization of h,
C:a—h, N ¢ ()]
dx

and the innovation covariance matrix for the prediction of
observation vector is

Skl = CK|P~[K]CT[K]+R. . . . . . . . .1

For each feature pointi = 1,...,s, let Cy, ; be the Jacobian
matrix of the i-th feature point of the object represented
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by Cp, = dh;/dx. The innovation covariance matrix of
the i-th feature point is represented by Eq. (12):

Smilk] = Coni[K]PT[KIC (k] + R . . . . . (12)

3.2. Validation Region and Weighting Factors

To reduce the computational burden, PDAF extracts ob-
servations inside the validation region, which is the inte-
rior of an ellipsoid centered at a predicted output estimate
as depicted in Fig. 3. The size of the ellipsoid is described
by Mahalanobis’s generalized distance.

The output prediction $; corresponding to the i-th fea-
ture point on the object is calculated by

Vi kl=mxk) . . . ... ... .. .13
Let z; , (k] be the p-th observation extracted from the val-
idation region for the i-th feature. Then, the error y, »
between z; ,[k] and the output prediction ; [k] is defined
by

Fok =ziplk =57k . . ... (4
To extract object observation candidates, z; ,, correspond-
ing to the i-th feature y;[k], the gating region is defined as

M; , <y for a positive ¥ and Mahalanobis distance M;
defined by

Mip =[5 p K Smilk] =1y [k . (15)

Fig. 4 depicts a Gaussian distribution of the weighting
factor. The region drawn inside the ellipse is the valida-
tion region. Only the observations z; , satisfying M; , <y
are utilized in the innovation of the i-th feature of the ob-
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ject. Let m;[k] be the number of observations in the val-
idation region of the i-th feature point. The weighting
factor for each observation inside the validation region is
defined in the following. The association probability of
each observation comprises the occlusion probability f3; o
and weighting factors B; ; (j = 1,...,m;[k]) corresponding
to each observation z; ; in the validation region. Weight-
ing factors f3; ; (j = 1,...,m;[k]) are represented by
| —PpFg .

pre (J=0)
1 —PpPo+ Y LijlK]

j=1

Li jlK]

mi[k]
1—PpPs+ Y Lij[K]

j=1

Bij=

where Pp is the target detection probability and Pg is the
gate probability. Let A be the rate of the Poisson distri-
bution. Then, the likelihood ratio L; ; is represented by
Eq. (17):

N [Zi»j{k] : )A’;asm,i[k]} Pp
l .

Lij= (7

3.3. Filtering Step

The posterior covariance matrix is calculated in the fil-
tering step. Kalman gain W k] is represented by

W(k] = P~ [K|C[K]S[k] . .

The combined innovation for each feature point is defined
as

. (18)

mjlk

]
Vilk] =Y Bijvijlk], - . (19)
=1

where V; ; is the innovation of each feature point repre-
sented by

V,'7j[k] = Zi,j{k] - h,(.ﬁ'[k])

Further, the innovation comprising all features belonging
to validation regions is represented by Eq. (21):

. (20)

vkl = vi[K]",..., v k1T (21
The posterior covariance matrix is calculated by
Pk] = P [k] — W[k]S[k|W[K] + P[k]. . (22)

Let [J.j = [*/Bl,jv}ija\/BZ,jV;jw”a\/Bs,jv;l:j]T- :Fhe

correction term of the posterior covariance matrix P is
represented by Eq. (23):

Pl = WKE, KWK, . - (23)
with
mlk]
Eyi =Y p,Kp; K" —vKvK" . (24)
j=1

where k] is the maximum number of m;[k]. PDAF deals
with the occlusion in the filtering step by considering oc-
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clusion probability as well as by changing the size of the
vector and matrix of W[k|, S[k], v[k] and p[k], adapting
to the number of measurable feature points. This is appli-
cable to nonlinear systems, but it is not straightforward to
include constraints in such contexts because of the incre-
mental update formulation of the Kalman filter.

4. Moving Horizon Estimation

Moving horizon estimation (MHE) is a model-based
estimation method based on real-time optimization. It uti-
lizes the observation and the input in a moving window
representing the range from the current time to a finite
time past. The optimal state estimate is obtained as a lo-
cal minimum solution by numerically minimizing an ob-
jective function. A general objective function comprises
the norms of the process error and the output error, and
the arrival cost. It is generally represented by

k—1

J= F;_T |&[n+ 1] —f(5:[,1],u[n])||§GQGT>_l
k
+ X Iyl =R (&)
n=k—T
=T =g k= T[py gy - 29)

where Xp[k — T] is the state estimation obtained in the
previous sampling time. Error is evaluated as the Ma-
halanobis distance. The optimal estimation of MHE is
obtained by solving an optimization problem for a set of
state estimations X[k|,%[k — 1],..., %[k — T]. Since MHE
is computed through numerical optimization, it can natu-
rally include constraints. In addition, by virtue of recur-
sive optimization, an optimal estimation can be obtained
for nonlinear systems, while the extended Kalman filter
provides a local solution. However, the calculation cost
tends to be larger since it requires a nonlinear optimiza-
tion problem to be solved for multiple unknown vectors
of the current and past state estimates.

5. MHE-PDA
5.1. Configuration

Moving horizon estimation with probabilistic data as-
sociation (MHE-PDA) is employed in which we incorpo-
rate PDAF into MHE so that multiple feature point can-
didates are stochastically associated, and the maximum
likelihood estimation is obtained through optimization.
Fig. 5 depicts a block diagram of MHE-PDA. First, in the
validation step, observations inside the validation region
are extracted and weighted by a Gaussian probability of
PDAF. The evaluation function of MHE-PDA comprises
extracted observations and weight factors. Then, the op-
timal estimation is obtained in the MHE-PDA block by
minimizing the evaluation function explained below. The
validation regions on each horizon step are updated by re-
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Fig. 5. Block diagram of MHE-PDA: Z; is the set of observations of features for the i-th object defined as Z; = {zi,_/}m"[k]. VA

is the total set of objects represented by Z = {Z;}!_,.

j=1

B; is the set of weighting factors of the i-th object feature defined as

B; = {B,;,_,-}';’;[}f]. B is the total set of weighting factors represented by B = {B;}}_,. In the validation step, observations inside the
validation region are extracted and weighted by a Gaussian probability of PDAF. The evaluation function of MHE-PDA comprises
extracted observations and weight factors. Then, the optimal estimation is obtained in the MHE-PDA block by minimizing the

evaluation function explained below.

flecting the previous state estimations of MHE-PDA so
that the influence of outliers in the past observations is
reduced.

5.2. Objective Function

MHE-PDA conducts state estimation and probabilistic
data association simultaneously by minimizing an eval-
uation function composed of the weighted prediction er-
rors for each possible observation, the error of the motion
model and the arrival cost. The evaluation function of
MHE-PDA is represented by

k—1
J:W§TMM+H—f@MmMm@mﬂ4
k s m;
+ Y Y (1B (zijln] — b (R[n)) [,
n=k—T i=1 j=1

+| . (26)

bk — T] — &k = T|[p gy - -

The difference from Eq. (25) appears in the second term,
in which the output prediction error is evaluated for mul-
tiple observations for each feature using the weight factor
Bi,; calculated by Eq. (16). When the observation does
not exist in the validation region, the weight factor B; ; be-
comes zero, and the optimal estimate is solely determined
by the motion model and the arrival cost. On the other
hand, when observations exist in the validation region,
each observation is associated with a probability depend-
ing on the likelihood. Thus, MHE-PDA is the maximum
likelihood estimation in which X is obtained by minimiz-
ing the evaluation function represented by Eq. (26).

5.3. Constraint on System Noise

Under the assumption that the noise obeys a normal
distribution, the state equation and the output equation
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are occasionally disturbed by substantial noise. In object
tracking, false observations also disturb the estimation.
The validation region can exclude such observations far
from its prediction on both PDAF and MHE-PDA. How-
ever, false observations inside the validation region may
jeopardize the output estimate, especially when the true
feature is occluded, as depicted in Fig. 6.

Since the MHE framework can naturally incorporate
constraints, MHE-PDA can also specify the condition re-
stricting the possible region where the state estimate may
exist. Let us consider the probability distributions de-
picted in Fig. 7. The dotted curve depicts a normal dis-
tribution, and the solid curve depicts a truncated distribu-
tion, which restricts the magnitude of noise. We intro-
duce such a magnitude constraint into the system noise
in Eq. (1). Constraints reflecting this type of amplitude
restriction are represented by

—d =G ' &[n] - f@&[n—1],uln—1))<d . 27)
forn=k,...,k—T, where d € R" indicates the bound on
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Fig. 7. The distribution with a system noise constraint.
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Fig. 8. Tracking in a multi-sampling context.

the magnitude, and “ < ” indicates the inequality between
the corresponding elements.

Figure 8 depicts tracking behaviors for (a) MHE-PDA
without constraint and (b) MHE-PDA with constraint.
Both figures consider the situation where another object
crosses the path when the true feature is occluded. In
(a) MHE-PDA without constraints, the estimate is at-
tracted toward the false feature of another object and the
estimate deviates from the target object. In (b) MHE-
PDA with constraints, the magnitude restriction on sys-
tem noise limits the possible region and it prevents the
estimate from tracking the false feature and later finds the
true feature.

6. Simulation

We verify the effectiveness of the proposed method
through numerical simulations, in which we assume that
observations are disturbed by multiple false features and
occlusions. Performance is evaluated by comparing with
the conventional PDAF and MHE-PDA with and without
constraints on the magnitude of the system noise.

6.1. Simulation Model

In this simulation, we consider a differential drive two
wheeled vehicle depicted in Fig. 9. It moves on the hori-
zontal plane, and its coordinates are represented by three
variables: the translational position x; and y,, and the ori-
entation 6. Let r be the wheel radius, W be the distance
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Fig. 9. Model of a differential drive vehicle.

between each wheel, and the rotational velocities of the
left and the right wheel are @ and @y, respectively. The
state x is defined by Eq. (28) as follows:

T
x[k] = [xo[k],ye[k],O(K]] " . . . . . . . .28
The input u is defined by
ulkl = (oK, o k)Y, . . . ... ... .29
the translational velocity is represented by
k k
VIk| = M’ . (30)
and the rotational velocity is represented by
—ran[k] + rox[k]
= R )
olk] o (31)
Then in the discretized state Eq. (1), f(x[k], u[k]) is repre-
sented by
V[k] cos O[k]
f(x[k],ulk]) = x[k]+ | V[k]sin®k] | A . . . (32)

o[k]
and the coefficient matrix G is described by
G =diag(A,AA). . . . o0 L0 L (33

where A indicates the sampling time.

Let H be a rotation matrix between the object fixed co-
ordinate system and the global coordinate system repre-
sented by

HOK) = Sl

Let xm i[k] (i =1,...,s) be the feature point position de-
scribed on the coordinates fixed to the target object. Then
the output function h; for the i-th feature point is repre-
sented by

— sinG[k]] G4

cos O[k]

. _ . xg[kq
h;(x[k]) H<9[k])xm=’+[yg[k] N 1))
6.2. Simulation Environment

In this simulation, we assume that a vehicle moves
through a crowded environment, and the features are ob-
served by an external camera. Fig. 10 indicates the driv-
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ing path of the vehicle. To evaluate effectiveness when
faced with occlusion, one or two features are occluded in
the colored rectangular region. Feature #1 is occluded in
the top left region, feature #2 is occluded in the right hand
side region, and features #1 and #2 are occluded in the top
middle and left bottom regions. In addition, to simulate
misrecognition, two kinds of false features are set. One
is static features, and the other is a dynamic object which
moves across the target object. The static features rep-
resent feature points attached to static objects. They are
placed as a uniform distribution in the range —4 <x <6
and —3 <y <3 asdepicted in Fig. 11. The dynamic group
is composed of ten false features as depicted in Fig. 12,
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where the same color features belong to the same object.
The dynamic groups are assumed to be feature points of
dynamic objects such as pedestrians and other mobile ob-
jects. Each feature moves with a constant velocity in the
section —4 < x < 6 and —3 <y < 3. Moreover, as shown
in the sinusoidal path in Fig. 13, a false object which has
the same assignment of features with the estimated object
exists in Section 1 (—1.0 < x < 2.0 and y < 0) and Sec-
tion 2 (—0.5 <x<2.5and 0 <y). In Sections I and 2, the
estimated object and the false dynamic object converge,
where the false dynamic object hovers around the target
object as the sinusoidal curve depicted in Fig. 13. They
move along a sinusoidal wave around the path. In Sec-
tion 2, two features are occluded; thus, false recognition
can easily occur. The simulation parameters are summa-
rized in Table 1. The vehicle parameters and Q, R were
taken from the experimental system [35]. A, Pp and Pg,
were determined by calibration of PDAF to track the tar-
get under the environment with static false features de-
picted in Fig. 11. 7y was selected to be small so that the
validation regions for each feature point did not overlap.
d was determined by calibration reflecting the actual mo-
tion constraint of the vehicle.

6.3. Simulation Results and Discussion

The estimated path of PDAF, MHE-PDA without con-
straint, and MHE-PDA with constraint are depicted in
Figs. 14(a), 14(b), and 15(a), respectively. PDAF and
MHE-PDA without constraint could track the target ob-
ject until Section 2. However, these methods failed in
Section 2, where the object contained features with the
same allocation as the estimated object while the features
of the target were occluded. On the other hand, the pro-
posed method succeeded in tracking the estimated object
in each occlusion section. Fig. 15(b) depicts the estimate
of the heading angle 6, which also tracked the actual ob-
ject. Table 2 indicates the resulting root-mean-square er-
ror (RMSE) of PDAF fort =0-16 s, MHE-PDA with con-
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Table 1. Definition of variables.

Parameter Value
Simulation
time [s] 40
Cycle time [s] 0.05
W [m] 0.492
r [m] 0.128
v [m/s] 0.6
T 30
V4 100
A 30
Pp 0.8
Pg 0.8
s 3
d [0.0071,0.0071,0.0068]"
10) diag(8.0,8.0,7.5) x 1072
R diag(6.7,7.1) x 107>
X0 [0.0,—2.0,0.0]T
X1 [0.3,—0.12]T
Xm2 [~0.15,0.24]"
Xm3 [-0.15,-0.12]T
N 1000
N 100

(I True value === MHE-PDA

3 L
2 L
g0}
o
S_ql
> 1
_2 L
_3 L
-4 -2 0 2 4 6
X Gioal (M)
(a) Trajectory of MHE-PDA.
[ True value ==—MHE-PDA]
l_|8 ‘ ‘ ‘
§6
=4
§2
O L L L
0 10 20 30 40
t [s]

(b) The time transition of 6.

Fig. 15. Simulation results using MHE-PDA.

Table 2. RMSE of each estimated method.

Section | x [mm] | y [mm] | 0 [rad] |

[ True value === PDAF|

3
2
E 1
g 0
>
-2
-3
4 -2 0 2 4 6
X iobal ™
(a) PDAF.

[N True value === MHE-PDA without constraint

3l
9l
£ 0
SO
!
3l

4 -2 0 2 4 6

X Giobal (M)

(b) MHE-PDA without constraint.

Fig. 14. Simulation results using the comparison method.
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PDAF t<16s 53 4.8 0.014
MHE-PDA | 1 <165 5.0 5.0 0.013
MHE-PDA All 6.6 9.1 0.034

straint for t = 0-16 s, and MHE-PDA with constraint for
t = 0-40 s, respectively. This shows that the deviation of
each method was sufficiently small until # = 16 s. MHE-
PDA outperformed PDAF after features were occluded.
The RMSE of the proposed method increased, but it was
still small.

In the following, we focus on the MHE-PDA with con-
straints. Fig. 16 depicts the time transition of estima-
tion error. The estimation error increased in the region
where two features are occluded, thus the estimation is
affected by the occlusion. However, the proposed method
prevented the tracking of false features by satisfying the
constraints as shown in Fig. 17.

Figure 18 depicts the time transition of the number
of observations which existed in the validation region.
Fig. 19 depicts snapshots of features of both the target and
the false objects together with the validation region. The
green, red, and blue points are the estimated features, the
object feature points, and the validation regions, respec-
tively. The purple points are the observations of static
object features, dynamic object features, and estimated
object features shown in Figs. 11 and 12, respectively.
Fig. 19(a) shows that features #1 and #2 had many obser-
vations in each validation region att = 15.75 s. Fig. 19(b)
shows that features #1 and #2 did not have an observation
in each validation region at r = 25.5 s. Fig. 19(c) shows
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Fig. 17. The error of estimated value and predicted value at
k=T.

that features #1 and #2 were occluded and false observa-
tions were predicted at r = 26.8 s.

Figure 20 depicts the time transition of the sum of
the weighting factors, Z;";l Bi,j, for each object feature.
Feature #3 was not occluded in this simulation; thus, its
weighting factor was kept high. However, the weights of
features #1 and #2 decreased when features #1 and #2
were occluded. Thus, the proposed method could sup-
press false recognition, due to the multiple observations
and occlusion by weighting factors.
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Fig. 18. The number of feature points inside each validation

region. The dotted lines indicate r = 15.75 s, = 25.5 s, and
t = 26.8 s, respectively.

7. Conclusion

In this paper, we proposed MHE-PDA, which incorpo-
rates probabilistic data association into the framework of
MHE, as a method in which nonlinear estimation can be
accomplished via numerical optimization. The proposed
state estimation method utilizes a system noise constraint
and is robust against occlusion and false recognition. In
the simulation, we verified the effectiveness of the pro-
posed method against occlusion and false recognition by
comparing with PDAF. Future work in this domain re-
quires implementing the proposed method into on-board
cameras to validate its effectiveness.
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