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In this study, we propose a navigation system that
guides a robot at a location visited for the first time,
without developing a map in advance. First, it esti-
mates the position of a path that exists on the local
map by matching the metric route information and the
local map generated by simultaneous localization and
mapping (SLAM); this is achieved by using a particle
filter. Then, the robot travels to the destination along
the estimated route. In this system, the geometric ac-
curacy of the route information specified in advance
and the accuracy of the map generated by SLAM are
essential. Furthermore, it is necessary to recognize
the traversable area. The experiment performed ver-
ifies the matching of the route information and local
map. In the autonomous running experiment, we con-
duct a trial run on a course set up at the University of
Tsukuba.

Keywords: mobile robot, route information, navigation,
traversability analysis

1. Introduction

A mobile robot must be capable of autonomously nav-
igating from its current position to its destination for it to
carry out activities in the real world. Autonomous nav-
igation from an arbitrary initial position to the destina-
tion is generally based on localization by matching the
point cloud data obtained by Light Detection and Ranging
(LIDAR) and map data created in advance. This method
has been used by most robots that have successfully com-
pleted the autonomous navigation task at the Tsukuba
Challenge [a], a Real World Robotics Challenge for au-
tonomous navigation robots. It is necessary in this method
to visit and manually run the robot at the planned site
beforehand in order to gather data required to create the
map. Substantial effort and time are required for the map
to cover an extensive area; moreover, this method can-
not be used to immediately operate the robot at a location
where it has never been previously. However, humans are
capable of arriving at the destination using an approxi-
mately sketched map; this is because they have a refined

recognition capability that enables them to match land-
marks on the map with the real world. Nevertheless, it
has been challenging in the past to enable robots to au-
tonomously navigate using similar recognition capabili-
ties.

In this study, we propose a method of matching met-
ric route information and a highly accurate map produced
by Simultaneous Localization and Mapping (SLAM); it
is aimed at constructing a navigation system by which
the robot can navigate to the destination even in locations
encountered for the first time. The route information is
produced by manually tracing the desired route; the route
is assumed to be traversable based on aerial photographs
captured in advance, or architectural plans. Meanwhile,
the robot recognizes the traversable areas in its surround-
ings and creates a map of the traversable areas by record-
ing them on the map created by SLAM. By overlaying the
route information on it, the correspondence of the map to
the route information is obtained. A feature of the pro-
posed method is the precondition that the route informa-
tion be geometrically accurate; this enables the robot to
autonomously navigate as long as it is capable of recog-
nizing the traversable areas without requiring a high ob-
ject recognition capability as in humans.

From the above perspective, the authors have been en-
gaged in research on methods by which a robot can nav-
igate locations that it encounters for the first time [1–4].
In reference [1], we verified the validity of the route local-
ization function of the proposed method in an indoor envi-
ronment. In references [2–4], the route localization func-
tion was further extended and implemented with a method
to recognize traversable areas based on three-dimensional
LIDAR so as to enable the robot to operate in outdoor
environments. Trial runs were then carried out in real en-
vironments such as a university grounds and the Tsukuba
Challenge site.

In this paper, we provide an overview of the proposed
method and past experiments, and report our observa-
tions verified through the experiments; the observations
include the conditions under which the proposed method
is valid, types of environments suitable for recognition
outdoors, and recognition capability required by the robot
for it to safely engage in activities in real environments.
The paper is organized as follows: Section 2 reviews
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the issues unresolved in related studies and describes
the approach adopted by this study to address those is-
sues. Section 3 presents the theory underlying the pro-
posed method. Section 4 describes the implementation
of the proposed method. Section 5 presents the results
of the autonomous navigation experiment conducted on
the grounds of the University of Tsukuba; the section also
presents the discussions. Section 6 enumerates our con-
clusions.

2. Related Studies

The topological approach is similar to the manner in
which humans interpret maps [5]. Representing the map
as a graphical structure, an estimate of the present location
is obtained from characteristic landmarks in the environ-
ment. Because of its low accuracy and the need to define
target landmarks in advance, this approach has not been
used for navigation in locations encountered for the first
time [6].

The metric approach is diametrically opposed to the
topological approach. Localization based on the match-
ing of a map prepared in advance and sensor data, as de-
scribed above, belongs to this category. There are also
studies that lie in between these two approaches, wherein
the information provided in advance is minimized and the
localization is carried out with high accuracy.

Reference [7] employed the information of building ar-
eas extracted manually from aerial photos and matches
it with measured 3D environmental data to carry out lo-
calization in an unspecified environment. This method is
limited to environments with buildings in the vicinity that
can be visually recognized in aerial photographs; more-
over, it entails a high manpower cost in advance because
the map must be constructed manually. Reference [8] em-
ployed two-dimensional street maps and achieved local-
ization using the squared-loss mutual information as an
index. It indicated that errors can arise in cases in which
a street displayed in the 2D street map exhibits a topol-
ogy considerably different from reality; however, the au-
thors did not discuss how this can affect autonomous nav-
igation. Furthermore, at the time of its publication, the
boundary information had to be manually produced in the
map. In reference [9], localization was achieved by di-
rectly using the data of OpenStreetMap, although this was
not applied to autonomous navigation; meanwhile, local-
ization was limited to indicating the approximate area of
a specified street being navigated by the robot. Refer-
ence [10] also employed OpenStreetMap data. The mov-
ing robot was localized on OpenStreetMap using GPS po-
sition information; moreover, autonomous navigation was
conducted by using LIDAR to detect the road surface.
However, the experiments were conducted with simple
routes, and the method could not address road forks and
other topologies. In references [11, 12], autonomous nav-
igation systems were constructed from route information
produced from aerial photographs, road-following navi-
gation, intersection recognition, and azimuth detection.

Whereas autonomous navigation was achieved in actual
urban settings, the attached information such as intersec-
tions had to be added manually to the route information.
Reference [13] used an edge-node graph produced from
an electronic map such as Google Map; moreover, the
edge of the edge-node graph corresponding to the posi-
tion of the mobile robot was estimated by odometry. A
simple electronic map may not necessarily coincide geo-
metrically with the actual environment; furthermore, lo-
calization errors are likely to occur when similar routes
exist or owing to odometry error.

A car navigation system [14] estimates self-position by
matching the travelled trajectory generated from position
information obtained by dead reckoning against an elec-
tronic map. Because the human driver recognizes the road
while driving, no sensing of the real environment is car-
ried out; moreover, localization is based on the assump-
tion that the vehicle is following the road.

In reference [15], particle filters were used to estimate
the positions of manually set waypoints; furthermore, the
method prevented the waypoints from being set on un-
traversable areas. The waypoints were estimated and cor-
rected based on the traversable and untraversable areas
detected by LIDAR and a stereo camera; this enabled the
robot to navigate even when the environmental map or
route information was indistinct. However, the waypoints
were likely to have been adjusted erroneously at branches
because they were individually adjusted; this issue is not
addressed in reference [15]. Furthermore, the authors in-
dicated the issue of erroneous adjustments when a moving
object, such as a pedestrian, was present at a waypoint po-
sition.

Because the method proposed by the present study em-
ploys route information based on aerial photographs, no
advance measurements are necessary, similar to refer-
ences [7, 8]. The major difference lies in the provision
of only the geometric information of the specified route,
without the need to attach additional information on en-
vironmental features by extracting the road boundaries or
building shapes from the aerial photos. Furthermore, un-
like reference [13], the metric route information is over-
laid on the traversable areas; this enables the localiza-
tion of the route within the recognized environment. The
car navigation system [14] matches the traveled trajectory
against the map based on the assumption that the human
driver is keeping the vehicle on the road; therefore, it
is similar to the present study in that localization is car-
ried out metrically. From this perspective, the objective
of the present study can be considered as the realization
of a completely autonomous system by using sensors to
automate the driver’s recognition and driving. Because
the recognition of traversable areas (which the proposed
method requires) is equivalent to the recognition of obsta-
cles (necessary to achieve the robot’s autonomous naviga-
tion), we consider that refining this function will enhance
the overall system stability.
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3. Route Information and SLAM-Based Route
Localization

3.1. Outline of Proposed Method
In this study, we employ metric route information cre-

ated manually from geometrically accurate drawings such
as architectural plans and aerial photographs. We use the
term metric from the perspective that the captured or dis-
played object’s actual configuration and relative scale are
preserved. Because the map produced by SLAM is also
likely to be metric, the localization necessary for navi-
gation can be obtained by matching the two. If we as-
sume that the route specified by the human operator and
the map produced by SLAM both recreate the topology
and shapes of roads and objects without error, the corre-
sponding shapes should match substantially. In this case,
the route localization in the proposed method and the de-
termination of the robot’s initial position and attitude in
the real world are equivalent problems.

However, in reality, map distortion owing to errors of
SLAM and errors in the manually-produced route exist.
The likely factors of route errors include distortions in
the aerial photos and distance errors arising when the se-
lected route is in an environment containing altitude dif-
ference. Nevertheless, we assume them to be negligible
in this study. Meanwhile, distortions in the map produced
by SLAM cannot be prevented and therefore, must be ac-
counted for by the system.

We outline the proposed system below, and in the fol-
lowing sections, describe the method of localization and
measures to address the likely issues in detail:

• The route information by which the robot navigates
through the traversable area is manually produced
from geometrically accurate aerial photos and other
sources.

• The robot produces the local map using SLAM as
it navigates and detects the traversable areas. The
areas where temporary obstacles such as pedestrians
are present are assessed as traversable.

• A particle filter is used to estimate the route on the
traversable area map, and the robot’s self-position is
obtained by coordinate transformation.

• The robot navigates based on the estimated route po-
sition and self-position.

3.2. Creation of Route Information
Aerial photos available on Google Earth or other web-

sites are used to create the route information. However,
note that a detailed architectural plan, if available, may
rather be used when navigating indoors; this is because it
suffices for the route information to be geometrically ac-
curate. The route information consists of the coordinates
of the waypoints after a two-dimensional coordinate sys-
tem ΣW has been superposed on the aerial map or plan;
the information is provided in the form of an adjacency
list with the waypoints as the vertices.

Fig. 1. Conceptual diagram of proposed method: estimate
the origin of the route information in the traversable area
map. The route information with particles as the origin is su-
perimposed on the traversable area map. The route informa-
tion is specified as an area with a certain width, and the par-
ticles are weighted according to the ratio of the traversable
area included. The weight of the particles in which the
traversable area is large in the route evaluation zone is high
(light-gray route evaluation zone). The weight of parti-
cles with a small number of traversable areas included in
the route evaluation zone is low (dark-gray route evaluation
zone).

3.3. Detection of Traversable Areas and Map
Creation

The traversable area is detected from the point cloud
data obtained by three-dimensional LIDAR. The paved
road surfaces are mainly detected as traversable areas; this
is because it is feasible to detect the difference in eleva-
tion created by steps on the road surface or distinguish
between paved road surfaces and grassy areas from the
point cloud data. As shown in Fig. 1, the traversable ar-
eas are recognized by distinguishing the paved road sur-
faces from the steps and grassy areas. This route estima-
tion method can be used for traversable areas detected by
other methods. The specific implementation is described
in Section 4.

In addition, a local map is produced by SLAM and used
to estimate the route position, which is described below,
and the recognized traversable areas are accumulated and
stored on an occupancy grid map. The two-dimensional
coordinate system of the map produced in this manner is
denoted by ΣM.

3.4. Localization Based on Route Estimation
Because the route information is specified by coor-

dinates in the ΣW coordinate system (defined in Sec-
tion 3.2), the self-position and attitude in this coordinate
system is necessary for navigation. Meanwhile, the robot
determines its self-position and attitude in the ΣM coordi-
nate system using SLAM, as defined in Section 3.3; there-
fore, the coordinate transformation TM→W from ΣM to ΣW
is necessary to obtain the robot’s self-position and atti-
tude in the ΣW coordinate system. This TM→W coordinate
transformation is estimated using a particle filter.

Figure 1 shows a conceptual diagram of the proposed
method. The procedure to estimate the route position
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using the particle filter and the method of determining
the self-position from coordinate transformation are de-
scribed below. The particle filter used for the route esti-
mation is used exclusively for this purpose and is unre-
lated to the particle filter in SLAM.

3.4.1. Route Estimation Using Particle Filter
The coordinate transformation TM→W from ΣM to ΣW

is determined by the coordinates of the origin of the ΣW
coordinate system in ΣM and relative attitude of the two
coordinate systems. Therefore, we consider the particle
xxx[m]

k =
(

x[m]
k ,y[m]

k ,θ [m]
k

)
as the hypothesis, and its weight

w[m]
k . Here, k denotes the discrete time, and m is the par-

ticle index. Because the coordinate transformation TM→W
is essentially static, the prediction model in the particle
filter is assumed to be stationary.

Step 1: Initialization of particle filter

The particles are assumed to exhibit a Gaus-
sian distribution with covariance matrix Σ =
diag

(
σ2

x ,σ2
y ,σ2

θ
)

centered at the robot’s initial po-
sition and attitude xxxinit = (xinit ,yinit ,θinit). There are
N particles, and the initial weight of each particle is
1/N. The initialization is expressed as follows:

xxx[m]
0 ∼N (xxxinit ,Σ) . . . . . . . . . . (1)

w[m]
0 =

1
N

. . . . . . . . . . . . . (2)

Step 2: Weighting

The particles are evaluated based on the extent of
traversable area included in the route evaluation zone
when the route information translated and rotated
by x[m]

k ,y[m]
k ,θ [m]

k is overlaid on the traversable area
map. Because the estimated route must be navigable
by the mobile robot, a route with a width approxi-
mately equal to the robot’s body is used for evalua-
tion. The robot scans areas where this route overlaps
the traversable area map and counts the total number
of grids in each area type. The number of grids in
the respective areas is determined by observing the
traversable area map, zk, and particle xxx[m]

k . The num-
bers of grids in the traversable, obstacle, unknown,
and grassy areas, and the area over which the hori-
zontal laser passes unobstructed are denoted by N[m]

tr ,
N[m]

ob , N[m]
un , N[m]

gr , and N[m]
f r , respectively; these are

multiplied by coefficients Ctr, Cob, Cun, Cgr, and Cf r,
respectively, and then summed to obtain W [m], which
represents the likelihood of the particle. This is ex-
pressed as follows:

W [m] = CtrN[m]
tr +CobN[m]

ob +CunN[m]
un +CgrN

[m]
gr

+Cf rN
[m]
f r . . . . . . . . . . . (3)

Step 3: Updating of particle filter and computation of es-
timated value

Estimation is carried out using the posterior proba-
bility p (xxxk | zk), prior probability p (xxxk), and likeli-
hood p (zk | xxxk). From Bayesian inference, the pos-
terior probability is expressed as

p (xxxk | zk) ∝ p (zk | xxxk) p (xxxk) . . . . . (4)

Because the prediction model is assumed to be
static in the proposed method, the prior probability
p (xxxk) is equal to the distribution a time-step before,
p (xxxk−1), and its sampling value p

(
xxx[m]

k−1

)
is equal to

the particle weight w[m]
k−1. The likelihood p (zk | xxxk)

is given by W [m]. Assuming that the posterior dis-
tribution is obtained as the updated particle weight
w[m]

k , the continuous distribution of Eq. (4) can be
expressed as a sample approximation as follows:

w[m]
k−1 = p

(
xxx[m]

k−1

)
∼ p (xxxk) . . . . . . (5)

W [m] p
(

zk | xxx[m]
k

)
∼ p (zk | xxxk) . . . . . (6)

w[m]
k = p

(
xxx[m]

k | zk

)
∼ p (xxxk | zk) . . . . (7)

Thus, we obtain the update rule for the particle
weights as

w[m]
k = W [m]w[m]

k−1. . . . . . . . . . (8)

The weighted average x̂xxk of all particles represents
the estimated coordinates and attitude of the origin
of the ΣW coordinate system in the ΣM coordinate
system.

x̂xxk =
(
x̂k, ŷk, θ̂k

)
=

N

∑
m=1

w[m]
k xxx[m]

k

N

∑
m=1

w[m]
k

. . . . (9)

Step 4: Resampling

A specified number of the low-weight particles are
selected and re-scattered in the vicinity of the high-
weight particles. In the present case, 5% of the total
particles are selected from the lowest-weight parti-
cles and scattered in the vicinity of the high-weight
particles.

3.4.2. Acquiring Self-Position by Coordinate Trans-
formation

Denoting the robot’s self-position and attitude in the
ΣM coordinate system by (xM

r ,yM
r ,θ M

r ), its self-position
and attitude in the ΣW coordinate system, (xW

r ,yW
r ,θW

r ),
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Fig. 2. Limited measurement criterion set to address map dis-
tortion. Because the dashed lines collide with the wall in the
distorted map, they are not counted for route pose estimation.

Fig. 3. Route information with branches. Although the dash-
dot line is not the actual route, we evaluate whether it is on a
traversable area, for route pose estimation.

is specified by the estimated value, x̂xxk = (x̂k, ŷk, θ̂k) (ob-
tained from the particle filter in the previous section),
from the following coordinate transformation TM→W :(

xW
r

yW
r

)
=

(
cos θ̂k sin θ̂k
− sin θ̂k cos θ̂k

)(
xM

r − x̂k
yM

r − ŷk

)
(10)

θW
r = θ M

r − θ̂k . . . . . . . . . . . . (11)

3.5. Methods to Address Distortion of Produced
Map

Distortions are increasingly introduced in the SLAM-
produced map as the robot travels longer distances. Thus,
situations involving challenges in estimating the route po-
sition are likely when the proposed method is used to nav-
igate long distances.

This is addressed by limiting the route section to be
weighted to a range within which the map distortion stays
below a permissible range. Specifically, the section of the
route that lies within a certain distance from the base of
the perpendicular drawn from the robot’s self-position in
the ΣW coordinate system to the closest route, is used to
calculate weights. In this manner, we expect that the route
will be estimated correctly in the vicinity of the robot’s
self-position even when the entire route does not match
(Fig. 2); this enables navigation along the route.

Meanwhile, when a straight or arc-following route ex-
tends over a long distance, localization in the forward di-
rection can become uncertain. In such cases, the evaluated
section to the rear is extended to include a corner.

3.6. Measures Against Branches
The localization accuracy of the proposed method is af-

fected by the width and topology of the road. The position
accuracy reduces after a wide road or a long straight sec-
tion has been navigated. When a narrow branched section
immediately follows such sections, the correct path is not
likely to be selected because of the position error. When
there are branches such as those shown in Fig. 3, the spec-
ified route information matches either branch as they are
challenging to distinguish.

To address similar situations, the branch denoted by the
dash-dot line in Fig. 3 is attached in advance to the route
information. This branch is evaluated in a similar manner
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Fig. 4. Appearance of mobile robot.

as the route; if it lies in the traversable area, the weights
of the corresponding particles are increased. This is ex-
pected to improve the accuracy.

4. The Applied Robot and Implementation of
Proposed Method

The proposed method is implemented on the ROS1

platform. The mobile robot shown in Fig. 4 is used
to carry out the autonomous navigation experiment de-
scribed in the following sections. The robot employs a
wheel encoder and IMU: NAV420 (Crossbow Technology
Inc.) as internal sensors. As external sensors, the robot is
equipped with two 3D LIDARs, namely, VLP-16 (Velo-
dyne LIDAR, Inc.) and YVT-35LX (Hokuyo Automatic

1. Robot Operation System. http://www.ros.org/ [Accessed October 22,
2018]
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Fig. 5. Example of route information using Google maps API.

Co. Ltd.). The latter is for detecting steps and low lying
obstacles at a close range in front of the robot, which are
blind areas of VLP-16.

The functions required for autonomous navigation by
the proposed method are implemented as follows.

4.1. Creation of Route Information
The robot is implemented with a web application that

acquires the longitudinal and latitudinal coordinates of a
point clicked on an aerial photo or street map on Google
maps API and stores it as the route information. Because
the present method is based on metric (i.e., geometrically
accurate) information, it is unaffected by inaccuracies in
the magnitudes of longitudinal/latitudinal coordinates as
long as the relative geometric positions of the points form-
ing the route are accurate.

An example of the produced route information is shown
in Fig. 5. The waypoints are indicated by the pin icons,
and the solid polyline connecting those points represents
the route. The dashed polylines represent branches, as
described earlier.

4.2. SLAM and Creation of Traversable Area Map
The slam gmapping package of ROS is used as SLAM.

It is a SLAM approach that employs Rao-Blackwellized
particle filters to create grid maps [16]. Because it em-
ploys 2D laser scan data, the range of the laser beam re-
flected at the most-distant point in each line obtained with
VLP-16 is used as the scan data. The slam gmapping
package produces a map; however, because we are mainly
interested in distinguishing grassy areas, the traversable
area map is constructed from the SLAM-acquired self-
position based on the results of the recognition method
described below.

4.3. Recognition of Traversable Area
VLP-16 is used to detect flat, grassless road surfaces.

The velodyne height map package of ROS is used to de-
tect flat road surfaces. In this package, the acquired 3D
point cloud is divided into plane grids; any grid is as-
sessed as flat if the difference between the maximum and

Fig. 6. Aerial photo of example environment.

Fig. 7. Recognition result of example environment.

minimum z-coordinates of the point cloud in the grid is
sufficiently small. Any grid that is not assessed as flat is
considered as an obstacle area.

To detect grass in any area assessed as a flat road sur-
face, we use a reported method based on the reflected
remission of LIDAR [17, 18]. Specifically, we obtain
the average remission value within each grid for point
clouds in grids that are assessed as flat road surfaces us-
ing the velodyne height map; then, we use a threshold
that depends on the distance from the sensor, to determine
whether it is grass.

For the outdoor environment, an aerial photo of which
is shown in Fig. 6, the produced traversable area map is
shown in Fig. 7. The grids are color-coded as follows:
white indicates traversable areas, black the obstacle areas,
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(1) The case where interval for weighting is constant distance. (2) The case where interval for weighting includes the corner
behind.

Fig. 8. Difference in result of estimated route information by interval for weighting. (1) In the range surrounded by the dashed line,
because an error occurs in the route estimation results, the route information deviates from the traversable area (represented by an
arrow). (2) In the range surrounded by the dashed line, the route information is correctly estimated in the traversable area.

light-gray the free areas (over which the 2D laser scan
beam, described in Section 4.2, passed without obstruc-
tion), dark-gray the grassy areas, and hatched pattern the
unknown areas.

4.4. Navigation
Navigation is implemented with the ROS move base

package; the target points consist of waypoints that have
been coordinate-transformed to the ΣM coordinate system
based on the estimation results of the proposed method;
moreover, the Dynamic Window Approach (DWA) is
used to generate the trajectory [19].

DWA requires an obstacle map represented as a grid
map to generate the trajectory. In our case, we em-
ploy the obstacle areas and grassy areas obtained when
constructing the traversable area map, as well as the
obstacle/flat area information obtained by applying the
velodyne height map package to point clouds acquired by
VLP-16 and YVT-35LX.

4.5. Route Evaluation Zone that Includes Corners
to the Rear

As mentioned in Section 3.5, navigation-direction er-
rors can occur on long, straight road sections. This is
addressed by extending the route evaluation zone to the
rear so as to include a corner. Fig. 8 shows the results
of the route estimation when the corner to the rear is not
included and those when the route evaluation zone is ex-
tended to include the corner. In the former case, the route
evaluation zone extends 100 m to the rear from the robot’s
self-position. In the latter case, when there are three ad-
jacent points that form an angle (route shape) of less than
135◦ within a distance of 150 m to the rear, the route eval-
uation zone is extended to a point 50 m further back from

the corner. A comparison of the results reveals that the
route estimation results in a deviation of approximately
10 m in the longitudinal direction when the rear corner
is not included; meanwhile, this deviation is suppressed
when the route evaluation zone is extended to include the
rear corner. Thus, we verify that extending the route eval-
uation zone to include the rear corner is a valid measure.

5. Autonomous Navigation Experiment on the
Grounds of University of Tsukuba

5.1. Objective and Method of Experiment
To verify the validity of the proposed method, a route

of distance approximately 2 km is set within the grounds
of the University of Tsukuba, and an experiment is con-
ducted to verify whether the robot is capable of au-
tonomously navigating the entire route.

The following items were selected for evaluation be-
cause they are considered to be important factors affecting
the success of the proposed method:

(1) Localization error.

(2) Effect of SLAM accuracy.

(3) Effect of environment recognition capability.

(4) Length of route evaluation zone.

Because the evaluation of item (1), which is to examine
the localization performance of the proposed method, re-
quires the manual matching of the SLAM-produced map
and actual trajectory, it would require considerable time
and effort to be carried out for the entire route. Therefore,
it is evaluated for a few selected points. Specifically, we
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Fig. 9. Route information in University of Tsukuba.

assess the route position error between the estimated route
and the one prepared in advance at sections where the par-
ticles of the route-estimation particle filter are widely dis-
persed; this is likely to result in low localization accuracy.

The purpose of item (2) is to examine the impact of the
localization accuracy of SLAM on the route estimation.
The localization accuracy of SLAM is evaluated by ex-
amining its discrepancy against odometry [20]. We verify
the effect that a large error of this type has on autonomous
navigation.

Item (3) has been verified at a fundamental level in
Section 4.3. In the present experiment, we examine
whether an insufficient environment recognition capabil-
ity can hinder autonomous navigation.

With regard to item (4), Section 4.5 describes the va-
lidity of including the corner to the rear in the evaluation
zone. We examine its effect on autonomous navigation in
the experiment.

The starting point of the route is set in front of Build-
ing L in Area 3 of the University of Tsukuba. The route
then passes through the pedestrian deck and ends in front
of the Medical Library in the Medical Area, a distance
of approximately 2 km (Fig. 9). Magnified views of the
starting and goal points are shown in Figs. 10 and 11, re-
spectively.

The coefficients of Eq. (3) used to evaluate the like-
lihood of the route position estimation are presented in
Table 1. The coefficients are determined heuristically so
that the traversable areas are rated high whereas the other
areas, in particular the grassy areas and obstacle areas, are
rated low.

Fig. 10. Route information around the start position in Uni-
versity of Tsukuba.

Fig. 11. Route information around the goal position in Uni-
versity of Tsukuba.

Table 1. Coefficients in Eq. (3) for tested system.

Ctr Cob Cun Cgr Cf r

10 −2 −0.2 −1 −0.2

5.2. Experiment Results
Although there are points at which the robot comes to

an emergency stop or its position has to be corrected man-
ually, it is capable of autonomously navigating the route
to the goal point without failure of route position estima-
tion. There are nine spots where it is unable to continue
autonomous navigation; images of those spots are shown
in the order of occurrence in Fig. 12.

Figure 13 shows the standard deviations of the particles
used for route estimation. It is apparent that the standard
deviation peaks at four points: the 200 m, 800 m, 1,200 m,
and 1,700 m points. To examine item (1), the errors be-
tween the route information provided in advance and the
estimated route are determined at these four points. To
compute the error, satellite photos used to create the ad-
vance route information are overlaid on the corresponding
SLAM-generated maps for comparison with the estimated
routes. Fig. 14 shows the route information provided
in advance and the estimated route positions at the four
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(a) 130 m (b) 180 m (c) 210 m

(d) 1080 m (e) 1180 m (f) 1580 m

(g) 1600 m (h) 1615 m (i) 1690 m

Fig. 12. Stacked points of the autonomous running experiment in university.

Fig. 13. Standard deviation of particles based on route position.

points; Table 2 presents the distance errors between the
two. It is apparent that the error is at most approximately
2 m; this indicates that the route is estimated within a
range that does not depart from the path that should be
adopted.

With respect to item (2), the accuracy of SLAM-based
localization is evaluated in Fig. 15. It is based on
the method of evaluating the dispersion of localization
with reference to odometry (described in reference [20]);
moreover, it plots the standard deviations of multiple
odometry initialized every 1 m using the SLAM local-

ization results. Large values indicate large discrepancies
with odometry, which in turn indicates that the SLAM-
produced map has become distorted. It is apparent that
large discrepancies occurred between SLAM localization
and odometry in the vicinities of 650 m, 1,600 m, and
1,950 m from the origin. Of these, the increased discrep-
ancies at 650 m and 1,600 m do not correspond to any of
the points shown in Fig. 12; thus, they had no effect in
terms of continuation of autonomous navigation. How-
ever, the high discrepancy near the 1,600 m point is likely
a factor in the disruption of the robot’s autonomous navi-
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(a) 200 m (b) 800 m

(c) 1200 m (d) 1700 m

Fig. 14. Estimated route information (black line) and route information placed by overlaying the aerial photo on the traversable
area map (gray line).

Table 2. Error of estimated route position.

Distance from origin [m] Distance error [m] Angle error [rad]

200
(A1, B1) (A2, B2) −0.038

1.35 1.75

800
(A3, B3) (A4, B4) −0.00088

0.84 0.78

1200
(A5, B5) (A6, B6)

0.0081
1.97 2.03

1700
(A7, B7) (A8, B8) −0.018

1.42 1.06

gation.
In the following section, we discuss whether each eval-

uation item is a factor in obstructing autonomous naviga-
tion at these points.

5.3. Discussion
The major factors that caused discontinuation of au-

tonomous navigation can be divided into two categories:
1) insufficient recognition capacity of traversable areas
and 2) the generation of discontinuity errors in SLAM-
based localization.

The points where a low environment recognition ca-
pacity, i.e., item (3), is the cause are the 180 m and 210 m
points (Figs. 12(b) and (c), respectively). YVT-35LX de-
tects the presence of low steps based on the difference be-

tween the highest and lowest points in the grid. The steps
at these points are of height 5 cm; as this is lower than the
value used for step recognition, the steps are undetected.
Incidentally, the localization errors at these points are in
the vicinity of 1.35 m and 1.75 m, respectively (Table 2);
these are the distances (A1, B1) and (A2, B2) measured
in the vicinity of the 200 m point shown in Fig. 14(a).
These errors are likely to have caused the robot to stray
from the traversable area; however, the route estimation
error is likely to be lower if the obstacle recognition is
effectively carried out.

At the 130 m, 1,080 m, and 1,180 m points (shown in
Figs. 12(a), (d), and (e), respectively), a discontinuity of
the self-position occurs; it results in its coincidence with
an obstacle area as a result of SLAM localization. This
prevents DWA-based route planning and results in dis-
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Fig. 15. Standard deviation of multiple odometry based on SLAM.

continuation. The self-position is estimated to lie on the
obstacle area because the landmarks, which form repeti-
tious patterns on the SLAM map, are scattered about at
these locations and thus, are mismatched; this produces
errors in the SLAM localization. This localization error
causes the robot to locate its self-position on the obstacle
area, rendering it unfeasible to carry out route planning
with DWA. Because the SLAM accuracy is not particu-
larly low at these points (Fig. 15), we can conclude that
marginal discontinuities can disrupt a run. In these cases,
the robot is able to move away from the obstacle area and
continue autonomous navigation when it is manually op-
erated to go forward a marginal distance. This indicates
that the robot gradually recovers the correct self-position.

The 1,580 m, 1,600 m, 1,615 m, and 1,690 m points,
shown in Figs. 12(f), (g), (h), and (i), respectively, lie in
the section between 1,600 m and 1,700 m from the origin.
Fig. 15 indicates that these points are where the SLAM
accuracy reduced. A considerable change in the SLAM
self-position affects the geometric accuracy of the gen-
erated map. In particular, the position error that occurs at
the 1,580 m point is likely to have resulted in a discontinu-
ous map deformation. Fig. 16 shows the plotted localized
position on the SLAM map. Although the self-position on
the generated map should be accurate and the trajectory

should be continuous when SLAM functions correctly,
discontinuous jumps are apparent at certain points. In par-
ticular, a jump of approximately 5 m to the side from the
direction of travel occurs in Fig. 16(a); this is considered
to have caused the discontinuation of the run. Here, the
SLAM-generated map undergoes discontinuous deforma-
tion because an erroneous matching of SLAM localization
results in map deformation by referencing a point where
landmarks are scarce. This phenomenon occurs because
the accumulated landmark positions can be subsequently
modified in slam gmapping. The deformation of the map
owing to mismatching results in loss of geometric accu-
racy; this caused the map to be overlaid inaccurately on
the geometrically accurate route and therefore, erroneous
route position estimation. Because the route evaluation
zone is 150 m in length, the robot gradually ceases to use
distorted sections as reference points beyond the 1,700 m
point (which is 150 m further from the point where the
problem occurs) and resumes normal navigation without
the operator’s manual intervention. This indicates that the
length of the route evaluation zone, noted above as evalu-
ation item (4), affects the recovery time in cases when the
map becomes distorted owing to SLAM positioning error.

The above factors that caused navigation to be aborted
are summarized in Table 3.
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(a) 1600 m (b) 1950 m

Fig. 16. Inconsistently estimated position during SLAM: lateral error of 5 m caused stack as shown in Fig. 12(f). Longitudinal
error in (b) did not cause stack.

Table 3. Causes of navigation failure.

Location (indicated in Fig. 12) Cause of navigation failure
(b), (c) Failure to detect obstacle (item (3), partly item (1)).

(a), (d), (e) Inconsistent localization by SLAM (item (2)).
(f), (g), (h), (i) Inaccurate localization by SLAM and map deformation (item (2),

partly item (4)).

6. Conclusions

To develop a navigation system that enables a robot
to autonomously navigate and arrive at its destination in
locations it has not encountered before, this study pro-
poses a method of matching metric route information and
the map generated by SLAM based on the detection of
traversable areas. Without surveying the actual site of the
route, the robot operator is capable of making the robot
navigate autonomously as long as sources to produce a
metrically accurate map (e.g., aerial photos and architec-
tural plans) are available.

Although there are sections in which the robot is inca-
pable of continuing navigation, we would experimentally
verify that the robot is capable of navigating most of the
2 km route set up in an actual outdoor environment, in-
cluding a pedestrian walk. The discussions yielded the
following conclusions:

• The consistency of SLAM, such as (the absence of)
jumps in SLAM localization, substantially affects
the performance of the method.

• In route estimation, a valid measure is to incorporate
adjustments by including characteristic route topolo-
gies such as corners.

• Because the proposed method allows for position-
ing errors equal to approximately the road width, the
robot’s capacity to correctly recognize traversable ar-
eas has a substantial impact.

As an issue for future study, we consider it important to
address cases in which sufficient metric route information

cannot be obtained in advance. Whereas the aerial photos
used in this study contain sections where the route cannot
be visually verified owing to obstructions by buildings or
trees, the route is selected based on reasonable estimates.
We consider addressing such cases by excluding those vi-
sually obstructed sections from the route evaluation zone
for route position estimation and carrying out route esti-
mation by using only those visually verified sections so as
to preserve geometric accuracy.
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