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Due to the aging and decreasing the number of work-
ers in agriculture, the introduction of automation and
precision is needed. Focusing on tomatoes, which is
one of the major types of vegetables, we are engaged
in the research and development of a robot that can
harvest the tomatoes and manage the growth state
of tomatoes. For the robot to automatically harvest
tomatoes, it must be able to automatically detect har-
vestable tomatoes positions, and plan the harvesting
motions. Furthermore, it is necessary to grasp the po-
sitions and maturity of tomatoes in the greenhouse,
and to estimate their yield and harvesting period so
that the robot and workers can manage the toma-
toes. The purpose of this study is to generate a tomato
growth state map of a cultivation lane, which consists
of a row of tomatoes, aimed at achieving the auto-
matic harvesting and the management of tomatoes in
a tomato greenhouse equipped with production facili-
ties. Information such as the positions and maturity of
the tomatoes is attached to the map. As the first stage,
this paper proposes a method of generating a green-
house map (a wide-area mosaic image of a tomato cul-
tivation lane). Using the infrared image eases a corre-
spondence point problem of feature points when the
mosaic image is generated. Distance information is
used to eliminate the cultivation lane behind the tar-
geted one as well as the background scenery, allow-
ing the robot to focus on only those tomatoes in the
targeted cultivation lane. To verify the validity of the
proposed method, 70 images captured in a greenhouse
were used to generate a single mosaic image from
which tomatoes were detected by visual inspection.

Keywords: agriculture robot, tomato harvesting robot,
infrared image, depth image, image mosaicing

1. Introduction

The number of agricultural workers in Japan is decreas-
ing yearly, while their average age is increasing. Ac-
cording to statistical data for the five-year period from
2012 to 2016, the population of agricultural workers de-
creased by approximately 590,000, while the average age

increased by approximately one year [a]. Furthermore,
the food self-sufficiency rate in Japan is among the low-
est among the major industrialized countries. To resolve
these problems, methods to increase efficiency and preci-
sion are being adopted, such as high-yielding cultivation
and computer-based environmental control. In addition,
the use of robotic technology in agriculture is being con-
sidered to achieve automation [1, 2]. Studies on the au-
tomatic harvesting of cucumbers [3], asparagus [4], and
green peppers [5] as well as studies those on the vision
systems necessary for harvesting robots [6, 7] have been
carried out.

In this study, we deal with tomatoes, which is one of the
major types of vegetables. In comparison to cabbages or
carrots, which also are major vegetables, tomatoes require
more than five times the labor time per 1000 m2 [b]. In
particular, the ratios of harvesting and management (mon-
itoring, training, pinching) are high in the labor hours of
tomato cultivation. This is because the harvesting period
for each tomato is different, and the process leading to
harvest differs for individual tomatoes. Thus, a tomato
greenhouse (large-scale greenhouse) that possesses envi-
ronmental control functions and well-equipped produc-
tion facilities is necessary to produce tomato efficiently
and consistently

Hibikinada Greenhouse, Inc., with an interior area of
8.5 hectares, is an example of such a large-scale green-
house, and is the site where we conduct harvesting exper-
iments and investigate specific needs. The basic layout
of the tomato greenhouse is shown in Fig. 1. The toma-
toes are cultivated in a single row parallel to the working
lane. The ripe tomatoes are arranged in positions 80 to
120 cm above the ground, which allows the workers to
harvest them with ease. At Hibikinada Greenhouse, there
are several tens of cultivation lanes, each of which is ap-
proximately 70 m long. In the working lane, pipes are
installed through which warm water flows to keep the in-
terior temperature constant. The pipes also serve as the
rails for carts used by the workers during harvesting.

However, the working environment in the greenhouse is
hot and humid and very uncomfortable for workers. Stud-
ies on tomato harvesting robots [8–10] have been con-
ducted to reduce the burden on workers. While many
studies on automating agricultural work have focused on
the harvesting of crops, the workers seek the automation
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Fig. 1. Layout of tomato greenhouse.

of not only the harvesting but also the management of
agricultural produce as well.

We are engaged in the research and development of
robot that not only harvest crops in large-scale green-
houses but also manage the growth state of crops [11]. In
this paper, management refers to the monitoring of crops.
The purpose of our study is to develop a system that au-
tomatically harvest and manage tomatoes. To achieve au-
tomatic harvesting, it is necessary to automatically detect
the positions of harvestable tomatoes and automatically
plan the harvesting motions of the robot. To develop a
management system, it is necessary to automatically de-
tect the tomatoes and judge the maturity of the tomatoes
in the greenhouse. In addition, the yield and harvesting
period must be predicted. In this paper, we propose as
the first stage a method to generate a greenhouse map (a
wide-area mosaic image of the tomato cultivation lane).
It is assumed that the greenhouse map enables workers to
monitor and grasp the growth state of tomatoes.

As Fig. 1 shows, since there are multiple cultivation
lanes in the greenhouse, many tomatoes are present in the
background when images of the target lane are captured
by a camera. Therefore, it is necessary to eliminate the
cultivation lanes lying behind the one we wish to capture
as well as the other background part so that the tomato-
harvesting robot and the worker monitoring the green-
house map can focus on the targeted tomatoes. This will
prevent the robot making erroneous detections of toma-
toes in lanes behind and allow the worker to concentrate
on grasping the growth state of the targeted tomatoes.

Although there has been a study to detect tomatoes in
the front lane while eliminating the background [12], it
employs images captured from a position relatively close
to the tomatoes (20 cm) and is usable only in restricted en-
vironments. Furthermore, this study [12] does not allow
measurement of the three-dimensional positions of toma-
toes. The three-dimensional positions of tomatoes need
when the robot harvest tomato.

The rails installed in Hibikinada Greenhouse are ap-
proximately 65 cm wide, so the tomatoes to be harvested
lie at a distance between approximately 65 cm and 1 m
from the camera. In the method proposed in this study,
to determine the three-dimensional positions of the toma-

Fig. 2. Tomato growth state map.

toes, we employ a time-of-flight (ToF) based Kinect cam-
era (hereafter, Kinect v2), which acquires depth images
that provide information on the distance from the camera
to an object. In addition to depth images, Kinect v2 can
also capture red-green-blue (RGB) and infrared images.

To eliminate the cultivation lane behind and generate
a mosaic image consisting of only the targeted cultiva-
tion lane, infrared, depth, and RGB images are used to
generate the greenhouse map. In this proposed method, a
correspondence point problem of feature points eases.

The final goal is to generate a tomato growth state map,
as shown in Fig. 2, and implement a system to automatic
harvest and manage tomatoes by using a robot (the culti-
vation lane behind and background scenery have not been
eliminated in Fig. 2). The tomato growth state map pro-
vides information on the position and maturity of toma-
toes.

In this paper, we propose a method to generate the
greenhouse map, which will be used as the basic image for
the tomato growth state map. To verify the validity of the
proposed method, we generated a single greenhouse map
from 70 images captured inside the Hibikinada Green-
house, and used it to detect tomatoes by visual inspection.
The results are presented.

2. Verification of Method to Generate Green-
house Map

2.1. Flow of Automatic Harvesting of Tomatoes and
Method of Generating Greenhouse Map

The robot selects the rail to be targeted and moves on
the rails (Fig. 3 (A)). As it moves, the robot captures im-
ages of the cultivation lane. As shown in Fig. 3(b), the
robot captures images at constant intervals tx, while the
distance between the camera and tomatoes is tz. The
image capture positions are measured using an encoder
mounted on the moving mechanism. When the robot
reaches the end of the rails, it generates the tomato growth
state map (Fig. 3 (B)). Then, it detects the harvestable
tomatoes from the map and shifts to begin harvesting mo-
tions (Fig. 3 (C)).

In this study, a greenhouse map is generated from im-
ages acquired by the robot on the rails. While it is possi-
ble to employ a fisheye lens or omnidirectional sensor to
generate a greenhouse map, a system using a special lens
or sensor will be relatively costly. In addition, such sys-
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(a)

(b)

Fig. 3. Flow of automatic harvesting of tomatoes: (a) front
view, (b) top view.

tems capture a wide range in a single image, so that the
resolution tends to be low.

However, image mosaicing is a method that can be used
to produce high-resolution images with a wide visual field
using only an ordinary camera. In the proposed method,
a mosaic image is produced by stitching multiple images
to generate the greenhouse map.

Digital maps and aerial photographs are examples of
mosaic images. In addition, mosaic images are used in
geomorphological studies [13] and biological studies in
marine industries [14]. There have also been studies on at-
taching information to mosaic images [15] as well as stud-
ies on monitoring systems based on mosaic images [16].

The goal of this work is to generate a tomato growth
state map which consists of a mosaic image (greenhouse
map) to which information is attached, such as the posi-
tions and maturity of tomatoes, harvesting period, and so
forth.

2.2. Generation of a Mosaic Image
This section describes the method of generating a mo-

saic image. As an example, we consider the generation
of a single mosaic image from two images. Two im-
ages captured from adjacent positions are prepared. The
two images contain part that overlap one another. Feature
points are extracted in the two images, and then the fea-
ture points are corresponded based on their features. The
two images are stitched using the corresponding feature
points to generate the mosaic image.

The mosaic image is generated by using a homography
matrix computed from the correspondence pairs of feature
points. The homography matrix consists of eight param-
eters, and requires four or more correspondence pairs. A
slight change in a single parameter can produce great dis-
tortions when the mosaic image is generated. Therefore,
studies have been carried out to automatically select the
transformation model for the homography matrix based
on the correspondence pairs to stably generate a mosaic

(a)

(b)

(c)
Image1 Image2

Fig. 4. Repeatability and distinctiveness: (a) repeatability
and distinctiveness both satisfied, (b) repeatability not satis-
fied, (c) distinctiveness not satisfied.

image [17]. In the proposed method, we employ the mov-
ing distance by the robot to determine the transformation
model of the homography matrix. Details are provided in
Section 4.4.

2.3. Conditions for Generating a Mosaic Image
The following three conditions are considered neces-

sary to generate a mosaic image:

1. repeatability of feature points

2. distinctiveness of feature points

3. assume that the captured image is as a planar surface.

2.3.1. Conditions 1 and 2
In this subsection, we discuss the repeatability and dis-

tinctiveness of feature points. Repeatability means that
the feature point is always extracted as a feature point;
distinctiveness means that the features of a feature point
can be distinguished from those of another feature point.

The images shown in Fig. 4 explain conditions 1 and
2. The segments surrounded by broken lines are the over-
lapping part in the images captured at adjacent positions,
while the dots (•) indicate the extracted feature points.
When repeatability and distinctiveness are both satisfied
(Fig. 4(a)), feature points are extracted in the same (cor-
responding) positions in images 1 and 2, and their features
are distinguishable from those of other feature points.
Thus, the feature points of images 1 and 2 can be cor-
responded correctly.
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Fig. 5. Planar projection.

When the feature points do not have repeatability
(Fig. 4(b)), the feature point extracted in image 1 cannot
be corresponded with another at the corresponding posi-
tion (indicated by a circle in image 2). When the feature
points do not have distinctiveness (Fig. 4(c)), the feature
points extracted in the same positions in images 1 and 2
possess features similar to those of other feature points,
so that correspondence cannot be carried out correctly.

Since corresponding feature points are searched in the
overlapping sections of the two images captured from ad-
jacent positions when a mosaic image is generated, the
correspondence point problem must be solved. In general,
strategies are employed to reduce false correspondences
by limiting the feature points to be corresponded or lim-
iting the area searched for corresponding points [18]. In
this study, we employ the latter, i.e., limiting the search
area for corresponding points. Details are provided in
Section 4.3.

2.3.2. Condition 3
In image mosaicing, the geometric characteristic of the

captured objects must be limited. When the targeted scene
is that of a distant view or, if it lies closer, consists of a
flat plane, such as a building or wall, it can be assumed to
form a single plane. When a point Q in three-dimensional
space is observed from points P1 and P2, as shown in
Fig. 5, and all of the observed points lie on some plane
in three-dimensional space, then the coordinates in the re-
spective images, q1 and q2, are known to have a linear
relation [19].

In other words, point q1 = (x1,y1,1), expressed in ho-
mogenous coordinates, has a corresponding point q2 =
(x2,y2,1), whose relationship is defined by Eq. (1), which
is known as a homography. In Eq. (1), h0, h1, h2, h3, h4,
h5, h6, and h7 are the eight parameters of the homography
matrix mentioned in Section 2.2.⎛

⎝x1
y1
1

⎞
⎠ =

⎛
⎝h0 h1 h2

h3 h4 h5
h6 h7 1

⎞
⎠

⎛
⎝x2

y2
1

⎞
⎠ . . . . . . (1)

Previous studies have deal with distant views or pla-
nar scenes [13–17, 20]. For example, consider the image-
capture environment shown in Fig. 6(a). Assume that im-

(a)

(b)

(c) (d)

Fig. 6. Image-capture environment for condition 3 and
mosaic images of different scenes: (a) image-capture envi-
ronment, (b) mosaic image when captured object is distant
(d = 1000 m) [20], (c) seam in mosaic image for d = 0.65 m
when attention is focused on object and (d) when attention
is focused on background.

ages are captured at two adjacent points (points P1 and
P2) of an object lying at a distance d [m] from the po-
sition captured. If the target scene is at a large distance
(d = 1000 m), a mosaic image such as that shown in
Fig. 6(b) is generated [20]. In this case, condition 3 is
satisfied.

On the other hand, if the targeted scene is at a close dis-
tance (d = 0.65 m), as in Figs. 6(c) and (d), and the cam-
era cannot decide on which plane to focus, condition 3
is not satisfied. In this case, different mosaic images are
generated depending on the object on which attention is
focused. Thus, the image shown in Fig. 6(c) is generated
when attention is focused on the object in Fig. 6(a), while
the image shown in Fig. 6(d) is generated when attention
is focused on the background.

No gaps exist at the seam between images in the areas
surrounded by solid lines in Figs. 6(c) and (d). However,
there are gaps at the seam between images in the areas sur-
rounded by broken lines. If distance d is relatively small
and cannot be assumed to be a plane, the mosaic image
differs depending on the object on which attention is fo-
cused.
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(a) (b)

Fig. 7. Captured images of cultivation lane: (a) RGB image,
(b) infrared image.

3. Use of Infrared Image

An RGB image of a cultivation lane captured from a
position above the rails is shown in Fig. 7(a). Because the
fruits, stems and leaves grow close together in the green-
house, and all plants have similar characteristics, it is easy
for false correspondences to occur. The working lane has
a width of approximately 65 cm, the space in which the
robot can move is limited, and the distance between the
camera and the harvestable tomatoes is 0.65 m to 1.0 m,
which is quite close. The following problems can arise in
attempts to generate a mosaic image from RGB images of
a cultivation lane.

1. Because objects with similar characteristics are lo-
cated close together, false correspondences can oc-
cur.

2. The capturing environment makes it difficult to de-
cide the plane on which attention should be focused.

To resolve problems 1 and 2, we employ time-of-flight
(ToF) infrared images in the proposed method. An in-
frared image of a cultivation lane captured from a position
above the rails is shown in Fig. 7(b). In the ToF method,
the time required for a laser beam projected by the device
to be reflected by a target object and return is measured. In
a ToF-based infrared image, the intensity of the reflected
infrared light is measured. The light reflected by a distant
object has a low intensity, while that from the tomatoes in
the lane in front, which are close, has a high intensity.

As seen in Fig. 7, the number of objects (fruits, stems
and leaves) in the infrared image is low. Since Kinect v2
cannot capture infrared images of objects lying at a dis-
tance of 8 m or more, those objects can be ignored. Fur-
thermore, an infrared image can be used to generate a
depth image possessing depth information. Thus, by us-
ing two types of images, it is possible to eliminate the
cultivation lane behind as well as the general background
and capture an image of the tomatoes in the front lane.

We can expect to reduce the number of false corre-
spondences of feature points by limiting the depth of the
capture range to the cultivation lane, in which the fruits,
stems, and leaves are closely located. By focusing atten-
tion on only those tomatoes in the front lane, it is possible
to treat a given depth as a plane. In proposed method,

Fig. 8. Algorithm for generating greenhouse map.

infrared images and depth images are used to solve prob-
lems 1 and 2 to generate mosaic images.

In addition, real-time processing is required to operate
the robot in a real environment. The use of infrared im-
ages to generate a mosaic image is a valid method consid-
ering that the robot must process this information. While
an RGB image carries 24 bits per pixel, since R, G and B
are each specified by 8 bits, an infrared image consists of
16 bits per pixel. In other words, an infrared image carries
two-thirds the information of an RGB image.

4. Method of Generating a Greenhouse Map
Using Infrared Images

Figure 8 shows the algorithm to generate a green-
house map using infrared images. Using infrared im-
ages as input (Fig. 8 (A)), feature points are extracted
(Fig. 8 (B)). In this paper, we used speed-up robust fea-
tures (SURF) [21]. After limiting the search area for fea-
ture points to reduce false correspondences, the feature
points are matched (Fig. 8 (C)). The matching process is
described in detail in Sections 4.2 and 4.3. The correspon-
dence pairs are used to compute the homography matrix
(Fig. 8 (D)), which is used to generate a mosaic image
from the infrared images (Fig. 8 (E)).

Next, the RGB and depth images are used as inputs to
focus only the tomatoes in the front lane (Fig. 8 (F)). The
depth images are used to extract only those tomatoes lying
in the harvestable area (up to 1 m from the camera) to
construct an RGB image (Fig. 8 (G)). The homography
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matrix computed from the infrared images is then applied
to the RGB images (Fig. 8 (H)) to generate a greenhouse
map (Fig. 8 (I)).

4.1. Conditions for Capturing Images of Cultiva-
tion Lane and Camera Parameters

As shown in Fig. 3(a), the robot captures images of the
cultivation lane with a mounted camera (Kinect v2) as it
moves on the rails. The preconditions for image capture
are summarized as follows:

1. Images are captured in sequence at constant intervals
of tx.

2. The distance between the camera and the tomatoes
in the front lane is constant, at tz.

3. The camera is fixed to the robot and is unable to turn.

The rotation matrix RRR and translation vector ttt, which
are external parameters of the camera, are given by
Eqs. (2) and (3), respectively. Here, R11, R12, R13, R21,
R22, R23, R31, R32 and R33 represent the elements of the
rotation matrix, and tx, ty, and tz represent the distances of
translation, in units of millimeters.

In proposed method, it is assumed that the robot moves
in intervals of 300 mm (tx) on the rails to capture im-
ages and that the distance (tz) between the camera and
the tomatoes on the front lane is 650 mm. To verify the
validity of the proposed approach, the robot is moved in
manually for distances of 300 mm on the rails to capture
images of the cultivation lane.

MATLAB Camera Calibrator [22] is used to calibrate
the camera. The images of 15 calibration boards are cap-
tured and used as inputs. The internal parameters esti-
mated by Camera Calibrator are given in Eq. (4), where
fx and fy are the focal length in pixels, cx and cy are the
optical centers in pixels, and s is the skew coefficient.

RRR =

⎛
⎝R11 R12 R13

R21 R22 R23
R31 R32 R33

⎞
⎠ =

⎛
⎝1 0 0

0 1 0
0 0 1

⎞
⎠ . . . (2)

ttt =
(
tx ty tz

)
=

(
0 0 650

)
. . . . . . (3)

KKK =

⎛
⎝ fx 0 0

s fy 0
cx cy 1

⎞
⎠ =

⎛
⎝346.3 0 0

0 346.8 0
256.8 205.8 1

⎞
⎠ . (4)

4.2. Basic Experiment to Determine the Search
Area for Correspondence Points

As stated in Section 2.3.1, the correspondence point
problem of feature points must be solved to generate a
mosaic image of a greenhouse. In this study, we reduced
the false correspondences of feature points by limiting the
search area using the moving distance of the robot. In
this section, we describe the preliminary experiment con-
ducted to determine the range of the search area. The test
board shown in Fig. 9(a) is captured by a camera at fixed
intervals dx, as shown in Fig. 9(b). In the test board, the
red area repeats at intervals of l.

(a)

(b)

(c)

(d)

Fig. 9. (a) Test board used in preliminary experiment,
(b) configuration of preliminary experiment, (c) positions of
centroids (•) of markers in image captured from point P1, (d)
positions of centroids (•) and estimated points (+) of mark-
ers in image captured from point P2.

The images capture at points P1 and P2 are shown in
Figs. 9(c) and (d), respectively. To compute the esti-
mated point, the centroid q in Fig. 9(c) is transformed
from the image coordinate system to the world coordinate
system using the camera’s internal and external param-
eters (Eqs. (4), (2), and (3), respectively). The relation
between the image coordinate system (u,v) and the world
coordinate system (X ,Y,Z) is given by Eq. (5), where λ
is the depth information in image coordinates.

λ
(
u v 1

)
=

(
X Y Z 1

)(
RRR
ttt

)
KKK . . . (5)
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(a) (b)

Fig. 10. Extracted feature points in infrared images: (a)
infrared image 1, (b) infrared image 2.

Since the camera moved from point P1 to P2, dx is added
to the X element in the world coordinate system, and then
the world coordinate system is transformed back to the
image coordinate system using Eq. (5). The point of the
estimated point is denoted q′. The same transformation is
carried out for all centroids in Fig. 9(c). In Figs. 9(c) and
(d), the dots (•) represent the centroids, and the plus signs
(+) represent the estimated points.

Using the Kinect v2 camera mounted on the robot, im-
ages of the test board were captured from the five points
indicated in Fig. 9(b). The interval between points, dx,
was 300 mm; the distance from the camera to the test
board, dz, was 650 mm; and the horizontal distance be-
tween red sections, l, was 300 mm. The images were
captured by manually moving the robot at fixed intervals
(dx = 300 mm). Note that dx and dz have the same val-
ues as the interval at which images were captured in the
greenhouse, tx, and the distance between the camera and
the tomatoes on the front lane, tz, respectively. From the
five images, the errors of the estimated points against the
centroids were determined. The closer the estimated point
is to the centroid, the more accurate the calculation of es-
timated point is.

The centroid was found to be at most 10 pixel off in
both the positive and negative x-axis directions, and at
most 6 pixel off in the positive and negative y-axis direc-
tions. The standard deviations were 4.3 pixel and 2.0 pixel
pixels in the x- and y-axis directions, respectively.

Based on these results, the search area range was con-
fined to a rectangular area 20 pixel wide (horizontal) and
12 pixel deep (vertical), centered at the estimated point.

4.3. Matching Process Based on the Robot’s
Moving Distance

In this section, we describe the matching process based
on the robot’s moving distance, which is adopted to re-
duce false correspondences of feature points. First, the
feature points are extracted from two infrared images
which have overlapping part. The interval at which the
two images are captured is constant, so that the overlap-
ping area is known. Therefore, feature points are ex-
tracted from only the overlapping areas, as indicated by
the area surrounded by broken lines in Fig. 10, to reduce
false correspondences. The dots (•) in Fig. 10 represent
the extracted feature points.

Next, we focus on a feature point in infrared image 1

Fig. 11. Search area and feature points in search area.

(a)

(b)

Infrared image1 Infrared image2

Fig. 12. Correspondences of feature points in two input im-
ages: (a) correspondence result of feature points when robot
moving distance was used, (b) correspondence result of fea-
ture points when robot moving distance was not used.

(left side) in Fig. 11. Based on this feature point and the
robot’s moving distance tx, the estimated point is drawn
on infrared image 2 (right side). The estimated point is
calculated using Eq. (5). The robot’s moving distance tx
is 300 mm.

Then, the features of a feature point located within the
search area, which are determined as described in Sec-
tion 4.2, centered at the estimated point in infrared im-
age 2, are compared with those of the feature point in in-
frared image 1 to match those two points.

The same procedure was carried out for all feature
points in infrared image 1. The matched (i.e., correspon-
dence) results are shown in Fig. 12(a). Fig. 12(b) shows
the correspondence results when the robot’s moving dis-
tance was not used. In addition, the correspondence re-
sults when the RGB images were used instead of infrared
images are shown in Fig. 13. Note that the robot’s moving
distance was not used for matching in Fig. 13.
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Fig. 13. Correspondence result of feature points using RGB
images.

4.4. Computation of the Homography Matrix
The three preconditions for image capture were stated

in Section 4.1. Following those preconditions, a transla-
tion model, with two parameters but without those for ro-
tation and magnification/contraction, is applied to the ho-
mography matrix. This matrix is given by Eq. (6), where
dx and dy are respectively the moving distances in the x-
and y-axis directions. Here, dx and dy represent the mov-
ing distances (pixel) in the x- and y-axis directions within
the two images, and they are determined from the corre-
sponding feature points. For q1 and q2 in Fig. 12(a), dx
and dy are given by Eqs. (7) and (8), respectively.

HHH =

⎛
⎝h0 h1 h2

h3 h4 h5
h6 h7 1

⎞
⎠ =

⎛
⎝1 0 dx

0 1 dy
0 0 1

⎞
⎠ . . . (6)

dx = x1 − x2 . . . . . . . . . . . . . . (7)

dy = y1 − y2 . . . . . . . . . . . . . . (8)

4.5. Generation of a Mosaic Image Based on
Infrared Images and Greenhouse Map

The computed homography matrix is used to generate
the mosaic image. The homography matrix is also applied
to the RGB images to generate the greenhouse map. The
RGB images in this case are those in which only the in-
formation of tomatoes in close range has been extracted
based on information in the depth images. A single mo-
saic image was generated from 70 images captured from
the actual environment. The mosaic image has a length of
approximately 20 m.

In this study, we show one-quarter of this image. The
mosaic images based on infrared images and RGB im-
ages (greenhouse map) are shown in Figs. 14(a) and (b),
respectively. The tomato growth state map is generated by
attaching information, such as the positions and maturity
of tomatoes, to the mosaic image of Fig. 14(b). Tomatoes
were detected by visual inspection. As a result, a total
of 302 tomatoes, of which 184 were ripe tomatoes, were
identified in the entire mosaic image.

4.6. Correspondence Results of Feature Points
In the correspondence pairs of feature points in Fig. 12,

the coordinates of a feature point in infrared image 1
are denoted by q1(x1,y1), and those of the correspond-
ing feature point in infrared image 2 are denoted by

(a) (b)

Fig. 14. One-quarter of mosaic image generated from 70
images: (a) mosaic image using infrared images, (b) mosaic
image using RGB images.

q2(x2,y2). The range of correct correspondence was de-
termined from the robot’s moving distance. The criterion
for a correct correspondence in this study is given as fol-
lows:

150 pixel < x1 − x2 < 170 pixel
−6 pixel < y1 − y2 < 6 pixel

The correspondence is correct when the above condi-
tions are satisfied and incorrect when they are not. The
true value of the displacement in the x-axis direction was
determined from the robot’s moving distance (300 mm)
to be 160 pixel. The true value of the displacement in the
y-axis direction is 0 pixel since the camera is fixed on the
robot. However, due to the robot’s moving distance and
slight differences in the level of the rails (approximately
1 to 3 mm), the range of the search area, found in the
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Table 1. Correspondence result of feature points.

Infrared image RGB image
Pair No. result 1 result 2 result 3

1 10
10 (100%) 5

39 (12.8%) 0
958 (0.0%)

2 9
9 (100%) 7

35 (20.0%) 0
1026 (0.0%)

3 10
10 (100%) 4

35 (11.4%) 0
1226 (0.0%)

4 5
5 (100%) 2

46 (4.3%) 0
1119 (0.0%)

5 11
11 (100%) 5

35 (14.3%) 2
1110 (0.2%)

6 10
10 (100%) 5

44 (11.4%) 1
957 (0.1%)

7 10
10 (100%) 6

44 (13.3%) 1
1028 (0.1%)

8 7
7 (100%) 4

37 (10.8%) 1
1135 (0.1%)

9 6
6 (100%) 3

48 ( 6.3%) 1
1272 (0.1%)

10 6
6 (100%) 6

48 (12.5%) 1
1192 (0.1%)

preliminary experiment of Section 4.2, was used as the
allowable error range.

The corresponding feature points were confirmed using
ten pairs of images, each pair consisting of two images
which were captured from adjacent positions and con-
tained overlapping part. The correspondence results were
verified for three cases: those obtained from infrared im-
ages using the robot’s moving distance (result 1), those
obtained without using the robot’s moving distance (re-
sult 2), and those obtained from RGB images without the
robot’s moving distance (result 3). The results are pre-
sented in Table 1. In each case, the numerator and denom-
inator represent the numbers of correct correspondences
and total correspondences, respectively, while the table
in parenthesis give the percentages of correct correspon-
dences.

5. Discussion

5.1. Evaluation of Matching Process

In the proposed method, the estimated point is com-
puted from a given feature point, and a search is made
for the corresponding feature point within a search area
centered at the estimated point. As seen in Fig. 12, the
number of grossly false correspondences can be reduced
by using the robot’s moving distance to correspond fea-
ture points.

The percentage of correct correspondences was pre-
sented in Section 4.6 to evaluate the results. First, we
use Table 1 to compare the infrared images (result 2) and
RGB images (result 3) for which the search area was not
limited. Although RGB images yield a higher number of
correspondences than infrared images, the percentage of
correct correspondences is extremely low. The RGB im-
age contains more objects, such as the fruits, stems, and
leaves, compared to the infrared image. Since these ob-
jects have similar features, the feature point in the second
image that corresponds to a given feature point in the first

(a) (b)

Fig. 15. Discontinuities in seam between images: (a) with-
out discontinuity, (b) with discontinuity.

image was not identified correctly, which resulted in the
high number of false correspondences. From this result,
we can state that RGB images of the cultivation lane are
not satisfactory for distinctiveness of feature points (con-
dition 2).

As the proposed method applies a translation model of
the homography matrix, at least one correct correspon-
dence must be found. However, computation of the ho-
mography matrix is also affected by correspondence pairs
other than the correct pairs. Thus, a slight change in one
of the eight parameters of the homography matrix can pro-
duce large distortions when a mosaic image is generated.
Thus, false correspondences are present in result 2, show-
ing that the use of only infrared images is not sufficient
to generate the desired mosaic image. False correspon-
dences were found in none of the pairs in result 1. Thus,
a mosaic image such as the one shown in Fig. 14 can
be generated by using infrared images and limiting the
search area for feature points. It is important to use the
correct correspondence pairs to generate a mosaic image.

5.2. Gaps Between Images in a Mosaic Image
Parts of the generated mosaic image are shown in

Fig. 15. The image in Fig. 15(a) displays no gaps in the
seam between two images, but the image in Fig. 15(b)
displays a gap.

The estimated point is computed based on the robot’s
moving distance, dx (300 mm), and the distance from the
camera to the tomatoes on the front lane, dz (650 mm).
A gap occurs in the seam between two images when a
portion that does not coincide with the distance dz. The
information of the depth image at the seam in Fig. 15(a)
is given as 650 mm± 20 mm, but that in Fig. 15(b) is
given as 750 mm± 20 mm.

In the proposed method, the mosaic image is generated
from images captured from points at constant intervals.
However, for images in which tomatoes are clustered to-
gether at the center, we think that it is possible to prevent
discontinuities from occurring between images by reduc-
ing the overlapped areas.

5.3. Generating a Mosaic Image Considering the
Robot’s Moving Distance

To verify the proposed method, the robot was manually
moved in steps of 300 mm to capture images in this study.
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To construct a system to automatic harvesting and man-
agement of tomatoes, it is necessary to generate a green-
house map using the robot’s moving distance. The mov-
ing mechanism has an encoder, the information of which
can be used to measure the moving distance.

A critical issue in this regard is that the estimated point
is determined from the moving distance. The estimated
point is an important parameter affecting the accuracy
of the correspondence, since it is used to determine the
search area. If the wheels slip when the robot moves on
the rails, this will affect the moving distance as well as the
correspondence of feature points. Thus, it is necessary to
take into account any error in the moving distance when
implementing the proposed system using the robot.

6. Conclusion

In this paper, we proposed a method to generate a mo-
saic image based on infrared images. The use of infrared
images satisfies the conditions necessary to generate a
mosaic image. It is also possible to obtain an image of
only the target cultivation lane by using infrared images
and depth images. By applying the homography matrix
computed from infrared images to RGB images, it is pos-
sible to generate an RGB mosaic image. We were able to
identify a total of 302 tomatoes of which 184 were ripe
from the mosaic image produced from 70 images.

To follow up this study, we plan to automatically de-
tect and mark tomatoes in the greenhouse map, making it
possible to estimate the yield and harvest time.
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