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Simultaneous localization and mapping (SLAM)
forms the core of the technology that supports mobile
robots. With SLAM, when a robot is moving in an ac-
tual environment, real world information is imported
to a computer on the robot via a sensor, and robot’s
physical location and a map of its surrounding envi-
ronment of the robot are created. SLAM is a major
topic in mobile robot research. Although the infor-
mation, supported by a mathematical description, is
derived from a space in reality, it is formulated based
on a probability theory when being handled. There-
fore, this concept contributes not only to the research
and development concerning mobile robots, but also to
the training of mathematics and computer implemen-
tation, aimed mainly at position estimation and map
creation for the mobile robots. This article focuses on
the SLAM technology, including a brief overview of
its history, insights from the author, and, finally, in-
troduction of a specific example that the author was
involved.

Keywords: SLAM, autonomous mobile robot, proba-
bilistic process, mapping, localization

1. Introduction

Simultaneous localization and mapping (SLAM) is
currently a core issue in mobile robot technology. It
may be slightly difficult for those who do not special-
ize in mobile robot technology to understand the mean-
ing of “simultaneously” carrying out localization and
mapping. A human has the ability to simultaneously es-
timate his/her own position and the position of an object
on the ground with reference to a coordinate system fixed
on the ground while moving in that environment, regard-
less of whether he/she is in a known or unknown environ-
ment. SLAM is an attempt to artificially realize this type
of an ability using electronic sensing and computer engi-
neering technology, as well as by adequately utilizing a
mathematical framework. In light of the recent publish-
ing of a special issue on SLAM in the Journal of Robotics
and Mechatronics, the author attempted a small review
of SLAM, based on his own understanding. This article
gives a simple introduction of the history of SLAM along

with a description of the situation in its early days and
gives an introduction to existing research outcomes from
the authors.

2. Overview of Simultaneous Localization and
Mapping (SLAM)

2.1. History

The technological aspects of SLAM for mobile robots
are concisely summarized in [1–3]. After the 1980s, when
prototype research on SLAM was started, these references
were written consecutively from the mid- to late 2000s,
when the mathematical formulation to solve them had al-
most been achieved. These references introduce the ex-
pansion of the field of SLAM and some typical problem
settings as well as the academic history of SLAM, and
thus they are suitable for an overview of SLAM. Tomono
published a textbook [4] including source code for a pro-
gram that solves typical problem settings of SLAM. It is
an extremely useful reference, as it includes an imple-
mentation of the theoretical contents introduced in vari-
ous references. In addition, [a] provides an appropriate
and informative summary of information released during
the implementation of SLAM.

Because of the desirable sound of the acronym
“SLAM,” it has already become established as the
acronym that represents “simultaneous estimation of self-
location and map for robots.” Durrant-Whyte et al. [1]
point out that this acronym first appeared in a mobile
robotics survey paper [5] in the 1995 International Sym-
posium on Robotics Research. However, in fact, re-
search strongly related to the concept of what is now
called SLAM had already been started in the middle of
the 1980s. In the period of ten years following that time,
various relevant research outcomes were reported. As a
compilation of research during that period, this research
paradigm was given the name SLAM by Durrant-Whyte
et al., and [5] was written.

There are several reference examples reported from
the 1980s to the early 1990s (such as [6–11]) that are
related to self-location estimation or generation of envi-
ronment maps for mobile robots, and that are aware of
those functions being simultaneously carried out. Accord-
ing to the author’s best knowledge, a LIDAR device small
enough to be mounted on a mobile robot was not com-
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monly available during those days. Thus, an ultrasonic
ranging sensor or a video camera was used as an exte-
roceptive sensor in most cases. Unlike LIDAR, an ul-
trasonic ranging sensor does not have a directional res-
olution, and thus required a strong restriction, such as
the environment surrounded by a plane. Video cameras
with solid-state image sensing devices were already avail-
able, but there was no choice but to use cameras with the
resolution (approximately equivalent to 0.7K) of analog
television broadcasting in those days, as compared with
currently-available cameras having resolutions of 2K or
4K. In addition, as for the video signal, an analog signal
dependent on the broadcast standard had to be A-D con-
verted on a computer side. Moreover, there was degrada-
tion of images caused by noise and synchronization fluc-
tuations. The computer resources were poorer than those
of today, and the calculation speed was slower. In such
a situation, Cheeseman et al. reported that the use of a
Kalman filter framework, with detection and matching of
features of the same object at multiple places, was able
to suppress an increase in the error variance of estima-
tion positions of mobile robots by odometry [6]. As a
map is expanded if the position of an object viewed at
that time is mapped using the self-location that suppresses
the increase in errors, SLAM was supposed to be car-
ried out as the result. The Kalman filter is a Bayesian
filter that assumes that the error variance of the state vari-
able (in this case, the self-location of the robot) is esti-
mated as a Gaussian distribution. It is imagined that this
must have foreshadowed implementation of a later SLAM
formulation which represented the position of a mobile
robot or an object as a probability distribution. For exam-
ple, the wordings that appear in the titles of those refer-
ences such as “spatial uncertainty [6],” “consistent world
modeling [7],” “fusing visual maps [8],” and “concurrent
localization and map building [9]” provide implications
that continue through to the current formulation related to
SLAM.

2.2. Probabilistic Formulation for SLAM
Based on accuracy, it is possible to summarize self-

location estimation of a mobile robot and appropriate
mapping arrangement creation, i.e., mapping of an object
in an environment using an exteroceptive sensor mounted
on the robot, as follows.

1. If it can be assumed that the self-location of a mobile
robot is constantly known accurately, or that the am-
biguity of the self-location is extremely small, a map
is created. The map is created by translating the ob-
served position of an object on the ground as viewed
on the coordinate system present in the robot (using
the sensor mounted on it) into a coordinate system
fixed on the ground, by means of coordinate trans-
formation using each self-location.

2. If using a coordinate system fixed on the ground and
the position of an object present on the ground is
known accurately, or there is a map that has an ex-
tremely small ambiguity of the position of the object,

an ambiguity of a self-location estimated by a robot
using, for example, an interoceptive sensor can be re-
duced. In particular, the ambiguity can be reduced by
observing the map and position of the corresponding
object as viewed by the robot.

3. If there is a map that has an ambiguity in the position
of an object present on the ground or the position of
the object is totally unknown, and if the estimated
self-location of the robot is ambiguous or totally un-
known, the robot’s self-location and the map can be
estimated so as to reduce the knowledge gap or am-
biguity as much as possible. This is performed using
observation of the position of a corresponding object
as viewed from the robot.

As is well known, the first issue is considered from a
standpoint of a problem of “mapping,” the second is a
problem of “localization,” and the third is a problem of
SLAM. In the research from the mid-1980s, while re-
searchers were aware of the concept of simultaneously es-
timating the self-location of a mobile robot and a map of
the travel environment, they were thought of as an exten-
sion of a standpoint where either “mapping” or “localiza-
tion” was dominant. Thus, an attempt to discuss a conver-
gence of the mapping and self-location of the robot still
seemed to be difficult. In the mid-1990s, Durran-Whyte
described in [1] that, as a mathematical framework, an
awareness and formulation that comprehensively consid-
ered an estimation problem of map generation and robot
self-location as “a single estimation problem” had brought
an essential breakthrough to solve SLAM. This paradigm
made it possible to discuss the convergence of a result of
SLAM, and to formulate a framework that guaranteed it.
In the symposium [5] held in 1995 and introduced at the
beginning of this article, Durrant-Whyte et al. called this
problem “simultaneous localization and mapping,” with
the acronym SLAM. Here, the meaning of “simultaneous”
implicates comprehensive mathematical handling of both
information on the robot’s self-location and map.

The itemized summarization written above used the ex-
pression “ambiguity of map and position of robot.” In an
attempt to solve SLAM, when comprehensively handling
these concepts together as a single estimation problem,
the means to express the “ambiguity” must be decided.
It is common to consider this ambiguity with a mathe-
matical framework formulated as a probability distribu-
tion, accompanied by a multidimensional random vari-
able. First, each amount is defined as follows.

1. Time-series with the position vector of the robot at
each sample time being a state variable:
XXX0:k = {xxx0,xxx1, . . . ,xxxk} = {XXX0:k−1,xxxk}.

2. Time-series of a control input of the robot or time-
series of a movement amount between sample times:
UUU0:k = {uuu1,uuu2, . . . ,uuuk} = {UUU0:k−1,uuuk}.

3. Set of time-invariant position vectors of a landmark
on the ground: mmm = {mmm1,mmm2, . . . ,mmmn}.
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4. Set of observations of the object viewed from
the robot at each time: ZZZ0:k = {zzz1,zzz2, . . . ,zzzk} =
{ZZZ0:k−1,zzzk}.

Considering all these as random variables, and calculating
the conditional probability distribution as

P(xxxk,mmm|ZZZ0:k,UUU0:k,xxx0) . . . . . . . . . . (1)

at the time k formulate an “online SLAM problem” [3]. In
other words, while the robot moves by UUU0:k from an initial
position xxx0 of the robot, a column ZZZ0:k of the surrounding
observation is obtained by the exteroceptive sensor of the
robot. With these, the position of the robot xxxk and the
set mmm of the position of the object at the time k are col-
lectively and simultaneously calculated as a probability
distribution. In this formulation, it is assumed that while
moving, the robot generates its estimated self-location xxxk
and the map mmm together using the information obtained
thus far, every time zzzk and uuuk at the “current” time k are
sequentially obtained. Therefore, it is called an “online
SLAM.” In contrast, there is a formulation of

P(XXX0:k,mmm|ZZZ0:k,UUU0:k,xxx0) . . . . . . . . . (2)

called a “full SLAM problem” [3]. This is a problem
when calculating all the positions of the robot at each time
from the initial position of the robot, together with the
map. In other words, it is a formulation to calculate the
time-series XXX0:k of the map mmm and the self-location using
the time-series ZZZ0:k and UUU0:k of zzzk and uuuk to the time k.
It is first assumed that this calculation is carried out af-
ter information has been accumulated for a certain period.
At any rate, with these formulations as the starting point,
the problem can be solved by deforming the description
(Eq. (1) or (2)) of this probability distribution in accor-
dance with the setting of the problem (e.g., expressing it
with the product of the appropriate probability distribu-
tion). For instance, when an object is observed at a spe-
cific position, obtaining the observation can be described
as calculating a conditional probability distribution of

P(zzzk|xxxk,mmm) . . . . . . . . . . . . . . (3)

and the position xxxk after movement by the control input uuuk
from the position xxxk−1 can be described as calculating a
conditional probability distribution of

P(xxxk|xxxk−1,uuuk) . . . . . . . . . . . . . (4)

Eq. (3) is an expression for calculating the observation zzzk
under a condition where the map mmm and the position xxxk
of the robot are given. In contrast, there is a desire to
calculate the map mmm and the robot position xxxk under a
condition where the control history UUU0:k and the observa-
tion ZZZ0:k are given. From this relationship, the application
of a Bayes’ theorem connecting a conditional prior and
a posterior probability is conceived. On the assumption
that the probability distribution of the random variables
appearing here is a normal distribution, a Kalman filter
can be derived from the formulation of the Bayes’ the-
orem. Therefore, a Kalman filter often appears when a
SLAM problem is solved.

If xxxk is not considered as a random variable but as if
the time-series of the position from the initial position of
the robot as a determinate value is known, it becomes a
problem setting that considers a probability distribution
of

P(mmm|XXX0:k,ZZZ0:k,UUU0:k) . . . . . . . . . . (5)

corresponding to a mapping. In contrast, if the map mmm can
be considered as if it has already been known by another
means and has been determined, it becomes a problem
setting that considers a probability distribution of

P(xxxk|ZZZ0:k,UUU0:k,mmm) . . . . . . . . . . . (6)

corresponding to localization. The formulation by Eq. (1)
or (2) is inclusive of both. Localization can also be read
as the limit with the ambiguity (error variance) of mmm being
zero in these expressions, and mapping can be read as the
limit with the ambiguity of XXX0:k being zero.

Thrun et al. wrote a compilation of a probabilistic,
mathematical handling of SLAM in 2006 [12] which is
now a reference textbook for handling SLAM. However,
from the point of view of carrying out recognition of an
object while permitting an event variation and ambiguity,
this is not limited to a problem of estimation of the mo-
bile robot self-location and map, but can be regarded as a
problem of pattern recognition and machine learning in a
broad sense. The mathematical framework in this under-
standing is summarized in a wider sense in the tome [13].
Interestingly, both references were published in the same
period of time. Reading both references and focusing
on the parts related to each other will deepen a theoret-
ical understanding of SLAM. For instance, Figure 2.2 on
page 25 of [12] graphically illustrates a dynamic Bayes
network, whereas the style of this illustration is an expres-
sion called “probabilistic graphical models” in [13], and
is described in detail in Chapter 8 of [13]. To describe the
currently-targeted probabilistic process using this expres-
sion is to analyze the specific structure of the process, and
is a useful means for specifically deforming Eq. (1) or (2)
in our problem. In other words, various types of theoret-
ical derivations and efficient implementations have been
carried out by deforming these expressions with various
assumptions and using them as a starting point. There are
various excellent references that have been published, and
hence we do not get further into detail here.

2.3. Some Remarks
There are two personal remarks from the author related

to handling SLAM as a mobile robot technology. The
first remark concerns the usage of the SLAM acronym. In
consideration of applications for causing a mobile robot
to travel in an actual environment, there is an impres-
sion that there are few actual situations where the robot
self-location and map must always be simultaneously es-
timated. For example, when a robot is required to travel
in an environment, there are relatively more applications
in which the environment map is first obtained, in ac-
cordance with which the robot repeatedly travels a re-
quired section based on a mission assigned to the robot.
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In this case, obtaining the first environment map has its
main subject in mapping and the confirmation of self-
location for subsequent traveling has its main subject in
localization. Even though SLAM is used this case, its
main purpose here is individual localization and mapping.
Accordingly, to prevent the main subject of the research
and development from becoming ambiguous, it is neces-
sary to distinguish whether the main subject is related to
a method of SLAM itself aiming at the algorithm, per-
formance improvement, and/or evaluation, or individual
mapping and localization that use SLAM as one means.

The second remark concerns the size of the environ-
ment and the amount of information. When a mobile
robot travels for a long distance for a long period of
time, the map information obtained by SLAM will be-
come very large. In addition, the distance to an object
can become particular long outdoors, and an error of the
distance can become large and its shape may be compli-
cated, or there may be a space in which there is not any
outstanding object near the robot. From such a point of
view, handling SLAM in a robot that travels outdoors is
a challenging problem. For example, there is a technol-
ogy challenge called the “Tsukuba Challenge” that has
been held since 2007, in which a mobile robot travels
2 km or more on a public road, such as an outdoor walk-
ing trail environment [14]. There are several reports of
research related to SLAM being actually carried out in
this Tsukuba Challenge and equivalent outdoor environ-
ments. For instance, this journal reports [15–19] and so
on. Use of a video camera as an exteroceptive sensor
will result in an extremely massive amount of image in-
formation. In this case, matching and tracking are fre-
quently carried out between multiple images, with a fo-
cus on feature points from scale-invariant feature trans-
form (SIFT) feature amounts and those from a combina-
tion of an accelerated segment test (FAST) and rotated
binary robust independent elementary features (BRIEF),
i.e., “Oriented FAST and Rotated BRIEF” or “ORB” fea-
ture amounts [20]. In most cases, SLAM is carried out
without generating a dense map as an image, but rather by
generating a sparse map using only feature points [16, 18].
In an environment wherein a person lives his/her daily
life, he/she is capable of:

1. simultaneously estimating the surrounding environ-
ment and his/her own position,

2. noticing a difference, if any, between previous and
current situations if in a known environment, and

3. continuing to be constantly aware of his/her current
position.

Accordingly, when such an ability has to be given to a
robot, novel efforts will have to be continuously made re-
garding the proper approach to be taken when new be-
havior spaces larger and larger are required for the robot.
Thus, the topic of SLAM will be ongoing discussion.

Fig. 1. A product of the scanner for forest measurements
named OWL (Optical Woods Ledger) of AdIn Research,
Inc. [27].

3. SLAM Application Examples

Lastly, examples of SLAM applications used by the
authors will be introduced. The authors have long been
carrying out research on SLAM and associated appli-
cation technologies (for instance, [21–26] and the like).
Among them, as an application example for mapping us-
ing SLAM technology, a contribution by the authors re-
lated to forest measurement is introduced. In addition, a
localization example is introduced in an environment us-
ing ORB-SLAM.

3.1. Forest Measurement as a SLAM Application
In a forest environment, and in particular in an artifi-

cial forest, there is a need for constantly monitoring the
growth situation of planted trees, so as to estimate the tim-
ber volume as a resource amount in a thinning plan and at
the time of logging. In this monitoring, it is necessary
to examine target trees growing in a research target area
defined in the forest in terms of the position, number, di-
ameter at breast height of each tree, crown height, and the
like. Conventionally, all of these measurements were car-
ried out manually, using a tape measure or the like. For
instance, in a case of manually conducting this work in
a study area of approximately 30 m in a valley-ridge di-
rection and 10 m in width, it is necessary for a group of
three to take an on-site measurement for approximately
one to one and a half hours. In addition, the obtained mea-
surement values must be organized in an office thereafter,
which is time-consuming.

This work can be mechanized by introducing the
SLAM technology, and a dramatic improvement of the
work efficiency would be expected. Thus, between ap-
proximately 2008 and 2015, the authors developed a mea-
surement device called “Optical Woods Ledger” (OWL,
shown in Fig. 1), in cooperation with AdIn Research, Inc.
and Forest Revitalization Systems Co., Ltd. This is a one-
legged device with a small LIDAR mounted on a rotat-
ing table. When the device is held still at a point in a

370 Journal of Robotics and Mechatronics Vol.31 No.3, 2019



Introduction to Simultaneous Localization and Mapping

Fig. 2. Created map in a forest after scan matching based SLAM [27].

study area in the forest, a button is pressed to rotate the
LIDAR on the rotating table, and its surrounding three-
dimensional point crowd can be obtained. The device is
developed so that measurement can be carried out with a
simple operation of only pressing one button at the time
of start of the measurement at the point the device held
still. The measurement is done with a device that obtains
sets of data of the three-dimensional point crowd at a few
points for approximately every 10 m in the area under
study. All the obtained sets of three-dimensional point
crowds are connected as one map as a whole and are used
for processing of obtaining the position of trees, diameter
at breast height of each tree, crown height, and the like.

To connect the sets of three-dimensional point crowd
obtained at multiple points without inconsistencies, map
creation is carried out using a method [28] based on
scan matching fostered in the SLAM technology [26].
However, as there is a relative distance of approximately
every 10 m in the measurement, for scan matching to
calculate the positional relationship between a measure-
ment point and the next measurement point, using the
former measurement point as the initial position, a sim-
ple application of the method [28] does not work well.
Thus, in [26], standing trees, i.e., cylindrical objects were
initially searched for from the three-dimensional point
crowd calculated at each position, and the position of an
intersection point between the center of the cylinder and
a plane parallel to a forest slope face was calculated. The
set of the intersection points resembles a constellation in
the coordinate system, on a plane that is local to the mea-
surement point. Positioning is carried out so that constel-

lations obtained in this manner at multiple points over-
lap each other, and coordinate transformation between
the local coordinate systems is calculated for each of the
measurement points. In this manner, the positional re-
lationship of each of the measurement points is calcu-
lated in advance. We have obtained a good result by con-
ducting scan matching using this positional relationship
as the initial value. Fig. 2 presents an example of the
three-dimensional point crowd obtained by this method.
It is currently possible to measure a standing tree position
within an error range of 4 cm or less, a diameter at breast
height of 2 cm or less, an average tree height of 1 m or
less, an average crown height of 1 m or less, and an aver-
age inclination of 3◦ or less [27]. A measurement value
obtained in such a manner is comparable to conventional
ones that are manually obtained. Moreover, as a practical
matter, it is capable of saving labor, as a single person can
carry out a measurement, the device can be used in, e.g.,
a slope with poor footing, and the necessary information
is obtained.

Because measurement by OWL requires repeated
movements and fixed measurements, the authors have
also attempted to determine if a similar measurement is
possible by simply continuously moving in the forest on
foot. For this reason, they have also made an attempt at
applying the method proposed by Zhang and Singh [29] to
forest measurement [30]. However, they have not yet ob-
tained a performance comparable to the measurement er-
ror accuracy of the OWL, indicating that further improve-
ment is necessary.
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Fig. 3. A pair of the stereo camera and prism for tracking
on a cart.

3.2. Performance of ORB SLAM

Lastly, an experiment is introduced using an exam-
ple of so-called “Visual SLAM,” which is SLAM carried
out using only a camera, and which is not dependent of
self-location measurement means such as odometry. The
example introduced here is an implement called ORB-
SLAM2, by Mur-Artal et al. [b]. The algorithm has been
proposed in previous studies [20, 31]. Feature points in
an image are detected by the ORB feature amount [32],
and this is used for a correspondence of feature points in
an image captured by a monocular camera or a pair of
stereo cameras. As the origin of the name ORB suggests,
the advantages of FAST feature amounts [33] and BRIEF
feature amounts [34] are combined, for better correspon-
dence.

For the experiment introduced here and presented in
Fig. 3, a prism for tracking with a geodetic total station
(Topcon Corporation) is placed between the two cameras
for stereo vision, and this arrangement is placed on a cart.
A camera (GS3-U3-23S6M-C, Point Grey Research, Inc.)
and lens (HS0818V, Myutron Co., Ltd.) are used, and the
baseline length is 450 mm. The interface between a PC
and the camera is a USB. The resolution of the obtained
image is 1920 × 1200, and the shutter speed is fixed at
1 ms. This was obtained in the PC at 15 fps. Using the
obtained image column, an attempt of self-location esti-
mation based on ORB-SLAM2 [b] was made with offline
processing. However, when executing SLAM, the image
was reduced to 960 × 600.

Pushed by hand, the cart went straight on a path of an
on-campus parking lot, as shown in Fig. 4, and subse-
quently turned right and straight further. The distance
of the straight travel before and after the right turn was
approximately 50 m each. At this instant, the camera
position actually obtained with ORB-SLAM method was
compared with the position on the cart actually obtained
by tracking with the total station. Here, the position actu-
ally obtained with the total station is considered to be the
true value. The experiment results are presented in Figs. 5
and 6. Fig. 5 presents the entire trajectory, and Fig. 6

Fig. 4. Environment and trajectory of the experiment.

Fig. 5. Trajectory based on ORB-SLAM2 compared with
ground truth.

Fig. 6. Trajectory based on ORB-SLAM2 compared with
ground truth (magnified).
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Fig. 7. An image example and ORB feature points (1).

Fig. 8. An image example and ORB feature points (2).

Fig. 9. An image example and ORB feature points (3).

presents an enlarged view of the vicinity of the point of
the right turn. As a whole, although the number of po-
sitional errors increased when the camera had a rotation
angle speed before and after the right turn as compared to
when going straight, it still indicated that the self-location
was successfully measured, with a difference of approx-
imately 500 mm as a vertical distance between the tra-
jectories. Figs. 7–9 present feature points detected in the
image at this instant, indicating the ability of SLAM using
the ORB feature amounts.

4. Conclusions

This article has given a simple overview of the history
of technological developments related to SLAM. As de-
scribed, the essence of SLAM lies in the paradigm of si-
multaneously estimating the probability distributions of
the both the self-location and map of the mobile robot. In
addition, this article has presented two application exam-
ples of SLAM recently experienced by the authors. These
are examples of use of the technology fostered in SLAM,
and application of the same to mapping and localization.
Both are scenes that required not simply mapping or lo-
calization, but application of SLAM where measurements
have to be started without being given the position and
map of the measurement device in advance before start-
ing the measurement. The authors are grateful that this
article could be of assistance in the understanding of a
brief overview of the SLAM technology.
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