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This study applies a sliding mode control (SMC) strat-
egy for a robust controller of a quad-rotor vehicle.
First, a controller combined with a nested control loop
and an SMC is introduced, because a quad-rotor ve-
hicle has only four control inputs although the vehicle
has six degrees of freedom. The control performance
for the feedback gains in the nested loop is investigated
in numerical simulations. Subsequently, the effects of
practical system limitations (control cycle and rotor
dynamics) on the control performance are examined.
Finally, the robust performance of the SMC strategy
on a quad-rotor vehicle is discussed.
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1. Introduction

Recently, numerous missions using micro air vehi-
cles (MAVs) with several rotors have been considered or
demonstrated because of their wide application: e.g., in
agriculture, industry, military, etc. Quad-rotor vehi-
cles are representatives of MAVs, and their autonomous
flight control systems have been actively studied to elim-
inate humans from operations of dangerous tasks [1–4].
However, quad-rotor vehicles have several problems as
flight systems from the control viewpoint. First, they
have only four rotors (or control inputs), although they
have six degrees of freedom (DOFs); i.e., the system is
under-actuated. Second, as their rotor sizes are relatively
small compared with single-rotor helicopters, the control
force/torque generated by rotors is typically small; that
is, their flight stability is not sufficiently large to handle
exogenous disturbances. Moreover, the rotor’s time con-
stant is relatively large, and the mass balance of vehicles
changes according to the onboard payloads. Thus, the
flight control systems for quad-rotor vehicles are required
to be stable and robust owing to these problems.

To enhance the stability and robustness, this study ap-
plies a sliding mode control (SMC) to the autonomous
flight control system of a quad-rotor vehicle [5–9]. An
SMC is well known to have high robustness for distur-
bances or modeling errors. However, the SMC’s control

Fig. 1. Model of a quad-rotor vehicle and two frames.

performance and robustness have not been validated in
real control systems for quad-rotor vehicles, owing to the
following reasons: in real systems, the time interval in
control loops is finite (not infinitesimal) and depends on
the hardware. The interval affects the magnitude of “chat-
tering” in the control signals, and the induced chattering
typically degrades the behavior of state variables. Mean-
while, the rotors’ time constants caused by their dynamics
attenuate the quick change in the rotor speeds commanded
by the chattering inputs. Furthermore, as quad-rotor vehi-
cles are under-actuated systems, the stability and perfor-
mance of indirectly controlled variables are not obvious.

Herein, the control strategy combined with an inner
loop and the SMC is first introduced to control the six
DOFs of a quad-rotor vehicle. The controller performance
is investigated in numerical simulations for the specifica-
tions of an experimental system in our lab. Subsequently,
the effects of the practical system’s limitations on control
performance are examined, as a preliminary study for fu-
ture experiments. Finally, the effectiveness of the SMC
strategy on a quad-rotor vehicle is discussed.

2. Modeling and Control Strategy

2.1. Mathematical Model of a Quad-Rotor Vehicle

To express a quad-rotor vehicle’s motion, we defined
two coordinates: a body frame (xb,yb,zb) attached to a
vehicle whose origin coincides with the vehicle’s mass
center, and a world frame (X ,Y,Z). Fig. 1 shows a sim-
ple model of a quad-rotor vehicle. We assume that four
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rotors are placed at a distance d from the mass center and
their rotational axes are parallel to the zb-axis; Rotors 1
and 3 rotate in a counter clockwise direction from the top
view, and Rotors 2 and 4 rotate in clockwise; ωi, Fi and
Qi indicate the rotational speed, thrust force, and reaction
torque of the i-th rotor, respectively. The vehicle attitude
is defined by the roll-pitch-yaw Euler angles (φ ,θ ,ψ).

A quad-rotor vehicle has six DOFs for its translational
and rotational motions. The roll (or pitch) movement
about the xb- (or yb-) axis is due to the difference between
the torques generated by Rotors 1 and 3 (or 2 and 4). The
yaw motion about the zb-axis is generated by the reaction
torques of the rotors. Meanwhile, the motion in the zb-
direction is determined by the sum of thrusts of the four
rotors, but the xb- and yb-directional forces cannot be di-
rectly generated by the rotors.

The thrust force and the reaction torque of the i-th rotor
are expressed as follows:

Fi = bωi
2, . . . . . . . . . . . . . . (1)

Qi = −kωi
2, . . . . . . . . . . . . . . (2)

where b and k are the lift and reaction coefficients, re-
spectively, and they are assumed to be the same for all the
rotors herein. Subsequently, from the geometric relation
of the four rotors, the rotational torques and zb-directional
thrust force are defined by each rotor’s speed as follows.⎡

⎢⎢⎢⎢⎣
Txb

Tyb

Tzb

F

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

db −db 0 0

0 0 −db db

k k −k −k

b b b b

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

ω1
2

ω2
2

ω3
2

ω4
2

⎤
⎥⎥⎥⎥⎦ , . (3)

where Tib (i = x,y,z) is the toque, and F is the total force
generated by the four rotors. Because the matrix in the
right-hand side is non-singular, three rotational torques
and one translational force are independently generated
through the speed control of the four rotors.

The translational and rotational motions in the world
frame of the quad-rotor vehicle are derived from the
Newton-Euler formulation as follows. For the transla-
tional motion,⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

V̇X =
F
m

(cosφ sinθ cosψ + sinφ sinψ),

V̇Y =
F
m

(cosφ sinθ sinψ − sinφ cosψ),

V̇Z = −g+
F
m

cosφ cosθ ,

. (4)

where Vi (i = X ,Y,Z) is the velocity component in the
world frame, m is the vehicle’s mass, and g indicates the
gravity acceleration. For the rotational motion,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ω̇xb =
Iyb − Izb

Ixb
ωybωzb

+Jr (ω1 +ω2 −ω3 −ω4)ωyb +
Txb

Ixb
,

ω̇yb =
Izb − Ixb

Iyb
ωzbωxb

−Jr (ω1 +ω2 −ω3 −ω4)ωxb +
Tyb

Iyb
,

ω̇zb =
Ixb − Iyb

Izb
ωxbωyb +

Tzb

Izb
,

(5)

where (ωxb,ωyb,ωzb) and (Ixb, Iyb, Izb) are the angular ve-
locities and inertial moments around the principal axes,
respectively; Jr indicates the rotor’s inertial moment.

For the attitude motion representation of a vehicle, this
study adopts quaternion variables [10, 11], because Euler
angle representation has singular attitudes and three atti-
tude angles must be stabilized sequentially (not simulta-
neously). The relation between the angular velocities and
time derivatives of the quaternions is expressed by the fol-
lowing equation:⎡
⎢⎢⎢⎢⎣

q̇0

q̇1

q̇2

q̇3

⎤
⎥⎥⎥⎥⎦ =

1
2

⎡
⎢⎢⎢⎢⎣

0 −ωxb −ωyb −ωzb

ωxb 0 −ωzb ωyb

ωyb ωzb 0 −ωxb

ωzb −ωyb ωxb 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

q0

q1

q2

q3

⎤
⎥⎥⎥⎥⎦ , . (6)

2.2. Control Strategy for Translation in World
Frame

As described above, the attitude motion around three
axes and total force are controlled independently. Thus,
the translational forces in the world frame can be gener-
ated as the components of the total force by changing the
force magnitude and vehicle attitude.

However, quad-rotor vehicles are under-actuated sys-
tems, because they have six DOFs. For obtaining or
changing the X- (Y -) directional force, the vehicle must
change the pitch angle θ (the roll angle φ ). Thus, to con-
stitute a simple error feedback system, the attitude angles
required to reduce the X- and Y -directional position errors
can be designed as{

θdesire = KPX Xe +KDX Ẋe,

φdesire = KPYYe +KDYẎe,
. . . . . . (7)

where Xe and Ye are the position errors, and KPi and KDi
(i = X ,Y ) are PD gains. This feedback compensation is
added as a nested-control loop. Thus, the overall control
loop for the quad-rotor vehicle is illustrated in Fig. 2. In
this figure, (Xt ,Yt ,Zt ,φt ,θt ,ψt) indicate the target states of
the vehicle, and the angles defined in Eq. (7) are added to
θt and φt , respectively. Consequently, θ ′

t and φ ′
t in Fig. 2

are used instead of θt and φt . Subsequently, the speeds of
four rotors are controlled from Eq. (3). It is noteworthy
that to achieve both the flight attitude stability and the po-
sition error reduction, the feedback gains in Eq. (7) should
be selected carefully.
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Fig. 2. Control block diagram with a nested loop.

3. Sliding Mode Strategy

3.1. Concept of Sliding Mode Control
The SMC is a type of variable structure control. It is a

theory to stabilize a state variable by constraining it onto
a pre-defined stable surface, which is called a sliding sur-
face. When the state is constrained on the sliding surface,
the state moves to a target point (i.e., the origin of its phase
plane) because the surface is stable. The simplest sliding
surface is defined by the following equation:

S = ẋ+λ x . . . . . . . . . . . . . . (8)

where λ denotes the slope of the sliding surface, which
should be positive for stability.

To move and maintain the state on the sliding sur-
face, the SMC theory typically adopts Lyapunov’s second
method. The candidate of the Lyapunov function is given
with a positive definite function V as follows:

V̇ (x) < 0 with V (x) > 0 (for x �= 0) . . . (9)

Typically, the candidate function is chosen with the dis-
tance from the sliding surface as

V (x) =
1
2

S(x)2 . . . . . . . . . . . . . (10)

Then, for it to be a Lyapunov function, the function S(x)
must satisfy the following relation.

Ṡ(x)S(x) < 0 . . . . . . . . . . . . . (11)

To guarantee the relation above, the upper limit of the
left-hand side value is specified with −η |S|, where η is
a positive constant. Then, the state variable x approaches
to and remains on the sliding surface for any initial state,
when the following relation is satisfied:

ẍ+λ ẋ = −ηsign(S) . . . . . . . . . . (12)

Because sign(S) becomes ±1 according to the sign of S,
the SMC generates the “chattering phenomenon” when-
ever the state x crosses the sliding surface.

3.2. SMC Controller for the Quad-Rotor Vehicle
The SMC strategy is applied to four variables of the

quad-rotor vehicle as shown in Fig. 2. As explained in

Section 2, three attitude variables and one translational
variable can be controlled independently by four control
inputs. This means that the SMC controller can be de-
signed separately for these four variables.

Each sliding surface is defined with the tracking error
between the desired and current values as follows.{

Sqi = q̇ie +λqiqie (i = 1 ∼ 3),

SZ = Że +λZZe,
. . . . (13)

where qie denotes the error quaternion for qi, and Ze is the
tracking error along the Z-direction in the world frame.

Subsequently, according to Eq. (9), the candidates of
the Lyapunov functions are set as follows:⎧⎪⎨

⎪⎩
V (Sqi) =

1
2

Sqi
2 (i = 1 ∼ 3),

V (SZ) =
1
2

SZ
2.

. . . . . (14)

Similarly, as described in Section 3.1, the following con-
ditions for the four state variables guarantee that the states
approach to and remain on each of the sliding surfaces.{

q̈ie +λqiq̇ie = −ηqisign(Sqi) (i = 1 ∼ 3),

Z̈e +λZŻe = −ηZsign(SZ).
(15)

Finally, from Eqs. (4) and (5), the control torques for
attitude motion and the total lift force can be expressed as
follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎣

Tx

Ty

Tz

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

q0

Ix
−q3

Iy
−q2

Iz
q3

Ix

q0

Iy
−q1

Iz

−q2

Ix

q1

Iy

q0

Iz

⎤
⎥⎥⎥⎥⎥⎦

−1 ⎡
⎢⎢⎢⎣

A1

A2

A3

⎤
⎥⎥⎥⎦ ,

F =
m

cosφ cosθ

(
g+ηesign(Se)−λeVz

)
,

(16)

where A1, A2, and A3 represent the following equations:

A1 = −2η1sign(S1)−2λ1q̇1 − q̇0ωx −q0B1

+q̇3ωy +q3B2 − q̇2ωz −q2B3,

A2 = −2η2sign(S2)−2λ2q̇2 − q̇3ωx −q3B1

−q̇0ωy −q0B2 + q̇1ωz +q1B3,

A3 = −2η3sign(S3)−2λ3q̇3 + q̇2ωx +q2B1

−q̇1ωy −q1B2 − q̇0ωz −q0B3.

B1 =
Iy − Iz

Ix
ωyωz +

Jr

Ix
(ω1 +ω2 −ω3 −ω4)ωy,

B2 =
Iz − Ix

Iy
ωzωx +

Jr

Iy
(ω1 +ω2 −ω3 −ω4)ωx,

B3 =
Ix − Iy

Iz
ωxωy.

Once the control torques and the total force are ob-
tained from Eq. (16), the speeds of the four rotors are
determined from Eq. (3).
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4. Numerical Simulations

4.1. Specifications of a Quad-Rotor Vehicle
The parameters of the quad-rotor vehicle used in the

numerical simulations are specified based on an experi-
mental system in our laboratory as follows:

m = 2.5 kg,(
Ixb, Iyb, Izb

)
= (0.0772, 0.0764, 0.10310) kgm2,

d = 0.28 m, Jr = 3.4×10−5 kgm2,

b = 5.2×10−5 kgm2, k = 1.1×10−6 kgm2.

All components of the vehicle’s initial states are as-
sumed as zero. The target states are set to [Xt ,Yt ,Zt ,ψt ] =[
2sin(t),2cos(t),2,0

]
as a tracking problem, where t is

time. This target trajectory means a circle with a radius
of 2 m at an altitude of 2 m. It is noteworthy that for
a smooth path tracking, the pitch and roll angles are not
specified in the target states.

4.2. Effects of Practical Limitations
In developing practical systems, some limitations

caused by hardware performance exist. The control cy-
cle and rotor time constant are the typical ones, and they
change the chattering magnitude in SMC. Thus, their ef-
fects on controller performance are investigated in numer-
ical simulations.

Nevertheless, the nested control shown in Eq. (7) has
been introduced in Section 2, because a quad-rotor is
an under-actuated system. Thus, the performance of the
nested control loop is first investigated, and then the ef-
fects of the practical limitations are examined in numeri-
cal simulations.

In all the simulations discussed below, the sampling
time interval of the controllers is set to 40 ms except in
Section 4.2.2, considering the microprocessor’s perfor-
mance to be used in future experiments. The design pa-
rameters in Eq. (15) are set from several numerical trials
as follows:

λqi = λZ = 0.3, ηqi = ηZ = 0.4 (i = 1 ∼ 3)

4.2.1. Effect of the Developed Nested Control Loop
The results shown in Figs. 3(a) and (b) indicate the ve-

hicle’s trajectories in three- and two-dimensional spaces,
respectively; Figs. 3(c)–(e) and (f)–(h) are the time his-
tories of the translational and rotational variables, respec-
tively; Figs. 3(i)–(l) are the rotors’ speeds. In this simula-
tion, the following three sets of feedback gains are exam-
ined:

(i) KPX = KPY = 0.01, KDX = KDY = 0.04

(ii) KPX = KPY = 0.04, KDX = KDY = 0.04

(iii) KPX = KPY = 0.08, KDX = KDY = 0.04

The red, blue, and green lines in the figure indicate the re-
sults corresponding to (i)–(iii), respectively. The broken

black line means the target trajectory. Figs. 3(a)–(d) indi-
cate that some tracking error remains even after the target
circle is traced, because the target states are defined with
the functions of time.

These results imply the following points: first, the de-
veloped nested control loop performs well to control the
six state variables of a quad-rotor vehicle. However, un-
like the PID control applied to standard systems, larger
feedback gains may degrade the tracking performance,
and too large gains can easily destabilize the attitude mo-
tion for a quad-rotor vehicle. Therefore, the feedback
gains should be selected carefully.

From the results above, the feedback gains of the in-
ner loop are set in all the simulations presented below as
KPX = KPY = 0.01 and KDX = KDY = 0.04.

4.2.2. Effect of Sampling Time Interval in Control
In experiments, the sampling time interval in the con-

trol loop depends on the controller architecture and hard-
ware. When a microprocessor is onboard a quad-rotor ve-
hicle, the time interval is several tens of milliseconds. If a
controller is implemented in a laptop computer outside of
a vehicle, the time interval is larger than 100 ms.

Figure 4 indicates the results for the sampling time in-
tervals of 40 ms, 80 ms, and 120 ms in red, blue, and
green lines, respectively. The obtained trajectories and the
states’ time histories are almost the same even when the
sampling time interval becomes two or three times 40 ms.
However, as shown in Figs. 4(i)–(l), the obvious differ-
ence appears in the magnitude of the rotor speeds. This
is because the rotor speed increases (decreases) until an
updated control command is supplied after one sampling
time interval. It should be noted that in this simulation,
the time constant of the rotors due to inertia is not consid-
ered. (The case including the rotors’ time constants shows
different results, as shown in Section 4.2.3.)

This result implies that if the rotors’ dynamics can be
neglected, even a sampling time interval of larger than
100 ms shows a similar result with short time interval
cases, except for the magnitude of the rotor speeds.

4.2.3. Effect of the Rotors’ Dynamics
In an SMC controller, the control commands are deter-

mined discontinuously using signum functions, as shown
in Eq. (16). However, the speeds of the four rotors of
a vehicle cannot be changed rapidly owing to their iner-
tia. From some preliminary experiments, the rotor’s time
constant of our experimental system has been identified
as approximately 170 ms. Thus, in the simulation, the ef-
fects of the rotor time constants of 100 ms and 200 ms are
examined and compared with an ideal case of 0-ms time
constant.

Figure 5 shows the results for the time constant of
10 ms and 20 ms in blue and green lines, respectively.
The red line indicates the result of the ideal case (0 ms).
As shown in Figs. 5(a)–(g), the trajectories and the time
histories for two cases of the rotor’s time constants are al-
most the same with the ideal case. In Fig. 5(h), the yaw
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(a) Trajectories in 3-D map. 

(b) Trajectories in 2-D map. 

(c) Time histories of X. (d) Time histories of Y.

(i) Time histories of . 

(g) Time histories of . (h) Time histories of .

(e) Time histories of Z. 

(j) Time histories of . 

(k) Time histories of . (l) Time histories of . 

(f) Time histories of .

 , 
 , 
 , 

Fig. 3. Effect of the feedback gains in the nested loop.

(a) Trajectories in 3-D map. 

(b) Trajectories in 2-D map. 

(c) Time histories of X. (d) Time histories of Y.

(i) Time histories of . 

(f) Time histories of .

(g) Time histories of . (h) Time histories of . 

(e) Time histories of Z.

(j) Time histories of . 

(k) Time histories of . (l) Time histories of . 

target trajectory or states 
40ms time interval 
80ms time interval 
120ms time interval 

Fig. 4. Effect of the time intervals in the control loop.
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(a) Trajectories in 3-D map. 

(b) Trajectories in 2-D map. 

(c) Time histories of X. (d) Time histories of Y.

(i) Time histories of . 

(f) Time histories of .

(g) Time histories of . (h) Time histories of .

(e) Time histories of Z.

(j) Time histories of . 

(k) Time histories of . (l) Time histories of . 

Ideal case (time constants are 0ms) 
time constants are 100ms 
time constants are 200ms 

Fig. 5. Effect of the time constants of the rotors.

angle of the 200 ms case is different from the other two
cases, but the error is still small.

Important results are shown in the rotors’ histories,
Figs. 5(i)–(l): the magnitude of 100 ms case is smaller
than that of the 0-ms (ideal case). This is because the
rotor’s inertia causes a smoother rotational speed. How-
ever, the time constant of 200 ms renders the chattering
phenomenon worse, and in this simulation the chattering
magnitude continues to be larger.

It is noteworthy that the rotors’ time constants depend
on the rotors and driving motors used in real systems.
Once the system is specified, the time constants can be
identified. In general, systems with longer time constants
have poor stability. However, by adjusting the design
parameters λ and η in Eqs. (13) and (15), respectively,
the system’s stability can be enhanced to a certain extent.
Thus, they should be adjusted carefully, considering the
trade-off between stability and control performance for
the nonlinear dynamics of systems.

4.3. Robust Performance of SMC
The accurate identification of practical vehicles’ phys-

ical parameters is difficult. Additionally, the payloads of
multirotor vehicles change frequently, even in a flight due
to dropping or pulling up objects. Thus, the robustness of
the developed SMC-based controller on modeling errors
is examined herein. In payload change cases, both the
mass and inertia moments of the vehicles vary. However,
the mass variation changes only the vehicle’s translational
motion. Thus, this study considers only the effect of in-
ertia moments variations, which may affect the vehicle’s
flight stability.

4.3.1. Robustness on Modeling Error
First, we solely consider the modeling error; the rotor’s

time constant is assumed 0 ms, although the sampling
time interval of the control is 40 ms. Fig. 6 shows the
results. The blue line indicates the trajectory and states
when Ixb becomes 10 times of its nominal value. Consid-
ering that this change may occur by adding a new payload,
Izb (= Ixb + Iyb) is also changed to 5 times of its nominal
value. Similarly, the green line is the result when Ixb and
Izb become 20 times and 10 times from their nominal val-
ues, respectively. The red line indicates the result of the
nominal model. Even though these are extremely large
modeling errors, the developed SMC-based controller is
robust against modeling errors.

4.3.2. Robustness Against Modeling Error Consider-
ing Rotor Dynamics

For a more realistic condition, the rotor’s time constant
is assumed as 100 ms, and modeling errors are added to
discuss the robustness. Fig. 7 shows the results. The
meaning of the colored lines is the same as those of
Fig. 6. Compared with Fig. 6, the trajectories obtained
show a larger overshoot in the altitude response before be-
ing settled to a stable condition, and the overshoot is more
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(a) Trajectories in 3-D map. 

(b) Trajectories in 2-D map. 

(c) Time histories of X. (d) Time histories of Y.

(i) Time histories of . 

(f) Time histories of .

(g) Time histories of . (h) Time histories of .

(e) Time histories of Z.

(j) Time histories of . 

(k) Time histories of . (l) Time histories of . 

Nominal case (original inertia moments) 
 

 

Fig. 6. Robustness on the modeling errors.

(a) Trajectories in 3-D map. 

(b) Trajectories in 2-D map. 

(c) Time histories of X. (d) Time histories of Y.

(i) Time histories of . 

(f) Time histories of .

(g) Time histories of . (h) Time histories of .

(e) Time histories of Z. 

(j) Time histories of . 

(k) Time histories of . (l) Time histories of . 

Nominal case (original inertia moments) 
 

 

Fig. 7. Robustness on the modeling errors when the rotors’
time constants are assumed to 100 ms.
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prominent in the larger modeling error case. Another dif-
ference is shown in the rotor’s time response. Larger rotor
speed variations are shown until 10 s, although the chat-
tering magnitude becomes as small as that in Fig. 5 for
the 100 ms rotor time constant.

Tracking errors are demanded to be as small as possible
in various missions. Thus, to reduce the tracking error in
Z-axis, the design parameter ηZ in Eq. (15) has changed
from 0.4 to 2.0 to increase the control inputs and conse-
quently to enhance the tracking speed to the target alti-
tude. The result of this modification is shown in Fig. 8.
Red line indicates the modified results (ηZ = 2.0), and
blue line is the original ones (ηZ = 0.4). As can be seen,
the tracking speed of the altitude is much improved, al-
though other states are almost same as Fig. 7.

These figures, Figs. 6–8, imply that SMC strategy is
effective for practical quad-rotor vehicles.

5. Concluding Remarks

This study has applied SMC to control the state vari-
ables of a quad-rotor vehicle. As the vehicle has only
four control inputs to control its six degrees of freedom, a
controller combined with a nested loop and SMC was in-
troduced. The control performance for the feedback gains
in the nested loop was investigated in numerical simula-
tions. Then, the effects of practical limitations of the sys-
tem were examined (the time interval in the control loop
and time constant of rotors). Finally, the effectiveness of
SMC for an under-actuated quad-rotor vehicle was dis-
cussed.

Experimental studies will be carried out by using the
results of this study results as a future work.
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