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This paper proposes a method to detect cutting points
on tomato peduncles using a harvesting robot. The
main objective of this study was to develop automated
harvesting robots. The harvesting robot was equipped
with an RGB-D (Red, Blue, Green, and Depth) cam-
era to detect peduncles and an end effector to harvest
tomatoes. Robots must be able to detect where to cut
crops during harvesting. The proposed method was
used to detect the cutting points on peduncles using
a point cloud captured by the RGB-D camera. Our
robot was used to identify the cutting points on tar-
get tomato peduncles at an actual farm to demonstrate
the effectiveness of our approach experimentally. Us-
ing the proposed method, the harvesting robot could
detect the cutting points on tomatoes.

Keywords: harvesting robot, cutting point detection,
point cloud processing, voxel processing

1. Introduction

Greenhouse cultivation has spread globally because it
has the advantage of enabling a stable supply throughout
the year without the influence of weather. However, there
is considerable room for automation and efficiency im-
provement in greenhouse cultivation. Further technical
innovation is needed to equalize labor costs and the re-
quired labor.

There are busy periods that require more workers than
usual in agricultural work. However, this may lead to
excess employment during other periods if farmers hire
workers based on their appropriate number for busy peri-
ods. On the other hand, it may be difficult for farmers to
harvest their crops at the proper time if they do not hire
enough workers. Therefore, our study focused on the de-
velopment of a harvesting robot that could be used as a
temporary worker.

Various studies have focused on the use of robots in
agriculture. These studies can be classified into three cat-
egories.

The first category mainly deals with end effectors and
grippers. Bachche et al. proposed the design and mod-
eling of a gripper and a cutting system for a five degrees-
of-freedom (5-DOF) robotic arm to harvest sweet peppers
in horticultural greenhouses [1]. In the proposed design,
both the gripping and cutting operations were performed
using only one servo motor to avoid complications in the
system. Yaguchi et al. proposed the design and develop-
ment of an autonomous tomato harvesting robot equipped
with a rotational plucking gripper, which dealt with esti-
mation errors robustly [2]. Van Henten et al. proposed the
concept of a modular cucumber harvesting robot equipped
with a thermal cutting device and tested it in a green-
house [3–5].

The second category mainly deals with robot vision.
Chen et al. proposed a harvesting humanoid robot system
to pick tomatoes and a vision cognition approach that en-
ables the robot to harvest tomatoes [6]. Tokunaga et al.
proposed an algorithm and designed an integrated circuit
for the recognition of circular patterns in a binary image
based on template matching with a modified matching de-
gree. Their proposed system is a part of a watermelon
harvesting robot vision system [7]. Si et al. proposed the
use of a mechanical vision system to design a robot that
can automatically recognize and locate apples for harvest-
ing [8]. Monta et al. proposed a robotic vision method
using cameras, a 3D vision system, and a laser sensor
for a tomato harvesting robot and a cucumber harvesting
robot [9]. Fujinaga et al. proposed a method to gener-
ate a tomato growth state map with image mosaicking for
automatic harvesting [10]. Fukui et al. proposed a robot
that estimates tomato fruit volume to acquire automati-
cally the growth data of not only red mature tomatoes but
also green immature tomatoes [11]. Sa et al. proposed a
method to detect the peduncles from 3D models recon-
structed from the detection of sweet peppers using a robot
equipped with a robotic arm and an RGB-D camera [12].
Luo et al. proposed a method to detect the peduncles of
grapes using one side of 2D images captured by a stereo
camera [13].

The third category mainly deals with an integrated
robotic system. Irie et al. proposed an asparagus harvest-
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Fig. 1. Main parts of a target tomato used in this study.

ing robot that measured whether the asparagus was tall
enough to harvest using a 3D sensor [14, 15]. They also
proposed a robotic arm mechanism and an end effector
to grasp and cut asparagus. Kondo et al. proposed com-
ponents, manipulators, end effectors, and visual sensors
for fruit harvesting robots adapted for use with tomatoes,
cherry tomatoes, strawberries, and grapes [16]. Hayashi
et al. proposed a strawberry-harvesting robot consisting
of a cylindrical manipulator, end effector, machine vision
unit, storage unit, and traveling unit [17]. Arima et al.
proposed a cucumber harvesting robot using a visual sen-
sor, manipulator, end effector, and traveling device [18].
Wang et al. proposed a tomato harvesting robot consist-
ing of a four-wheel independent steering system, 5-DOF
harvesting system, laser navigation system, and binocu-
lar stereo vision system [19]. The harvesting robot was
designed for harvesting tomatoes in a greenhouse.

It is necessary for robots to detect where crops need to
be cut during harvesting. Therefore, our study focused on
detecting the cutting points on tomato peduncles to im-
prove autonomous harvesting. Thus, this study focused
on the above second category. We previously proposed
a method to detect long peduncles with a 3D point cloud
acquired with an RGB-D camera [20]. Voxels converted
from point clouds were divided into layers, which were
then treated as targets for evaluation. An energy func-
tion was defined based on the three conditions of a pe-
duncle, and it was minimized to identify the cutting point
on each of the peduncles. When a peduncle is short, there
are cases where the calyx of the tomato obstructs the de-
tection of the cutting point or the cutting point is at ap-
proximately the same height as the tomato fruit. There-
fore, our previous method could not detect the correct
cutting points in these cases. In addition, this method
presupposes that the peduncles are vertically in front of
the stems. Therefore, detecting peduncles irrespective of
their length and angles is essential.

We propose a more advanced method to detect cut-
ting points on peduncles with 3D point clouds containing
depth information without depending on the state of the
peduncles. Fig. 1 shows the main parts of a target tomato
used in this study. Each tomato is harvested in a bunch by
cutting a peduncle. The proposed method uses only one

RGB-D camera

Robot arm End effector

Fig. 2. Proposed harvesting robot.

Fig. 3. Representative field used for the experiment.

frame of the point cloud data acquired with the RGB-D
camera in contrast to the method proposed by Sa et al.,
which reconstructs dense point clouds of sweet peppers
from multiple views. Voxelization was applied to reduce
the amount of data. Consequently, the computational time
for calculating the position between voxels was reduced.
The proposed method constructs a directed acyclic graph
after voxel clustering with several types of Region Grow-
ing methods. Finally, the Mahalanobis distance, which is
defined based on statistic information, was used to detect
appropriate cutting points on the peduncles.

2. Harvesting Robot

Figure 2 shows the proposed tomato harvesting robot.
This harvesting robot has a 6-DOF robot arm, end effec-
tor, and RGB-D camera. The end effector has the func-
tions of cutting tomato peduncles and holding tomatoes.
Our proposed method does not consider the volume of
the end effector because our method inserts the center of
a pair of scissors of the end effector into the cutting point
straightly at harvest time. The robot recognizes targets
for harvesting using colored point clouds acquired with
the RGB-D camera.

Figure 3 shows an example of the representative fields
used for the experiment. A rail is placed between lines of
tomatoes. The robot moves on the rail while facing one
side of a row.
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(a) Sparse resolution (b) Dense resolution

Fig. 4. Two different voxel resolutions.

3. Algorithm for Cutting Points Detection

This section describes the cutting points detection. The
proposed method contains five steps: voxelization of
point clouds, clustering of the tomato regions, expanding
the tomato voxels, constructing a directed acyclic graph,
and identifying the cutting points.

3.1. Voxelization of Point Clouds
This section describes the voxelization of point clouds

acquired with the RGB-D camera. Voxels have three
pieces of information. The first piece of information is
the coordinates of the voxels. The second is which point
clouds are included in the voxels. The third is the adja-
cency information among voxels. Based on this informa-
tion, voxelization not only has the effect of reduction of
the entire data but also contributes to reducing the calcu-
lation time required for searching neighbor voxels. Our
method uses voxelization with two resolutions to accel-
erate the process (Fig. 4). Sparse resolution voxels were
used to cluster the tomato regions. Dense resolution vox-
els were used to identify cutting points. The sparse reso-
lution is determined as the resolution that is close to the
size of the tomato fruit and is sufficiently large to keep
the tomato fruit from disappearing. The dense resolution
is determined as the resolution that is close to the size of
the peduncle of the tomato and is sufficiently large to keep
the peduncle of the tomato from disappearing.

3.2. Clustering of Tomato Regions
Clustering of tomato regions extracts each of the

tomato voxels from the entire voxels and integrates the
adjacent tomato voxels. First, the entire voxels are di-
vided into voxels having the color of tomatoes and the
other voxels. It is easy to divide voxels with a support
vector machine (SVM) because there are not many ob-
jects whose color is close to that of tomatoes in farms. The
SVM learns the hyperplane using the RGB data extracted
from tomato images and background images. Fig. 5
shows a graph in which the three coordinates represent
the RGB data of the images. The dark gray points in
this graph indicate the RGB data of the tomatoes, and the
light gray points in this graph indicate the RGB data of the
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Fig. 5. RGB data used for learning with the SVM.

(a) Selection of a seed
(b) Judging whether
neighbors are
tomato voxels

(c) New seed actions
following the same
rules

Fig. 6. Transition of seeds for Region Growing.

background. The RGB data of the tomatoes can be sepa-
rated from the RGB data of the background easily because
this graph shows that the RGB data of the tomatoes al-
most do not mix with the RGB data of the background. If
not all the tomato voxels can be extracted in this step, the
following step attempts to integrate the rest. Then, each
of the tomato regions is extracted from the set of voxels
having the color of tomatoes using Region Growing based
on the adjacency information of voxels. First, a voxel is
randomly selected as a seed, which indicates a starting
point for Region Growing. Next, voxels adjacent to the
seed are judged on whether the voxels are tomato voxels
or not. If the voxels are determined to be tomato voxels,
they are integrated into a tomato region. Finally, the vox-
els integrated into the tomato region are treated as new
seeds. This processing is continued until no voxels can
be selected as a seed. Fig. 6 shows the transfer of seeds.
Fig. 7(b) shows the result obtained when the voxels of
Fig. 7(a) are extracted by clustering. Fig. 7(b) shows the
selection of two tomato regions.
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(a) Before clustering

(b) After clustering

Fig. 7. Clustering of tomato regions.

3.3. Expanding Tomato Voxels
Sparse resolution voxels used for clustering reduced the

calculation time because searching for all the voxels re-
quires time. The following steps use dense resolution vox-
els that correspond to sparse voxels clustered as tomato
regions. Voxels extracted with clustering, as described
in the previous section, did not include the voxels cor-
responding to the peduncles but only included voxels cor-
responding to the tomato fruits. The voxels are expanded
further to add voxels corresponding to peduncles with an
alteration of Region Growing, as described in the previ-
ous section. This method does not expand tomato vox-
els themselves but expands the region selected as tomato
voxels. In this part of the study, voxels grew toward only
the vertical upper direction rather than growing toward
the surrounding directions, as described in the previous
section. Additionally, all the voxels adjacent to the seed
are candidates for integration in Region Growing, as de-
scribed in this section, which is in contrast to the previous
section in which only tomato-colored voxels were consid-
ered candidates. Voxels of the peduncles and stems were
added by beginning to search from each tomato region.

3.4. Constructing a Directed Acyclic Graph
The expanded voxels described in the previous section

included voxels that corresponded to a tomato, peduncle,
and stem. These voxels were divided into pieces to judge

Slicing planes

Searching direction

Fig. 8. Relation between the searching direction and slicing
planes.
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(a) Voxels around a peduncle (b) Directed acyclic graph

Fig. 9. Construction of a directed acyclic graph from voxels
around a peduncle.

whether each piece was suitable for a cutting point. This
study treats the relation between these pieces as a graph
and these pieces as nodes for constructing the graph. The
first decides a direction to search the cutting point. Then,
voxels were sliced at each discrete plane that crossed the
searching direction vertically. These slicing plane angles
correspond to the angle of a pair of scissors of the end ef-
fector. The angles of the slicing planes and the searching
direction change according to the change in the angle of
the end effector. Fig. 8 shows the relation between the
searching direction and slicing planes. Then, each sliced
voxel is divided into pieces that are composed only of
neighboring voxels. Region Growing is applied to each
sliced voxel to divide into the nodes of the graph.

Next, the node relationships were defined to construct
the graph expressing the candidates for the cutting points.
Adjacent node relationships were clarified by examining
the adjacent voxel relationships included in the nodes.
The clarified adjacent relationships were treated as paths
on the graph. These paths have directions from the low-
est nodes to the highest nodes along the searching direc-
tion. A directed acyclic graph was constructed from vox-
els around a peduncle using these processes. Fig. 9 shows
an example of voxels and a directed acyclic graph con-
structed using this approach.

3.5. Identifying Cutting Points
One node on the directed acyclic graph was identified

as a node that includes a cutting point in this part of the
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(a) Depth first search (b) Backtracking

Fig. 10. Difference in search algorithms.

study. The first identifies all the reachability paths from
the lowest nodes to the highest nodes. The longest paths
were selected as paths that are possible candidates includ-
ing the cutting point. This path is not adopted as a can-
didate even if this path may include the cutting point for
this reason. If the end of the path did not reach the high-
est node, the end of that path probably reached the tip of
a calyx of a tomato.

A backtracking algorithm was used to select the longest
paths [21, 22]. The basic flow of the backtracking algo-
rithm is close to the depth first search algorithm used in
graph algorithms. The depth first search algorithm does
not again search nodes that have already been searched
to the end (Fig. 10(a)). However, the backtracking al-
gorithm searches nodes again to the end from the other
parent nodes even if the target nodes have already been
searched to the end (Fig. 10(b)). The backtracking algo-
rithm can acquire all the possible paths by continuing to
record the passing nodes from the beginnings of the nodes
to the end of the nodes. Two criteria are used to identify
which node in the longest paths is suitable for the cutting
point to harvest the tomatoes. One criterion is the sim-
ilarity of the thickness of each of the nodes included in
the selected path to the thickness of the peduncle. The
thickness of each node is calculated from the width of the
voxels included in the node. The direction of this width is
parallel to the slicing plane. Another criterion is the sim-
ilarity of the distance from the lowest node to each of the
nodes to the half-length of the peduncle.

The Mahalanobis distance was used to handle these
criteria without weightings. Eq. (1) expresses the
Mahalanobis distance, where w(n) is the thickness of each
node, μw is the average thickness of the peduncles, σw is
the standard deviation of the thicknesses of the peduncles,
d(n) is the distance from the center of a node to the top of
a tomato fruit, μd is the average of this distance, and σd is
the standard deviation of this distance.

D(n) =
(w(n)−μw)2

σ2
w

+
(d(n)−μd)2

σ2
d

. . . (1)

Averages and standard deviations used with the
Mahalanobis distance were measured on an actual
farm. The Mahalanobis distance was used to identify
whether each node included in the selected path was
the peduncle, the stem or others. If the pass did not

continue from the peduncle node to the stem node, we
concluded that for this target, it was difficult to clearly
find the cutting point. This target was excluded from the
harvesting candidates in this case.

The Mahalanobis distance has some local minimum
values. The node of the first local minimum value is con-
sidered to be the node that includes the cutting point on
the peduncle. This study determined the first local mini-
mum value of the Mahalanobis distance by using it with
hill climbing. First, some consecutive local values were
selected randomly from all the values. The smallest value
was determined from these local values. The first local
minimum value was determined by repeating these pro-
cesses several times.

4. Experiments

Our harvesting robot detected the cutting points on
tomato peduncles on an actual farm and confirmed our
proposed method. Robot harvesting was performed using
the following processes. First, the harvesting robot moved
in front of a target tomato. Then, the robot observed the
target tomato with the RGB-D camera. The RGB-D cam-
era is set to be facing one side of a row of tomatoes. The
image plane getting with the RGB-D camera is parallel to
a row of tomatoes. The robot detected the cutting point
of the peduncle of the target tomato. Finally, the robot in-
serted its end effector into the detected cutting point and
harvested the target tomato without dropping the tomato.
The calculation time with Intel Core i7-6820EQ (Quad
core, 2.8 GHz) is approximately 1 s.

The searching directions in this experiment are vertical
and horizontal to the robot to deal with various attitudes
of the tomatoes. The horizontal direction is used when
a peduncle is in landscape orientation. Directed acyclic
graphs were constructed for the two searching directions.
Two candidates for the cutting point were selected from
the two directed acyclic graphs. The cutting point was
decided by comparing which Mahalanobis distance from
the candidates was lower.

We attempted to detect the cutting points for 50 tomato
samples. The stem and the peduncle were adjacent to each
other in many samples. We categorized these samples into
three groups based on the length of their peduncles.

Figures 11–13 indicate the detection of cutting points
using our proposed method and our previous method
when the peduncle was short, medium, and long. These
figures show that our proposed method could detect cut-
ting points even if the peduncles were short. However,
all the cutting points detected by our previous method
were on the stem. Our proposed method could detect cut-
ting points on the peduncles as the candidate components
were divided correctly using the directed acyclic graphs.
Fig. 13 also shows that our proposed method could detect
the cutting point in the case when the angle of the pedun-
cle was almost horizontal. This result showed that our
proposed method of using two search directions to detect
cutting points is effective.
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Cutting point by previous method

Cutting point by proposed method

(a) Image of target (b) Point cloud and cutting points

Fig. 11. Result when the peduncle was short.

Cutting point by previous method

Cutting point by proposed method

(a) Image of target (b) Point cloud and cutting points

Fig. 12. Result when the peduncle was medium in length.

Cutting point by previous method

Cutting point by proposed method

(a) Image of target (b) Point cloud and cutting points

Fig. 13. Result when the peduncle was long.
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Table 1. Detection results for different peduncle lengths.

Short Medium Long
Length of peduncles [mm] 11–23 23–26 27–42

Number of samples 14 18 18
Proposed method 10 14 17

Previous method [20] 3 6 0

Table 1 shows the detection results for all the sam-
ples with our proposed method and our previous method.
This table shows that the peduncle lengths, the number
of peduncles, and the number of cutting points were cor-
rectly detected. These results show that our proposed
method performed better than our previous method in all
the cases. Our previous method could not divide can-
didate components correctly even if the peduncles were
long because the stem and the peduncle were adjacent to
each other in many samples. This result showed that our
proposed method of using the directed acyclic graphs is
effective.

5. Conclusions

This paper proposed a method for detecting the cutting
points on tomato peduncles using a harvesting robot. In
this approach, a directed acyclic graph was constructed
with several types of Region Growing. The Mahalanobis
distance, which is defined based on statistic information,
was used to detect appropriate cutting points on the pe-
duncles. The experimental results confirmed that cutting
point detection accurately directed the harvesting robot to
harvest tomatoes without depending on the state of the
peduncles.
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