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Subjective risk assessment is an important technology
for enhancing driving safety, because an individual ad-
justs his/her driving behavior according to his/her own
subjective perception of risk. This study presents a
novel framework for modeling personalized subjective
driving risk during expressway lane changes. The ob-
jectives of this study are twofold: (i) to use ego vehi-
cle driving signals and surrounding vehicle locations
in a data-driven and explainable approach to identify
the possible influential factors of subjective risk while
driving and (ii) to predict the specific individual’s sub-
jective risk level just before a lane change. We pro-
pose the personalized subjective driving risk model, a
combined framework that uses a random forest-based
method optimized by genetic algorithms to analyze the
influential risk factors, and uses a bidirectional long
short term memory to predict subjective risk. The re-
sults demonstrate that our framework can extract in-
dividual differences of subjective risk factors, and that
the identification of individualized risk factors leads
to better modeling of personalized subjective driving
risk.

Keywords: risk assessment, subjective risk, personaliza-
tion, risk factor identification, lane change

1. Introduction

There is a Chinese saying, “Don’t just know something,
but also know why it happens,” which means that if we
want to be able to understand a phenomenon, we also need
to know what causes it. Driving has become a common
behavior in our daily lives, and because driving safety is
critical, predicting the risk levels of the current driving
state and detecting the cause of the risk are all important

Fig. 1. Comparison of the factors that contribute to the per-
ception of driving risk between subjective risk and objective
risk.

technologies, whether in ADAS or in autonomous driving
systems. Therefore, in our study, we aim to predict driv-
ing risk for individuals. Yet, the definition of risk varies
on studies and applications. In our study, subjective risk
refers to a driver’s ability to identify and respond to poten-
tial risk in traffic situations, while objective risk refers to
the objective probability of being involved in an accident,
which can be directly measurable from the environment,
vehicle dynamics, and driving behaviors. The definition
of driving risk in this study, and its related factors are il-
lustrated in Fig. 1, in which, a comparison of the factors
related to subjective and objective risk shows that subjec-
tive risk is influenced by driving task difficulty (such as
a lane change in a crowded traffic), driving experiences,
age, and even personality, most of which are not measur-
able. Research into the assessment of objective risk has a
long history [1–5], however, the field of subjective risk as-
sessment research, which seeks to understand human risk
perception remains largely unexplored. Studies, i.e., [6,7]
have noted an inverse relationship between the subjective
risk of drivers and traffic accidents: if drivers are able to
detect or predict risky driving situations, they have an op-
portunity to alter their driving behavior to reduce their risk
of having an accident. If we can identify the key factors
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Fig. 2. Overview of our study including the dataset, personalized subjective driving risk model (PSDRM), and performance of
analysis and prediction.

that drivers use to detect situational risk at key points in
time, we may be able to reduce the probability of acci-
dents [8, 9]. Therefore, we consider that causative factors
and key timing are important for subjective risk modeling.

Along with the explosive development of modern arti-
ficial intelligence (AI) and sensor technology, there have
been few studies to assess subjective risk. Most of them
focused on risk assessment performance as in [10], a long
short term memory (LSTM) was used to classify the driv-
ing scenes as risky or not. However, deep neural network-
based methods have well-known limitations, including
lack of interpretability of the key features and the reasons
of model structure [11], thus, they could not explain why
scenes were risky, or what driving-related information in-
fluenced these scenes to be risky. In addition, the reason
why we feel risky is individual dependent, that is to say
everyone has their own subjective risk assessment system.
There are some studies conducted to model the individ-
ual subjective risk. In [12], the concept of RFind (risk
feeling of individuals) was proposed, attuned to individ-
ual drivers, using a linear combination of 1/THW (time
headway) and 1/TTC (time-to-collision). However, this
risk index cannot be directly applied to adjust driving be-
havior.

To fill this gap, our work aims to: (i) explore which ego
vehicle driving signals influence an individual’s subjec-
tive risk and (ii) construct an effective method to predict
the potential of subjective risk for specific users of ego ve-
hicle driving signals and surrounding vehicle information.
To achieve these two goals, we developed an integrated
framework consisting of a risk factor identifier, based on

random forests (RFs) methods optimized by genetic algo-
rithms (GA), to identify important driving signal features
related to personalized subjective risk. A subjective risk
predictor based on a bidirectional long short term mem-
ory (BLSTM) model is used to predict the potential risk
value of a lane change for several participants. Express-
way lane change scenarios are selected, because changing
lanes at high speed is relatively risky for drivers, and ex-
pressways do not have pedestrians or traffic signals so we
were able to analyze participants’ risk factors in straight-
forward manner. Our method was data-driven, i.e., it was
based directly on the signals of the ego vehicle and sur-
rounding vehicles, rather than on questionnaires. In Fig. 2
the overall procedures and the kinds of dataset we used
are illustrated. The proposed integration framework, the
RFGA-BLTSM, efficiently combined an ensemble tree-
based learning method with a sequential prediction deep
neural networks-based method. Our contributions in this
study are as follows.

1. A data-driven machine learning method models in-
dividual assessment of driving risk (subjective risk)
for lane change maneuvers.

2. A method to extract influential driving related factors
in an explainable way.

3. A method to predict the subjective risk level of lane
change maneuvers for different participants.

This paper is structured as follows. In Section 2, we
introduce studies related to risk assessment and risk fac-
tor identification. We then outline personalized subjec-
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tive driving risk model (PSDRM) in the Section 3. The
methodology of PSDRM is explained in Section 4. The
experimental evaluation results are described in Section 5
and overall discussion in Section 6. Finally we conclude
this work in Section 7.

2. Related Works

As stated before, we had two goals for this study. The
first was to identify and investigate the factors which in-
fluence subjective risk for individuals, and the second was
to construct an accurate model of the subjective risk as-
sessment of each participant. Previous works related to
these two goals are discussed in this section.

2.1. Risk Assessment
In recent years, thanks to the rapid development of sen-

sor technology and hardware, the collection of driving
data has become more accessible and affordable. At the
same time, data-driven approaches have increasingly been
used in risk assessment.

2.1.1. Objective Risk
Based on these developments, methods for machine

learning have also been applied to the problem of objec-
tive risk estimation. Currently there are two main types
of risk estimation algorithms: deterministic algorithms
and probabilistic algorithms. Probabilistic algorithms es-
timate the degree of risk by calculating the probability dis-
tribution of a collision between a vehicle and surround-
ing objects. In [2, 4], collision risks were estimated as
stochastic variables and were predicted for a short period
of time into the future through the use of hidden Markov
models and Gaussian processes. In [13], the risk of an ac-
cident was computed as a conditional risk using a graphi-
cal model, and this probabilistic risk was used for mak-
ing go or no-go decisions. In another study [14], mo-
tion planning based on risk potential optimization was
demonstrated. Probabilistic risk assessment can man-
age dynamic environments and uncertainty as stochastic
variables, however the calculation cost of probabilistic
approaches is extremely high. In contrast, determinis-
tic risk estimation methods have the advantages of high
computational efficiency and relatively ease of develop-
ment. Various risk estimation measurement indices, such
as TTC (time-to-collision) and THW (time headway),
have been analyzed and compared for deterministic risk
assessment [1, 15]. There is little doubt that objectively
risky situations are hazardous, and earlier studies have
focused on the avoidance of objective risk [5, 7, 16–18].
However, other studies [19] have rejected the idea that
objective risk is a primary determinant of driving behav-
ior, suggesting instead that drivers generally seek to avoid
subjectively risky situations, and that behavioral adjust-
ments are made to match these subjective risk estimates
with a target level of acceptable risk [20]. Therefore, we

preferred to focus on modeling subjective risk, which is
more effective for capturing driving behavior.

2.1.2. Subjective Risk
Regarding to subjective risk assessment, investigation

into the relationship between risk perception and acci-
dents also has a relatively long history. The most chal-
lenging point of subjective risk assessment is the defini-
tion of subjective risk, which is not clear [21, 22]. Not to
say that the influential factors of risk perception may con-
tain such a variety of possibilities [6–8,10,23], such as the
physical abilities of the drivers, the dynamic surrounding
obstacles, driver workload, mental condition, the demo-
graphic information such as age, and gender. If we sum-
marize all these factors as individual differences, most of
the information could not be directly observed from driv-
ing data. This would lead to the result that real time risk
analysis and estimation could not be conducted. However,
one thing that is certain is that subjective risk perception
influences driving behavior [24, 25]. Thanks to the rapid
development of machine learning technology and a data-
rich environment, some studies began to assess subjective
risk using data-driven approaches. In [26], for example,
an index of the driver’s longitudinal perceptual risk esti-
mate (PRE), along with TTC, THW and others features
for detecting abnormal timing of braking, was proposed.
Furthermore, in [12], the concept of RFind was proposed,
which is an extension of the notion of risk feeling (RF)
attuned to individual drivers, using a linear combination
of 1/THW and 1/TTC. However, the reasons why certain
factors influence subjective risk remain unclear. There-
fore, different from other works, we aim to model subjec-
tive risk using data-driven approaches to identify individ-
ual subjective risk factors to unlock this black-box, using
directly measurable driving signals, at the same time to
predict subjective risk levels for individuals effectively.

2.2. Risk Factor Identification
Risk factor analysis and identification has long been

a data-based field of research, with the use of risk eval-
uation questionnaires collected from study participants
used for statistical analysis in [22, 27–31]. More recently,
the use of behavioral and physiological data, as well as
other data-driven approaches, has become more preva-
lent. In [32] negative binomial regression was used to
identify factors for predicting an individual’s driving risk,
indicating that a driver’s age and personality, and critical
incident rate had an significant impact on crash and near-
crash rates. Further research is needed into factors that
trigger a driver’s perception of risk, and on methods that
could be used for personalizing the level of acceptable risk
in autonomous driving systems, for example. Different
from listed works, in our previous work [33], we com-
pared driving signals that influenced the perception of in-
dividual drivers’ subjective risk during lane changes. In
this study, we expand our work by attempting to compre-
hensively identify the important factors that influence the
perception of risk by drivers, by examining ego vehicle
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Fig. 3. The pipeline of the proposed PSDRM.

driving behavior signals, the location of surrounding ve-
hicles, and lane change timing. We apply a GA to find the
optimal RF structure. These personalized random forests
structures with individual selected features should give us
an insight, and explain how our personal driving behavior
reflects our perception of subjective risk.

3. PSDRM

Our work focused on employing data-driven machine
learning techniques to first investigate the factors that in-
fluence subjective risk (in machine learning terms: fea-
tures) to interpret driving preferences on ego driving sig-
nals and surrounding vehicle signals, and to predict sub-
jective driving risk levels.

To achieve these two goals, as illustrated in Fig. 2, our
subjective risk dataset include (A) ego vehicle driving sig-
nals (in our study, we extracted braking force, acceler-
ation force, steering angle, velocity, lateral acceleration,
and longitudinal acceleration from a controller area net-
work (CAN)), and (B) surrounding vehicle TTCs are ex-
tracted to quantify the driving behavior and environment.
The subjective risk report of ten participants (C) after
they viewed the same lane change in front-view camera
videos were selected as the target personalized variables.
The PSDRM consisted of (D) an analysis of the features
that influence ego vehicle driving signals and surrounding
vehicle locations using the RFGA, which combined RFs
with GA optimization, and (E) a prediction of subjective
risk using 3-seconds data right before lane change start
using a BLSTM. In Fig. 3 the pipeline of the proposed
architecture is introduced, which comprises of four steps.

1. Feature extraction: first, the dynamic features of the
ego vehicle driving signals and the TTC values of
the surrounding vehicle information were extracted.
The dynamic features were extracted to capture the
changes of driving behavior over time.

2. Risk factor ranking: next, we applied an RF based
method to rank features, in order to visualize and in-
tuitively understand the individual differences in the
influential factors of subjective risk. Our purpose
for this study was not only to predict the risk lev-
els of a lane change maneuver, but also to analyze
the important ego vehicle-related signals that influ-
ence an individual’s risk perception. To address this
problem, we adopted RFs [34] to identify the impor-
tant features of subjective risk assessment. The ex-
plainability of a data-driven model is important for
human users to understand why it can predict, so
that we can appropriately trust. More and more re-
lated works began to address this problem, e.g., the
2016 ICML Workshop on Human Interpretability in
Machine Learning [35]. Recently a new DARPPA
program on explainable AI [36] showed the impor-
tance of an explainable model, and mentioned that
RFs are more interpretable for their ensemble tree-
based structure compared with deep neural networks.
Furthermore, RFs can calculate the influence of fea-
tures on the classification results [37, 38], so in our
work feature importance are ranked to show the in-
dividual differences in subjective risk factors.

3. Risk factor identification: in order to adaptively se-
lect the number of influential risk factors, we pro-
posed RFGA which used GA to optimize the RFs
parameters of the tree-structure, selected features,
and optimal forest size. RFs are powerful because
they randomly select features to reduce the effect of
the variance on the classification result, thus we still
consider GAs to capture the individual differences
when building tree structure, so that we could obtain
a framework with which to build an accurate subjec-
tive risk assessment model with personalized feature
selection.

4. Subjective risk assessment and prediction: the last
step was to concatenate the individual dominant fea-
tures to predict subjective risk levels for specific tar-
get participants. The BLSTMs were applied as a se-
quential prediction method, because our target risk
level was reported after subjects viewed videos of a
sequence of lane change maneuvers.

To validate our risk factor identifier and predictor as
shown in Fig. 2, the performance of our model is shown
as (F) the feature analysis result for ego vehicle driving
signals and surrounding vehicle locations for both right
and left lane changes, and for different time segments us-
ing before, during, and after lane change data and, (G) the
subjective risk prediction accuracy of participant-closed
and participant-open experiment. Participant-closed was
a prediction experiments that used the data of one partici-
pant in the training and test phases, while participant-open
was a prediction experiment that used the data of different
participants in the training and test phases.
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4. Methodology

In this section, we introduce the details of our dataset,
including how we set up ground truth for subjective risk,
and the methodology for conducting risk factor identifica-
tion and prediction with the PSDRM.

4.1. Dataset
A subset of the NUDrive dataset [39] was used as our

data in this study. Several data were collected using an
instrument-equipped test vehicle, which was driven on the
road in Nagoya City, Japan. A subset of the data used in
our study consisted of 859 video clips of lane changes
captured using a forward-facing camera, as eleven differ-
ent drivers executed lane changes on a Nagoya express-
way. All the drivers followed the same route, and were
asked to drive as they normally do, as much as possible,
while conducting lane changes as often as possible. A
video of the entire trip for each driver was then parsed
manually to extract the lane change scenes. In this study,
subjective risk perception feedback was collected from
our participants as they viewed the lane change video
clips described above, using the annotation procedure de-
scribed in Section 4.1.1. The method used to extract that
were likely to influence the perception of risk, which in-
cluded ego vehicle driving signals and surrounding vehi-
cle location information, is explained in Section 4.1.2.

4.1.1. Data Annotation
To properly model subjective risk perception with in-

dividual differences requires a large amount of related
factors, such as age, driving experience, and task diffi-
culty as shown in Fig. 1, and demands a very complex
high-dimensional distribution. To reduce cost of collect-
ing such data, Japanese drivers were selected through a
random sample as experiment participants. We narrowed
down our target participants as non-expert drivers of a
similar age, and asked all the participants to watch the
same lane change videos to reduce the influence of demo-
graphic variables so as to model their latent personality.
Ten participants (five male and five female) with an aver-
age age of 44 years (SD = 5.2 years) were recruited ran-
domly without knowing the purpose of this experiment in
our subjective risk assessment experiment. All the partic-
ipants had a valid driver’s license and an average of more
than 16 years of driving experience.

Prior to the experiment, the data collection procedure
was approved by the ethic committee of the Institutes of
Innovation for Future Society at Nagoya University on
October 8th, 2015 (approval number KIEI-1), to guaran-
tee the safety and privacy of the participants. The partic-
ipants were asked to fill out a demographic survey, and
were then asked to view video clips of lane changes on
a video player installed in a notebook computer, while
marking a score sheet with the level of risk they perceived
during the lane changes. The videos were recorded us-
ing a forward-facing camera, and included images from
3 s before each lane change until 3 s after the lane change

Fig. 4. Area codes used to represent the locations of sur-
rounding vehicles. TTC values for the nearest vehicles in
each of the five areas shown above were measured during
each time interval.

was completed. All the participants were asked to view
the same 859 lane change video clips (432 lane changes
to the right and 427 lane changes to the left) without any
knowledge about who was driving the vehicle. Each of
the lane change video clips varied in length, with an av-
erage length of 12.64 s (MD = 12.64 s, SD = 1.30 s).
As they viewed each lane change, the participants were
asked to report the level of risk perceived on a keypad,
using a 5-point Likert-scale [40] for the risk level score,
as follows: 1 = very safe, 2 = safe, 3 = neither safe nor
unsafe, 4 = risky, 5 = very risky. The participants only
observed driving videos on a computer, so they did not
perceive any inertial force in response to car movement.
Furthermore, information about surrounding vehicles that
was not recorded by the front-view camera, could not be
observed, thus the observed surrounding area is illustrated
in Fig. 4. In order to prevent habituation by the experi-
ment participants, the sequence of videos was randomly
shuffled, so that participants would not observe videos
from the same driving sequence.

4.1.2. Feature Extraction
The ego vehicle driving signals (braking force, acceler-

ation force, steering angle, velocity, lateral acceleration,
and longitudinal acceleration) were taken directly from
the vehicle’s CAN, while the TTC values for the sur-
rounding vehicles were calculated using relative veloc-
ity and distance information from the radar sensor data.
These two types of data were synchronized to 10 Hz.
The relationship between the content of the lane change
videos and the raw driving signal data from the ego ve-
hicle is explained in Fig. 5. The dynamic features of
the ego vehicle driving signals and the surrounding vehi-
cle location data also offer a wealth of information about
subjective risk perception, because lane change behavior
varies over time in response to the presence of surround-
ing vehicles and to differences in the driving environment.
Our method of designating the locations of surrounding
vehicles is shown in Fig. 4. Because participants could
only observe surrounding vehicles that were visible in the
video captured by the forward-facing camera, the effect of
vehicles located behind the ego vehicle was not analyzed
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Fig. 5. Relationship between the content of the lane change
video clips and raw signal data from the ego vehicle. During
our collection of subjective risk ranking data, all participants
were asked to view the same lane change videos, without
knowledge of who was driving the vehicle.

in this study. TTC values for the nearest vehicle in each of
the surrounding areas were also calculated when the sur-
rounding vehicle information was captured. We defined
our dynamic features using the same linear regression co-
efficients as those proposed in [41], as shown in Eq. (1).

ȯ(t) =

N

∑
n=−N

n ·o(t +n)

N

∑
n=−N

n2

. . . . . . . . . (1)

where o(t) is a static feature of raw driving signals at time
t. Examples of these static features include b (braking
force), a (acceleration force), and θ (steering angle). N
represents the size of the half-window used to calculate
the coefficients. We determined the regression window to
be 2N = 1000 ms for both first and second order features
of the raw signals through experimental evaluation.

The features extracted for our study are summarized in
Table 1, and consist of 17 features in total, divided into
two categories, which are ego vehicle driving signals and
the surrounding vehicle locations. The first order dynam-
ics of these features were calculated using Eq. (1), and the
second order dynamics of these features were calculated
by using Eq. (1) a second time, based on the first order
dynamics.

4.1.3. Personalized Subjective Risk
In order to visualize individual differences in subjective

risk while watching the same driving videos, t-distributed
stochastic neighbor embedding (t-SNE) [42] was applied
to reduce the feature space of 12 dimensional ego vehi-
cle driving signals into two dimensions so that one lane
change maneuver could be marked as one scatter point.
We visualize all lane change maneuvers on a map illus-
trated in Fig. 6, in which five risk levels are marked by dif-

Table 1. Features likely to influence subjective risk.

Categories # Description Features
1 Braking force b
2 1st order brake force ḃ
3 2nd order brake force b̈
4 Accel force a

Ego 5 1st order accel force ȧ
vehicle 6 2nd order of accel force ä
driving 7 Steering angle θ
signals 8 1st order steering angle θ̇

9 2nd order steering angle θ̈
10 Velocity v
11 Lateral acceleration ω
12 Longitudinal acceleration L
13 TTC of the nearest vehicle in area #1 T TC1

Surrounding 14 TTC of the nearest vehicle in area #2 T TC2

vehicle 15 TTC of the nearest vehicle in area #3 T TC3

location 16 TTC of the nearest vehicle in area #4 T TC4

17 TTC of the nearest vehicle in area #5 T TC5

ferent marker shapes for ten participants. From this visu-
alization, we observe that individual participants reported
different risk levels (different marker configurations) for
the same lane change maneuvers (the same point in the
figure).

4.2. Lane Change Scenario
Lane changes were selected as the driving risk assess-

ment scenario for our study, because lane changes on
expressways are considered to be relatively risky [43].
In this study, lane changes were divided into two types
(lane changes to the right and to the left), and into three
chronological segments (before, during and after the lane
change) as shown in Fig. 7. We did this in order to inves-
tigate individual differences in risk perception related to
the type of lane change, as well as differences that might
occur during various chronological segments of the lane
changes.

4.3. Risk Factor Identification Using RFGA
To formalize this problem, we considered our dataset

as X , and each lane change was defined as Xn, the n-th
lane change data included a set of k features, and Y was
the class labels set such that yn ∈ {1, . . . ,5} as shown in
Eq. (2), where 1 = very safe, 2 = safe, 3 = neither safe
nor unsafe, 4 = risky, 5 = very risky. There were three pa-
rameters of the RFs to be determined, which were ntrees:
the number of trees, mtry: the node size for stopping the
split, and k: the optimal number of features selected to
represent the individuals. The accuracy was the averaged
classification area under the curve (AUC) score.

Xn =

⎡
⎢⎢⎢⎢⎢⎣

x11 x12 · · · x1k
... x22 · · · ...
...

. . .

xt1 . . . xtk

⎤
⎥⎥⎥⎥⎥⎦

n

, Yn = [y] . . (2)
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Fig. 6. Individual differences in reported subjective risk levels by ten participants for all lane change maneuvers. The dimensions
reduced by t-SNE are represented on the X-Y axes. The t-SNE results show little correspondence between participants. Note that
each data point in the participant’s map represents the same lane change, however, because of individual differences, the plot shows
different marker configurations. The markers used in this figure are : very safe; : safe; +: neither safe nor risky; : risky; �:
very risky.

Fig. 7. Expressway lane changes were selected for model-
ing subjective risk during driving. Lane change data were
divided into two categories, type of lane change (left) and
chronological segment of the lane change (right).

where the sampled bootstrap dataset Xn, has a set of driv-
ing data and a set of risk levels Yn with t time frames, and
a feature vector V that represented the set of parameters
to be optimized in order to maximize the accuracy of the
RFs is shown in Eq. (3).

V =
[

Xk1
n Xk2

n · · · XkK
n mtry ntrees

]
(3)

To find the optimal set of features for the RFs in the re-
duced feature space in the k dimension, where 1≤ k≤ K,
k ∈ N, K represents the maximum value of the feature
space, which for the ego vehicle driving signals is 12, and
for the surrounding vehicle directions is 5. We applied
GA in a way similar to the approach in [44, 45] to select
the dominant features for the different participants. We
summarized our RFGA algorithm as Algorithm 1. Algo-
rithm 2 shows how we designed our fitness function to

Algorithm 1: Get optimal RFs using GA.
RFGA(Dataset)
begin

v,c,m←− hyper-parameters
V ←− prepareV(Dataset)
g←− 0
Gg←− generate random v solutions from V
fitness←− computeFitness(s)∀s ∈ Gg
while fitness ≤ Tf and g≤ NG do

Gg←− crossOverAndMutate(Gg,c,m)
fitness←− computeFitness(s) ∀s ∈ Gg
g←− g+1

return (fittest solution)

Algorithm 2: Compute fitness for random forests.
computeFitness(solution)
Result: Accuracy of the Random Forests
begin

A←− solution
Chromosome←− getChromosome(A)
k,ntrees,mtry←− decode(Chromosome)
Ag←− decomposeSet(A,k,ntrees,mtry)
model←− f itRF(Ag,ntrees,mtry)
accuracy←− evaluate(model)
return (accuracy)

optimize the parameters of RFs, and Algorithm 1 shows
how the GA optimizes the parameter sets to find the best
parameters for constructing the RFs.

Algorithm 2 decodes the chromosome from the so-
lution using (getChromosome(..)) inside (decode(..)) to
extract the set of k values along with the ntrees and
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Fig. 8. Unfolded BLSTM network with LSTM units.

mtry values in the g-th generation. Following the decod-
ing and as outlined in Algorithm 2 the decomposition
(decomposeSet(..)) is applied to the subset according to
the solution’s gene (the parameter sets), and then an RF
model is fit by (fitRF(..)) on the decomposed solution Ag
with the number of features used at each split (ntrees and
mtry). With the obtained model of the decoded parameter
setting (gene), we calculate accuracy from (evaluate(..)),
and return it as the fitness of the RFs.

Algorithm 1 begins with hyper-parameter setting,
where v,c,m represent population size in one generation,
and the crossover and mutation parameters respectively.
The initial feature vector V is obtained by prepareV(..)
in Eq.(3). Then the initial generation is v : v < K + 2 pa-
rameters randomly generated from V , and we calculate
the accuracy obtained by computeFitness in Algorithm 2.
Until the fitness threshold Tf and the maximum gener-
ation amount NG are satisfied, the algorithm will gen-
erate the solutions (individuals) Gg on parameter setting
c,m. For each new individual, fitness will be calculated
again by computeFitness to check whether this genera-
tion is the fittest. After the iteration, the algorithm re-
turn the fittest solution including the optimal parameters
k,ntrees,mtry. In our study, we interpret these parameters
to be personalized parameters for constructing RFs.

4.4. Subjective Risk Level Prediction
4.4.1. Full Model

To construct an effective predictor, we propose an ap-
proach that uses BLSTM [46] with all the related informa-
tion from the ego vehicle driving signals and surround-
ing vehicle TTCs in a sequential model. The BLSTM
includes two independent LSTM networks in a BLSTM
module, while the LSTM is a special recurrent neural net-
work model. Through a special gate structure, it can store
and retrieve information over a long time. In Fig. 8, a
BLSTM recurrent diagram with LSTM units is shown.
The LSTM comprises three gate structures (input i, for-
get f , and output o), a memory unit controller cell c, two
input and output activation units, and three peepholes con-
nections. The input and output gates are used to control

the block input and output of the cell, and the forgetting
gates are used to control the memory and forgetting state
of the cell. The peephole is connected to the status infor-
mation before the gates that allows the cell to record more
sequential information. Finally, the block output informa-
tion is recurrent, and it connects to the block input and
all other gates, which enables LSTM to model complex
and long-term dynamic features, and solves the gradient
disappearance problem caused by long sequences in tradi-
tional recurrent neural networks [47]. The forward mech-
anism of the LSTM can be expressed using the following
equation [48].

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

In = η (WIxt +RIOt−1 +bI)
it = σ (Wixt +RiOt−1 + pi� ct−1 +bi)

ft = σ
(
Wf xt +R f Ot−1 + p f � ct−1 +b f

)

ct = it � It + ft � ct−1

ot = σ (Woxt +Royt−1 + po� ct +bo)
Ot = ot�η (ct)

. (4)

where I, i, f , c, o, and O represent the block input, input
gate, forget gate, memory cells, output gate, and block
output respectively. t is the number of sequential data; x
is the input feature of the nth sequence; W is the weight
matrix; R is the recurrent weight matrix; b is the bias vec-
tor; p is the peephole weight vector; and the subscripts
I, i, f ,o respectively represent the block input, input gate,
forget gate, and output gate. σ is the logistic sigmoid ac-
tivation function. η is the hyperbolic tangent activation
function, and � denotes the point-wise product with the
gate value.

Compared with the LSTM, the BLSTM solves the
problem that LSTM can only get past information but not
future information. As shown in Fig. 8, there are two in-
dependent LSTM networks in a BLSTM module. These
two LSTM networks have different directions, one is a
forward LSTM, and the other is a backward LSTM. The
forward LSTM is mainly used to extract future informa-
tion about the sequence data, while the backward LSTM
is mainly used to extract past information about the se-
quence data. Finally, their results are connected to the
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Fig. 9. Full model for personalized subjective risk prediction using BLSTM. All ego vehicle driving signals and surrounding vehicle
location features are used for subjective risk prediction.

same output unit, and future and past features are fused
to produce the output. In this way, the BLSTM is able to
extract and fuse future and past features of the sequence
data, which can be expressed using the following formu-
las [49].

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−→
h t = Γ

(
W−→I xt +W−→h Ot−1 +b−→h

)

←−
h t = Γ

(
W←−I xt +W←−h Ot+1 +b←−h

)

yt = W−→y
−→
h t +W←−y

←−
h t +by

. . . . (5)

where
−→
h t is the forward hidden sequence,

←−
h t is the back-

ward hidden sequence, and Γ is implemented by Eq. (4).
y is the prediction of subjective risk for participants. We
used averaged AUC score which represents the area un-
der the receiver operating characteristic curve (ROC) as
our evaluation criterion.

The architecture of the prediction model that used all
the ego vehicle driving signals and surrounding vehicle
location features is shown in Fig. 9. The core of the pre-
dictor is a three-layer BLSTM. Due to its recurrent nature,
the model can be trained and evaluated on an arbitrary
length of driving data. Because the participants viewed a
driving video that included the 3 s before the lane change
begun, we also extracted 3-seconds data before the lane
change, including the ego vehicle driving signals and sur-
rounding vehicle location, to predict the subjective risk.

4.4.2. Individual Model
To capture the individual differences in the influencing

factors for subjective risk levels, we also built individual
models that used RFGA to optimize RFs, and used the
RFs a second time to predict subjective risk levels for par-
ticipants. This model is shown in Fig. 10. The person-
alized RFs construction parameters kego,ksurr,ntrees,mtry
were selected by RFGA for each participant in Algo-
rithm 1. The features selected by the personalized pa-
rameters are used to predict subjective risk using RFs for
that participant. Because our individual model captures

Fig. 10. Individual model for personalized subjective risk
prediction using RFGA. Personalized parameters selected by
RFGA are used for subjective risk prediction using RFs for
each participant.

personalized feature selection, we consider it to be valid
for personalized subjective risk prediction.

4.4.3. Integrated Individual Model
RFGA shows the explainability of RFs parameters for

the tree structure, and the features selected by the GA.
However, the RFs have a limitation on handling time se-
ries sequential data. Predictions that use the BLSTM with
forward and backward layers can get not only past infor-
mation but also future information. The subjective risk
levels for participants were reported after they viewed the
lane change maneuver videos, which happened along a
time sequence. We proposed our PSDRM to integrate
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Fig. 11. Integrated individual model for personalized sub-
jective risk prediction integrates RFGA with BLSTM to keep
explainability by extracting personalized parameters and to
predict subjective risk levels.

RFGA with BLSTM to maintain explainability by extract-
ing personalized parameters and to predict subjective risk
levels using all the input data. Logistic regression was
used to combine these two models. The parameters for lo-
gistic regression were decided by experimental iteration.
Logistic regression was used as a gate function to decide
the weight of the individual and full models. The inte-
grated individual model is illustrated in Fig. 11.

5. Experimental Validation

In this section, we evaluate our model in three steps.
Firstly, we conduct an experiment for risk factor identi-
fication, and in this part, we investigate personalized pa-
rameters selected by RFGA, individual differences in the
signals of the ego vehicle and the surrounding vehicle lo-
cations, with different lane changes time segments using
RFs alone. Secondly, after determining the best combina-
tion of input signals, we conducted participant-closed and
participant-open subjective risk forecasting before a lane
change to compare with traditional methods. In our study,
we define participant-closed experiments and participant-
open experiments as follows.

1. Participant-closed experiment: the same participant
data (were used) for training and testing.

2. Participant-open experiment: all participant data
were mixed together for training, while model was
tested on individual participant data.

Risk factor identification and prediction were mainly
conducted in participant-closed experiments to validate
whether dominant features for individual risk could be
used to improve prediction accuracy, while participant-
open experiments were conducted for comparison with
general models. Lastly, we conducted subjective risk pre-

Table 2. Personalized parameters selected by RFGA.

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10
kego 2 1 4 5 5 4 4 6 6 5
ksurr 2 1 2 1 3 2 3 1 2 4
ntrees 100 30 100 30 50 100 50 100 50 30
mtry 7 3 5 5 7 3 7 3 5 3

diction during lane changes to compare between proposed
models. 75% of the lane change data was used for training
while the remaining 25% was used for testing the models.
This allowed us to train our model with data from 644 lane
changes, while 215 lane changes were omitted to be used
later as test data, i.e., the test data were completely inde-
pendent of the training set.

5.1. Risk Factor Identification Result
kego,ksurr represent the optimal number of selected fea-

tures for ego vehicle driving signals and surrounding vehi-
cle location respectively, kego ≤ 12, ksurr ≤ 7, kego,ksurr ∈
N, ntrees ∈ {10,30,50,100,300} represents the number
of trees and mtry ∈ {1,3,5,7,10} represents the pruning
node size used for constructing the RFs. The hyper pa-
rameters in Algorithm 1 including the population size of
one generation, and the crossover and mutation parame-
ters, v,c,m were set to 50, 0.5, and 0.5 empirically. In ad-
dition, the fitness threshold Tf and the maximum number
of generations NG were selected to be the averaged AUC:
0.7 and 100 respectively. The parameters for personalized
RFs selected by the GA are shown in Table 2. This result
shows that by using RFGA, we can generate personalized
RFs structure with an explicit parameter setting, and these
parameters can be used to develop the PSDRM.

5.1.1. Ego Driving Vehicle Signal Ranking

To obtain an intuitive understanding of the influence of
various driving signals on the risk assessment of individu-
als, we compared the driving signal ranking results when
our participants were viewing lane changes to the left and
right, which are shown in Figs. 12 and 13 respectively.
The y-axis represents feature importance for the ego vehi-
cle driving signals. During the scenes of lane changes to
the left, for all of our participants except P7 and P8, the
most important feature for assessing subjective risk was
velocity v, while the importance of the other features dif-
fered between the participants. These results show that
when using an RF method, features other than velocity
capture more individual differences in risk assessment.
During the scenes of lane changes to the right, our feature
analysis results revealed more individual variation in the
importance of the various features. Velocity was still the
most important feature for all of the participants except
P7, P8, and P10, while a second tier of important features
now included 2nd order dynamic brake b̈ and lateral ac-
celeration ω for most of the participants.
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Fig. 12. Results of ego vehicle driving signal feature importance analysis during lane changes to the left. This result confirmed the
variation in the perception of risk between individuals.

Fig. 13. Results of ego vehicle driving signal feature importance analysis during lane changes to the right. In Japan, the right
lane of expressways is for higher speed driving and passing. Our feature analysis results for lane changes to the right showed more
individual variation in the importance of the various risk factors.

In order to confirm the existence of individual differ-
ences in the relationship between driving signals and sub-
jective risk, repeated one-way ANOVA tests were used to
test the significance of the effect of differences in veloc-
ity on subjective risk between individuals. Participants 1
and 2 were selected for comparison because in both of
their ranking results, velocity was the most influential fea-
ture during left lane changes, as shown in Fig. 12 and dur-
ing right lane changes in Fig. 13. A comparison of the
test scores is shown in Appendix A (Table 4 for partici-
pant 1, and Table 5 for participant 2). The observations
from these results are discussed below.

1. There were significant differences when velocity was
over 80 km/h, especially when velocity was 90–
110 km/h or more for participant 1.

2. Participant 2 experienced obvious changes in subjec-
tive risk at velocities of 50–60 km/h and 70–80 km/h.

3. These results not only confirm that subjective risk is
correlated with velocity, but also confirm the varia-
tion in risk between individuals. Participants 1 and 2
exhibited different thresholds regarding their similar
ranked sensitivity to velocity.

These results can be used in the future in the design
of autonomous driving systems to make the experience
more comfortable for passengers by incorporating their
personalized velocity preferences.

5.1.2. Surrounding Vehicle Location Ranking
In a manner similar to our analysis of ego vehicle driv-

ing signals, we also conducted an experiment to determine
the importance of various surrounding vehicle locations.
The results of our feature importance analysis for sur-
rounding vehicle TTCs are shown in Fig. 14(a) for lane
changes to the left, and Fig. 14(b) for lane changes to the
right. Before and during lane changes to the left, areas 1
and 2 showed significant importance. However after the
lane changes, area 3 became more important, while area 2
became less important. Before and during lane changes
to the right, areas 4 and 5 showed significant importance.
However, after the lane changes areas 1–5 showed little
difference in importance in relation to the subjective risk
assessments of our participants. Obvious differences be-
tween our participants in the importance of the locations
of surrounding vehicles during lane change scenes were
hardly ever observed.
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Fig. 14. Analysis results for the feature importance of sur-
rounding vehicle area for (a) left lane changes and (b) right
lane changes. Obvious differences in the surrounding vehi-
cle directions between individuals were rarely observed.

5.2. Prediction During Lane Changes
First, we conducted a participant-closed prediction us-

ing lane change data. The same participant’s data was
used in both training and test phases, the results of which
represented the performance of our models under the con-
dition where a large amount of participant-specific data
could be prepared in advance. In order to evaluate several
different models fairly, the test data selected to evaluate
the first model was also used to evaluate the other models.

The purpose of this study was to apply data-driven ap-
proaches to predict the subjective risk perception levels
of participants from measurable driving behavior signals,
and surrounding vehicle information, rather than from de-
mographic information. In addition, we propose BLSTM
as our prediction method by comparing it with the follow-
ing machine learning methods selected as benchmarks for
their high performance in previous risk assessment or re-
lated tasks [10, 33, 50–54]:

1. AdaBoost (AB)

2. Random forests (RF)

3. Support vector machine (SVM)

4. Guassian process (GP)

5. Gaussian mixture models (GMM)

Table 3. Comparison of participant-closed risk prediction
averaged AUC results for conventional and proposed meth-
ods, using ego vehicle risk features, surrounding vehicle risk
features or an integration of ego and surrounding vehicle risk
features.

Ego vehicle Surrounding vehicle Integrate both
AB 0.648 0.535 0.642
SVM 0.612 0.540 0.623
GP 0.564 0.512 0.583
GMM 0.631 0.579 0.637
MLP 0.598 0.528 0.614
RF 0.641 0.606 0.680
LSTM 0.653 0.626 0.692
BLSTM 0.670 0.636 0.703

6. Multi-layer perceptron (MLP)

7. Long short-term memory (LSTM)

8. Bidirectional long short-term memory (BLSTM)

To compare under the same conditions, full models
were selected for subjective risk prediction using only
during lane change data. A grid search procedure was
implemented using a reduced dataset to find the optimal
set of parameters for the conventional models. The de-
tailed full model architecture using BLSTM is illustrated
in Fig. 9. The results of this comparison experiment
are shown in Table 3, which indicate that the BLSTM
is the most appropriate method for assessing subjective
risk. These results confirmed the BLSTM could be ap-
plied for capturing risk perception levels from sequential
lane change maneuver data.

5.3. Forecasting Before Lane Changes
We conducted participant-closed and participant-open

forecasting using 3 s of data before the start of lane
change. In participant-open experiment, the data for dif-
ferent participants was used in the training and test phases.
This experiment evaluated performance when participant-
specific data could not be prepared in advance, and is an
important indicator of viability for practical use. The ex-
periment was conducted using leave-one-participant-out
validation, where one participant’s data were used as the
test data, and the remaining data of the other participants
were used as the training data. The experimental results
are shown in Fig. 15.

From these results we can see that performance in
the participant-open subjective risk forecasting was lower
than in the participant-closed experiment for all partici-
pants. There are two reasons for the poorer risk fore-
casting performance in the participant-open experiment.
Firstly, the perception of risk is participant-dependent
(i.e., subjective) and thus it varies from person to person.
It may vary so much that no single model can accurately
reproduce the risk assessments of different drivers. Sec-
ondly, the factors that cause drivers to subjectively per-
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Fig. 15. Comparison of personalized subjective risk fore-
casting accuracy for participant-closed and participant-open
experiment.

ceive the presence of risk not only depend on the ego ve-
hicle driving signals and the locations of surrounding ve-
hicles, but also may be caused by other factors, such as
phenomena in the surrounding environment, and the per-
sonality or emotional state of the driver.

5.4. Subjective Risk Assessment Result
Finally, as mentioned in Section 4.4, we proposed three

types of framework for subjective risk prediction: a full
model, an individual model and an integrated individual
model. In order to validate our proposed models, we built
four models for comparison that are defined below.

1. Full (BLSTM-sample) model: lane change maneu-
ver data, including ego vehicle driving signals and
surrounding vehicle information for the full length
of time, were regarded as one sample, and each sam-
ple corresponded to one risk label.

2. Individual model based on ego vehicle driving signal
(ind-drv-RFGA-frame): lane change maneuver data
included only ego vehicle driving signals, and each
frame corresponded to one risk label.

3. Individual model based on surrounding vehicle in-
formation (ind-sur-RFGA-frame): lane change ma-
neuver data include surrounding vehicle information,
and each frame corresponded to one risk label.

4. Integrated individual model (int-ind-RFGA-
BLSTM-sample): lane change maneuver data,
including ego vehicle driving signals and surround-
ing vehicle information with whole time length
are regarded as one sample, and each sample
corresponded to one risk label. Logistic regressions
are conducted to combine two prediction results
to decide the weight of individual differences and
sequential information.

Our research goals were firstly to understand the indi-
vidual differences on driving signals related to risk per-
ception, and to improve risk prediction accuracy for dif-
ferent participants. Our integrated individual model sat-
isfied these two goals within one model. The experimen-
tal results from the comparison of model variations are

Fig. 16. Comparison of personalized subjective risk predic-
tion accuracy using full model (BLSTM-sample), individual
model based on ego vehicle driving signals (ind-drv-RFGA-
frame), individual model based on surrounding vehicle in-
formation (ind-sur-RFGA-frame), and integrated individual
model (int-ind-RFGA-BLSTM-sample).

shown in Fig. 16. The proposed PSDRM with integrated
individual structure showed the best subjective risk pre-
diction performance for all participants significantly. This
result showed that by combining RFGA and BLSTM, the
PSDRM could capture individual differences of risk fac-
tors, and at the same time, it could predict subjective risk
levels properly.

6. Discussion

We proposed an RF based explainable approach to
identify personalized factors extracted from subjective as-
sessment of driving risk. Data-driven approaches can give
us insights into human perception which cannot easily to
be described directly. Moreover, this approach can pro-
vide a quantifiable way to utilize and optimize driving
behavior to reduce risk perception for specific drivers or
passengers. The comparison results between participant-
closed and participant-open experiments, showed that for
all participants, the participant-closed which only use the
data of specific participant for subjective risk modeling
obtained slightly better accuracy than the participant-open
models. This result confirmed that subjective risk percep-
tion is influenced by an individuals’ personal factors, and
by using those factors, the proposed integrated individ-
ual model achieved better risk assessment performance.
However, we still face the difficulties because of lack of
sufficient data to model individual differences and to pre-
dict subjective risk accurately. For example, for partici-
pants 2 and 5, and especially participant 10, we could not
improve his/her prediction accuracy to an acceptable level
with any of the models. This limitation included investi-
gation of individual differences in subjective risk percep-
tion. Data were collected from only ten participants. The
small number of participants may have resulted in some
of the key factors that influence risk perception being ran-
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domized with noise. Another limitation of this study was
that the participants were only able to obtain lane change
information from forward-facing video camera footage
without experiencing acceleration directly. The result of
our experiment to validate the lane change segments in-
dicated that participants perceived the period during lane
changes to be the riskiest, compared with the time peri-
ods before and after the lane change. However, because
the participants based their risk assessment feedback on
videos of the road ahead, this could also indicate that our
experiment omitted important information needed for risk
assessment that was not included in the video footage.

The field of subjective risk assessment and subjective
risk factor analysis is still in its infancy. The real-time
driving data recording systems and cloud platform ser-
vices that have emerged in recent years have facilitated
the collection and analysis of data for real-world driving
behavior, and further data-driven research using these new
technologies will help to better understand how drivers
assess risk. We aimed to draw a light from the rapidly
increasing data-driven methods into risk perception mod-
eling and utilize this knowledge to improve personalized
autonomous driving in future.

7. Conclusion and Future Work

In this study, we attempted to model subjective risk by
analyzing individual differences in the importance of ego
vehicle driving signals and surrounding vehicle locations
when the study participants predicted the risk levels of ex-
pressway lane changes. We proposed a PSDRM for mod-
eling subjective perception of risk. Our proposed model
is an integrated framework consisting of an RFGA risk
factor identifier, which is based on an RF optimized us-
ing GAs, to extract the personalized parameters needed to
model subjective risk. A BLSTM subjective risk predic-
tor was then employed to estimate the potential risk level
of lane change maneuvers as perceived by different indi-
viduals (our study participants). Experiments using our
data-driven risk factor identifier intuitively confirm the
existence of individual differences in the subjective risk
perception for individuals viewing the same lane change
videos. The features that influenced risk perception dur-
ing driving were extracted using driving related factors
from two categories: ego vehicle driving signals and sur-
rounding vehicle locations. Data within these two cate-
gories could be directly measured and extracted in real-
time, unlike other predictive factors such as the personal-
ity or demographic information collected using question-
naires. Another contribution of this study was the discov-
ery that by capturing individual differences in influential
risk factors along with time series data, the subjective risk
level prediction accuracy was increased for several of the
participants. In the future, we will expand on this work
to capture personalized preferences using driving-related
signals, and develop methods to adjust the behavior of au-
tomated vehicles by building a human-in-the-loop person-
alized driving system that can adapt to user preferences.
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Appendix A. One-Way ANOVA Between
Velocity and Subjective Risk
Perception

The test scores of one-way ANOVA between velocity
and subjective risk perception for participants 1 and 2 are
shown in Tables 4 and 5, respectively.
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Table 4. One-way ANOVA between velocity and subjective
risk perception for participant 1.

Velocity [km/h] Difference lwr upr p
20–30 0.112 0.004 0.240 0.0037
30–40 0.264 0.146 0.382 0.001
40–50 0.463 0.345 0.581 0.001
50–60 0.402 0.284 0.520 0.001
60–70 0.364 0.245 0.4820 0.001
70–80 0.280 0.162 0.398 0.001
80–90 0.138 0.020 0.256 0.009

90–100 0.017 −0.101 0.247 0.020
100–110 −0.061 −0.179 0.057 0.804

Table 5. One-way ANOVA between velocity and subjective
risk perception for participant 2.

Velocity [km/h] Difference lwr upr p
20–30 −0.148 −0.349 0.052 0.346
30–40 −0.697 −0.898 −0.496 0.001
40–50 −0.863 −1.064 0.581 0.001
50–60 −0.094 −0.295 0.107 0.879
60–70 −0.217 −0.418 −0.016 0.023
70–80 0.055 −0.146 0.256 0.995
80–90 0.271 0.071 0.472 0.0001

90–100 0.666 0.465 0.867 0.000
100–110 −0.166 −0.367 0.035 0.202
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