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This paper proposes a method for the semi-automatic
generation of a dataset for deep neural networks to
perform end-to-end object detection and classification
from images, which is expected to be applied to do-
mestic service robots. In the proposed method, the
background image of the floor or furniture is first cap-
tured. Subsequently, objects are captured from vari-
ous viewpoints. Then, the background image and the
object images are composited by the system (software)
to generate images of the virtual scenes expected to be
encountered by the robot. At this point, the annota-
tion files, which will be used as teaching signals by the
deep neural network, are automatically generated, as
the region and category of the object composited with
the background image are known. This reduces the
human workload for dataset generation. Experiment
results showed that the proposed method reduced the
time taken to generate a data unit from 167 s, when
performed manually, to 0.58 s, i.e., by a factor of ap-
proximately 1///287. The dataset generated using the
proposed method was used to train a deep neural net-
work, which was then applied to a domestic service
robot for evaluation. The robot was entered into the
World Robot Challenge, in which, out of ten trials, it
succeeded in touching the target object eight times and
grasping it four times.

Keywords: domestic service robot, object detection
and classification, dataset generation, RoboCup@Home,
World Robot Challenge

1. Introduction

In recent years, due to social issues such as the declin-
ing birthrate and growing proportion of elderly people,
the realization of domestic service robots has been antic-
ipated worldwide. Domestic service robots coexist with
humans in homes and public spaces and assist them. For
instance, it is anticipated that they can tidy up rooms or
work as waiters in restaurants [1–3]. Domestic service
robots must have the functions of recognition, judgment,
and control to fulfill such roles. The recognition function
involves receiving spoken instructions given over a mi-

Fig. 1. Procedure of manual dataset generation.

crophone, or detecting and identifying objects from cam-
era images [4–6]. Judgment involves determination of the
proper action, and control involves operating actuators.

Of these functions, recognition has been achieved with
high accuracy by using deep neural networks [7]. In par-
ticular, there are high expectations that deep neural net-
works for general object recognition, as represented by
You Only Look Once (YOLO) [8] and Single-Shot Multi-
Box Detector (SSD) [9], which perform end-to-end ob-
ject detection and classification from images, can be ap-
plied to domestic service robots. In this context, object
detection involves displaying a bounding box (BB) to in-
dicate the region where an object exists in an image, and
classification involves determining the category of the ob-
ject in the BB, or in other words, identifying the object.
However, the categories recognized by domestic service
robots, such as daily commodities, miscellaneous goods,
and household implements, differ from those used in gen-
eral object recognition [10, 11] and depend on the en-
vironment in which the robot works, such as homes or
public spaces. Therefore, it is necessary to retrain the
deep neural network using transfer learning according to
the specific environment, which requires the generation
of new datasets. The dataset is generated manually ac-
cording to the procedure shown in Fig. 1. The procedure
is described using the numbers given in Fig. 1. (1) A
setting such as the floor or furniture within an environ-
ment is randomly selected, a random number of objects
are selected, and then they are placed at random positions
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Fig. 2. Overview of proposed system.

in random poses. (2) The setting including the objects
is photographed from randomly selected camera angles.
(3) For the captured image, annotation files consisting of
the regions (reference coordinate (x,y) and horizontal and
vertical sizes (w,h)) and categories of the objects are gen-
erated to train the deep neural network. Then, the proce-
dure from (1) to (3) is repeated several tens of thousands
of times to generate big data [12]. As this operation re-
quires many steps and the selection of many parameters
(location and type, number, position, pose, and capture
angle of objects), considering that the number and type of
objects vary from day to day in daily life, it is unrealis-
tic to perform it manually for specific environments on a
continual basis.

Therefore, this paper proposes a method for the semi-
automatic generation of a dataset for object detection and
classification by domestic service robots. The proposed
method is shown in Fig. 2, where the data flow is indi-
cated by arrows. The procedure to generate the dataset
is described using the numbers in Fig. 2. (1) Various lo-
cations in the environment are manually photographed as
background images. The points p where objects are to
be placed are selected. (2) Each object is manually pho-
tographed from various angles. (3) The system randomly
selects a background image and several object images.
Through image processing, the object images are com-
posited with the background image by positioning them at
different points p. (4) Annotation files indicating the re-
gions (reference coordinate (x,y) and horizontal and verti-
cal sizes (w,h)) and categories of the objects are generated
for the composite image of the virtual scene. These files
can be automatically generated, as the regions and cate-
gories of the composited objects are known by the system.

Steps (3) and (4) are then repeated several tens of thou-
sands of times by the system to produce big data. Thus,
the procedures (1)–(3) in Fig. 1, which previously had to
be repeated manually, are instead performed by the sys-
tem in steps (3) and (4) in Fig. 2; consequently, the human
workload is reduced.

This study compares the generation of a dataset through
manual means and the proposed method. The results
show that the time required to produce a data unit was
reduced from 167 s to 0.58 s, i.e., by a factor of approx-
imately 1/287. The dataset generated using the proposed
method was used to train a deep neural network, which
was then applied to a domestic service robot for evalua-
tion. The robot was entered into the World Robot Chal-

Fig. 3. Domestic service robot, “Toyota HSR.”

lenge (Partner Robot Challenge, Service Robotics Cate-
gory, WRC), where, in ten trials, it could successfully
make contact with the target object eight times and grasp
and lift the object four times. The contributions of the
present study are as follows:

• The proposed method makes it possible to reduce
the human workload required to generate the dataset
used for object detection and classification by the do-
mestic service robot.

• The dataset generated using the proposed method
was used to train a deep neural network, which was
then applied to a domestic service robot for evalua-
tion.

2. Related Studies

2.1. Domestic Service Robots
2.1.1. Configuration and Characteristics of Robot

Figure 3 shows the configuration of the domestic ser-
vice robot Toyota HSR [1] used in this study. A domes-
tic service robot is required to work in the home environ-
ment or public spaces alongside humans. In other words,
it must be able to manipulate daily commodities, mis-
cellaneous goods, and household implements in an envi-
ronment inhabited by humans. Therefore, the robot con-
figuration simulates the five senses and motor functions
of humans. Specifically, it carries a microphone, which
corresponds to ears, an RGB-D camera and laser range
finder, which correspond to eyes, a manipulator, which
corresponds to the arm and hand, and a mobile platform,
which corresponds to legs. The domestic service robot is
characterized by its ability to assume various view angles
to execute tasks according to the environment. The end
effector of the robot has a working range of 0.0–1.375 m
from the floor to enable the robot to manipulate objects
on the floor or furniture. The camera is capable of pan/tilt
and vertical movement with a range of 1.0–1.3 m from the
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Fig. 4. Arena of WRC.

Fig. 5. Fifteen objects in WRC.

floor to secure a wide range of vision for accommodating
the working range of the end effector, as shown in Fig. 3.
These capabilities allow the robot, for instance, to inspect
the floor or a shelf of height 1.0 m or more to perform a
task. In addition, the robot is equipped with an RGB-D
camera capable of distance and three-dimensional mea-
surements in addition to the capture of color images, as
an object’s accurate three-dimensional coordinates are re-
quired to manipulate it. Other robots with similar hard-
ware configurations include “Exi@” [13], developed by
the present authors, Fetch Mobile Manipulator [14], and
PAL Robotics TIAGo [15].

2.1.2. Benchmark Test
RoboCup@Home [16, 17] and WRC [18] serve as

benchmark tests of domestic service robots. In this
section, we describe the WRC competition, Tidy Up
(Stage 1), which was used for evaluation in this study.
WRC is an international robotic competition aimed at
the realization of domestic service robots that can pro-
vide various assist functions in homes. According to
the rules [a] of Tidy Up (Stage 1), the robot first au-
tonomously travels to and enters the competition arena
(children’s room) shown in Fig. 4. Subsequently, the
robot must find ten objects, from the 15 toys shown in
Fig. 5, scattered around the floor, grasp each one with the

manipulator, and carry it to a storage shelf. As shown in
Fig. 4, there are multiple storage shelves, each of which
is designated for a different toy category, as indicated by
the arrows in the figure. The shelves are assigned their
respective categories before the competition, and the po-
sition and pose in which the object is placed in the shelf do
not matter as long as the object is deposited. Five points
are given if the toy is placed in the correct storage shelf,
and three points if placed in the wrong shelf. No points
are given if the robot fails to place the toy in any stor-
age shelf. Each robot is given 12 min, and the robots are
ranked according to the points scored.

Under these rules, the robot must first capture the po-
sition of the toy to determine the control target of the
manipulator. Subsequently, it must identify the category
of the toy to determine the correct storage location. In
other words, the robot must be capable of object detection
and classification to carry the toy to the storage shelf so
that the score is determined largely by the performance of
these functions.

There is no standard environment in Tidy Up (Stage 1).
The only stipulation is that the competition arena sim-
ulates a certain setting in a home environment, and the
competitors (and their robots) are not notified of the spe-
cific environment until the date of competition. Moreover,
they are not notified regarding the specific objects (toys)
used. Therefore, participants must employ a deep neural
network that can be trained quickly so that the robot can
detect and classify objects in an unknown environment,
similar to the environments in which future domestic ser-
vice robots must operate.

2.2. Generation of Dataset
In this section, we provide an outline of the methods

for generating datasets reported in previous studies and
summarize the related issues. The first method generates
datasets manually, as described in Section 1. A single
cycle, consisting of (1) to (3) in Fig. 1, requires several
minutes so that its repetition for several tens of thousands
of times to produce a dataset will require a time period
ranging from a week to a month.

In the method proposed by Georgakis et al. [19], im-
age synthesis technology is used by the system to gener-
ate datasets, thus reducing the human workload. Datasets
are produced using several image superimposition strate-
gies and then used to train the deep neural network; the
respective datasets are evaluated in terms of the mean av-
erage precision (mAP), which is a performance index of
object detection and classification. The processing flow
of the strategy that attained the highest score (selective
positioning-blending-selective scale, SP-BL-SS) is de-
scribed. (1) Using the GMU Kitchen Scenes dataset [20]
and Washington RGB-D Scenes v2 dataset [21], both of
which provide RGB-depth images, as the background, the
floor on which objects are placed and its parallel planes
are extracted using segmentation [22] and plane detec-
tion [23]. (2) Cropped object images are created using
GraphCut [24] from the BigBIRD [25] and Washington
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Fig. 6. Proposed system; semi-automatic dataset generation for object detection/recognition on domestic service robots.

RGB-D v1 datasets [26]. (3) The points on the extracted
planes for compositing the object are determined, the dis-
tance information of these points is acquired from the
background depth image, and the objects are scaled to
their correct sizes according to their distances. (4) The ob-
ject is composited with the background using fast seam-
less cloning [27]. (5) The annotation files are automati-
cally generated simultaneously, as the region and category
of the composited objects are known.

When the deep neural network (SSD) was trained us-
ing the dataset generated through this method (synthetic
data), the mAP of 33.5 was obtained. When a manually
generated dataset (real data) was used for training, the
mAP was 65.6. When real data amounting to 10% of the
synthetic data were added for training, the mAP was 71.6,
which was higher than that obtained using only real data.
A limitation of this method is that images provided by ex-
isting datasets are used for both the background and ob-
jects so that the paper contains no discussion regarding
how the images are captured. Therefore, the viewpoint of
the robot is not considered, and it is assumed that the robot
can visualize the surface (and objects) in the background
scene. Furthermore, the deep neural network trained with
the synthetic data is not applied to a robot for evaluation,
and there is no discussion of its application to domestic
service robots.

In the present study, we systematized dataset genera-
tion in the same manner as the method proposed by Geor-
gakis et al. to reduce the human workload. We modify
the method proposed by Georgakis et al., which describes
how to composite objects with the background, to take ad-
vantage of the various viewpoints of the domestic service
robot, as mentioned in Section 2.1.1. We thus propose a
method for dataset generation considering its application
to domestic service robots and evaluate its application to
an actual robot.

3. Proposed Method

3.1. Semi-Automatic Dataset Generation for Object
Detection and Classification

In this study, we propose a method for the semi-
automatic generation of a dataset for object detection and
classification by a domestic service robot. In this method,
it is necessary to determine in advance the parameters re-
lated to the pose of the robot when it detects and identifies
objects, namely, the RGB-D camera’s distance d from the
object, its height h from the floor, tilt angle θ , and their
respective ranges dmin–dmax, hmin–hmax, and θmin–θmax.
The proposed method is outlined in Fig. 6. The proce-
dure of dataset generation is described using the numbers
in Fig. 6.

(1) First, the RGB-D camera is used to capture manu-
ally the background images (RGB and depth images)
of various settings in the environment. The RGB-D
camera is set up so that its distance from the objects
lies in the range from dmin to dmax, its height from the
floor is in the range from hmin to hmax, and its tilt an-
gle is in the range from θmin to θmax. Subsequently,
the points p at which objects are to be placed are se-
lected in the background images. This is performed
by clicking positions in the RGB image to set up the
point coordinates p(xp,yp), using the graphical user
interface (GUI) implemented by the authors using
OpenCV. The distance d ′

p of point p(xp,yp) is deter-
mined by referring to that point in the depth image.
When the distance cannot be determined in the depth
image, it is directly entered via the keyboard. The
RGB image is corrected based on the “gray world
hypothesis” [b], which is a color constancy hypothe-
sis.

(2) The objects are photographed using a setup con-
sisting of RGB-D cameras, a turntable, and uni-
form color background (chroma key). Furthermore,
m cameras, denoted c1–cm, are used. Camera c1 is
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set at the height hmax from the floor at a tilt angle of
θmax. Camera cm is set at the height hmin from the
floor at a tilt angle of θmin. The other cameras are set
at heights between hmin and hmax, and at tilt angles
between θmin and θmax. The distance between cam-
era cm and the object is defined as d ′′, and all cameras
are aligned vertically with camera cm. The turntable
is used to rotate the object so that it can be captured
from various directions. The uniform color back-
ground is used as a chroma key, making it easy to
separate the object from its surrounding in the subse-
quent image processing. The objects are captured as
point clouds, and their camera coordinates are trans-
formed to the coordbase coordinate system to allow
processing in the same coordinate system. Using the
point cloud library (PCL), the plane of the turntable
is extracted [23] from the transformed point clouds.
The point cloud of the object is obtained by remov-
ing areas outside of the turntable and the turntable
itself. The RGB image of the cropped object is ob-
tained by using PCL to transform the object region
in the point cloud to the object region in the RGB
image. The RGB image of the cropped object is cor-
rected based on the gray world hypothesis.

(3) The RGB image of the cropped object is transformed
to HSV and then subjected to thresholding to extract
the uniform color background, which is filtered out.
The center of the base of the object image is denoted
b and used in subsequent processing.

(4) The background image and object image are com-
posited using image processing. First, a single back-
ground image and l object images are randomly se-
lected. The object images are rotated by affine trans-
formation within the range θ ′

min–θ ′
max. Then, each

object image is randomly assigned to a point p in the
background image. The object image is scaled ac-
cording to the distance from its assigned point p by
determining the coefficient k in Eq. (1). Finally, the
images are composited by matching points b in the
object images with the corresponding points p in the
background image.

k =
d ′′

d ′
p

. . . . . . . . . . . . . . (1)

(5) Against the obtained composite image, annotation
files consisting of the regions (reference coordi-
nates (x,y) and horizontal and vertical sizes (w,h))
and categories of the objects are generated. This is
performed automatically, as the system already pos-
sesses the composited regions of the objects and their
categories.

The system repeats steps (4) and (5) several tens of
thousands of times to generate big data.

3.2. Comparison with Related Studies
The proposed method is compared with the related

studies mentioned in Section 2.2 to verify its validity. The

methods proposed by Georgakis et al. and the present au-
thors, in both of which the system employs the image
synthesis technique used in Fig. 6 (3) and (4) to gener-
ate the datasets automatically, considerably reduce the hu-
man workload as compared with the manual generation of
datasets, shown in Fig. 1 (1) to (3).

The proposed method is similar to the strategy (SP-
BL-SS) employed by Georgakis et al., which attained the
highest mAP of the methods in their study. They differ in
whether image correction is based on the gray world hy-
pothesis, as in the former case, or fast seamless cloning, as
in the latter case. However, we use the gray world hypoth-
esis for image correction because it is used by the software
of the domestic service robot in this study for object de-
tection and classification, and the difference between the
two methods is insignificant.

A major difference lies in the selection of the points p
for object placement, which is performed manually via
the GUI in the proposed method; thus, it is possible to
composite objects at points on an unseen surface. In
other words, it is possible to generate data for a horizontal
line-of-sight of the robot, in addition to inspecting view-
points. Therefore, the deep neural network trained using
the dataset generated using the proposed method is more
suitable for application to the domestic service robot.

4. Experiment and Discussion

4.1. Evaluation of Performance for Object
Detection and Classification

Datasets generated manually and using the proposed
method were used to train the deep neural network sep-
arately, and then their performances for object detection
and classification were evaluated and compared. First,
following the procedure described in Section 3, the pro-
posed method was used to generate the dataset (synthetic
data) as follows. The parameters used in the proposed
method are presented in Table 1. (1) The floor and furni-
ture (desk, shelf, chair, etc.) were captured by an RGB-D
camera (ASUS Xtion Pro Live) to obtain 306 background
images. Points p for object placement were selected using
the GUI in each background image. (2) The 15 toys used
in WRC, shown in Fig. 5, were photographed with the
setup shown in Fig. 6 (2) to obtain object images. (3) The
background image and object images were composited,
and annotation files were generated simultaneously. This
resulted in 15,600 composite images, which were used as
the synthetic training data; no synthetic data were used as
the test data. Fig. 7 shows examples of the synthetic data.
It took 2.5 h to generate the 15,600 synthetic training im-
ages.

Subsequently, a dataset (real data) was generated man-
ually by following the method described in Section 1
for a comparison with the proposed method, as follows.
(1) From the 15 toys shown in Fig. 5, a few were placed on
the floor and furniture (desk, shelf, chair, etc.) at random
locations and poses and then photographed. (2) Annota-
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Table 1. Parameters for experiments.

Items Values

dmin 1.0 m
dmax 2.5 m
hmin 1.0 m
hmax 1.3 m
θmin 0.0◦

θmax 45.0◦

m 2 cameras
d′′ 1.0 m
l 10 images

θ ′
min −10.0◦

θ ′
max 10.0◦

Fig. 7. Samples of synthesized images.

tion files were generated for each of the captured images.
This resulted in 108 real data images, of which 54 were
used as real training data, and the remaining 54 as real
test data. It took 2.5 h to obtain the 54 real training im-
ages, which is the same time as that required to obtain the
synthetic training data.

The synthetic and real training data were separately
used to train YOLO v2 [8], which is a deep neural network
that performs end-to-end object detection and classifica-
tion from images. YOLO v2 employs model parameters
trained on ImageNet [28] and COCO datasets [10] up to
the 23rd layer, whereas the remaining layers are obtained
via transfer learning. Ten thousand epochs were executed
for training on a PC (Intel Core i7-8700K, DDR4 32 GB,
nVIDIA GTX 1080) using Darknet. The object detec-
tion/classification performance in each case was evaluated
by using the real test data as the ground truth.

The experiment results of object detection and classifi-
cation obtained using synthetic data are shown in Fig. 8.
The results obtained using synthetic data and real data
are compared in Table 2. The synthetic data yielded an
mAP lower than that obtained using real data by approx-

Fig. 8. Results of object detection/recognition.

imately two points. The difference in mAP between syn-
thetic and real data is lower than that obtained using the
method proposed by Georgakis et al., although different
conditions were used for their evaluation. Furthermore,
the time required to generate a single unit of synthetic
data was lower than that required for real data by a fac-
tor of approximately 287, i.e., 0.58 s against 167 s. The
proposed method, which reduces the human workload for
dataset generation, is thus valid, particularly when con-
sidering its application to domestic service robots.

4.2. Application to Domestic Service Robot and
Evaluation

The synthetic training data, described in Section 4.1,
were used to train the deep neural network, which was
then implemented on the Toyota HSR, whose perfor-
mance in the WRC Tidy Up (Stage 1), described in Sec-
tion 2.1.2, was evaluated as follows. First, the robot de-
tects and classifies objects on the floor using the RGB-D
camera tilted at 45◦, as shown in Fig. 9(a). Subsequently,
the robot announces which object it will attempt to ma-
nipulate (grasp) and controls the end effector so that it
reaches the target object, as shown in Fig. 9(b). Videos [c,
d] of the motion of the robot were used to determine
whether the end effector had come into contact with the
object, as shown in Fig. 9(b). Subsequently, the robot
controls its end effector to lift the target object. The afore-
mentioned videos were also used to determine whether
the target object was completed lifted off the floor. The
target coordinates used by the robot to grasp the object
were obtained by averaging the three-dimensional coor-
dinates of pixels in the object detection region, from the
values in the depth image that corresponds to the object
detection image (RGB image) and the camera parameters,
as shown in Fig. 10.

Figure 11 shows the judgment results regarding
whether the end effector came into contact with the target
object. The “target object” is the object announced by the
robot, whereas the “touched object” is the one touched by
the robot. Of the ten trials, the robot succeeded in touch-
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Table 2. Comparison of dataset generating/making performance.

Evaluation index Proposed method Manpower

Number of data 15600 54

Work time
per 1 object [min/object] 4 to 12 N/A
per 1 data [s/data] 0.58 166.67
per 1 train dataset [h/dataset] 2.5 2.5

mAP 64.77 66.69

(a) (b)

Fig. 9. Robot’s behavior of grasping. (a) Tilt the camera to
45◦ to recognize objects. (b) Extend the end effector to the
target object.

Fig. 10. Estimate the object three dimensional position in
the camera coordinate using detection result, depth image
and camera parameters.

Fig. 11. Images of robot’s movement when touching an object.

Fig. 12. Images of robot’s movement when lifting an object.

ing the target object in eight trials, shown in Fig. 11 (1)–
(8). In Fig. 11 (9), the robot touched an object adjacent
to the target object, and thus failed. In Fig. 11 (10), the
robot touched an object in an area where the target ob-
ject did not exist and thus failed. Fig. 12 shows the judg-
ment results regarding whether the target object was lifted

off the floor. The “target object” is the same as that de-
scribed above, whereas the “lifted object” is the object
lifted off the floor by the robot. In the same ten trials
described above, the robot succeeded in lifting the target
object off the floor in four trials, shown in Fig. 12 (1)–(4).
In Fig. 12 (5)–(8), the robot touched the target object but
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failed to lift it. In Fig. 12 (9) and (10), the robot failed to
lift the target object because it failed to touch it.

In summary, the robot could touch the target object
eight times and lift it four times during the ten trials. Con-
sequently, it scored 15 points in the WRC event, which
was the highest score among all participating teams.

5. Conclusions

Herein, we proposed a method for the semi-automatic
generation of a dataset for object detection and classifi-
cation by a domestic service robot. The experiment re-
sults showed that the proposed method could reduce the
time required to generate a data unit from 167 s, when
performed manually, to 0.58 s, i.e., reduced by approx-
imately 1/287th. The dataset generated using the pro-
posed method was used to train a deep neural network
applied to a domestic service robot. The robot succeeded
in touching the target object eight times and grasping it
four times out of ten trials.

An issue to be addressed in the future is that the success
rate for manipulating objects must be improved when ap-
plying the proposed method to domestic service robots.
To this end, it is necessary to investigate whether the
object region was correctly estimated in cases when the
robot partially touched the object (Fig. 11 (7) and (8))
and when it failed to touch the object (Fig. 11 (9) and
(10)). Furthermore, with regard to the case where the
robot touched the object but failed to lift it (Fig. 12 (5)
and (6)), it will be necessary to generate a dataset obtained
by training with the points to be grasped by the robot in
addition to only the object region.
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