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This paper describes our approach to perform robust
monocular camera metric localization in the dynamic
environments of Tsukuba Challenge 2016. We address
two issues related to vision-based navigation. First,
we improved the coverage by building a custom vo-
cabulary out of the scene and improving upon place
recognition routine which is key for global localiza-
tion. Second, we established possibility of lifelong lo-
calization by using previous year’s map. Experimen-
tal results show that localization coverage was higher
than 90% for six different data sets taken in differ-
ent years, while localization average errors were un-
der 0.2 m. Finally, the average of coverage for data
sets tested with maps taken in different years was of
75%.

Keywords: visual localization, field robotics, Tsukuba
Challenge

1. Introduction

Reliable autonomous navigation in dynamic environ-
ments is a core competency for robot but complicated task
given the different conditions that a robot has to face. Cur-
rent state of the art navigation approaches usually rely on
accurate vehicle localization to compute a path between
their current position towards a destination. Localization
in outdoor environments is a hard task given the highly
dynamic conditions. It is specially difficult for visual sys-
tems to cope with the different environmental changes [1]
given by light conditions, populated environments and
change of place visual characteristics caused by the dif-
ferent seasons of the year [2–4].

The Real-World Robot Challenge (RWRC) is an an-
nual robotic autonomous navigation challenge held in the
public space of Tsukuba, Japan. The robots are required
to navigate over a 1 km route, so maintaining localiza-
tion accuracy within dynamic environment is necessary.
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Fig. 1. Simplified block diagram to compute metric pose
with a single monocular camera.

Previous Tsukuba Challenge events had seen some ap-
plications of vision-based localization system (e.g., [5]).
However, there have not been any teams who achieved
the autonomous navigation task solely using vision. Al-
most all teams who achieved the navigation task used
Light Detection and Ranging (LIDAR) for localization
(e.g., [6]). These papers show that vision-based localiza-
tion and navigation is still a challenging task. Meanwhile,
our objective is to realize practical outdoor navigation us-
ing consumer-level camera. However, maps used during
the navigation step are provided from a robot with high
end sensors to build high quality maps and provide accu-
rate 6 DoF poses. In other words, the focus of this study is
how to achieve accurate localization using consumer level
sensors with maps which include rich information. Fig. 1
shows the main blocks of our proposal.

We have proposed a localization method using monoc-
ular camera in [7]. In previous paper, we modified map-
ping process of ORB-SLAM [8] and achieved monocu-
lar camera-based localization in accurate metric coordi-
nate. The method allows frame-based fusion of monocu-
lar camera-based localization results and external metric-
based sensors (e.g., GPS and odometry) by using parti-
cle filtering algorithm. We tested the method in Tsukuba
Challenge 2015. Although the localization method was
able to accurately estimate own position in some areas of
Tsukuba-city, coverage of the method was not enough (lo-

Journal of Robotics and Mechatronics Vol.29 No.4, 2017 685

https://doi.org/10.20965/jrm.2017.p0685

© Fuji Technology Press Ltd. Creative Commons CC BY-ND: This is an Open Access article distributed under the terms of 
the Creative Commons Attribution-NoDerivatives 4.0 International License (http://creativecommons.org/licenses/by-nd/4.0/).

http://creativecommons.org/licenses/by-nd/4.0/


Sujiwo, A. et al.

calization coverage was approximately 67%).
The main differences of this work towards previous

work in [7] are an improved localization coverage based
on custom vocabulary and improved global localization
routine. These two blocks are illustrated inside dotted
lines in Fig. 1. We use preprocessing for building an exact
visual feature map and modified visual vocabulary which
is used for place recognition. These modifications im-
prove localization accuracy and coverage of our visual lo-
calization method. Experiments using log data taken at
Tsukuba Challenge 2015 and 2016 are used to demon-
strate effectiveness of the proposal. In this study, perfor-
mance of the proposed method is evaluated on the basis
of the 3D LIDAR-based localization method that gives us
exact estimation results which can be assumed as ground
truth [9]. A simplified re-localization process which does
not remove similar candidates improves global localiza-
tion.

The contributions of this work are twofold:

• Experimental proof of coverage improvement from
custom vocabulary of the outdoor scene.

• Enhanced re-localization routine which is key for
global localization.

The rest of this paper is organized as follows. Section 2
summarizes related works. Section 3 and 4 present the
monocular visual-based system for mapping and localiza-
tion, and the design and implementation. The experimen-
tal procedure and results are described in Section 5 and 6.
Section 7 concludes this work.

2. Related Works

There are some works which address autonomous nav-
igation in pedestrian paths [10, 11] which show that long
range navigation is feasible. Yet, outdoor navigation is a
complicated task to achieve. Robot localization modules
usually rely on environmental maps previously built. As
environments change with time, map maintenance is nec-
essary. Map update is a hard task given that consistent
map building with the same coordinate frame is neces-
sary. There are also existing works regarding visual map
maintenance and update (e.g., [12]).

An interesting study of lifelong vision-based localiza-
tion can be found in [13]. They referred a summary
map that is built from several localization trials. This
means that they tried localization experiments in the same
place and updated a visual feature map. By the summary
map, they succeeded in lifelong visual localization over
16 months. We proposed similar idea which uses multiple
visual maps to cope with a problem of appearance change
in previous work [7]. We kept consistency of the multiple
visual maps by utilizing 3D LIDAR-based localization re-
sults.

Most of current method in robotic motion planning de-
pends on accurate geometry of vehicle and its environ-
ment [14]. In this regard, motion planner algorithm usu-
ally search for most optimum paths that are subject to

presence of obstacles and vehicle motion constraints. Due
to this nature, planner algorithm requires that both local-
ization and obstacle detector work in metric space. How-
ever, as stated in [15], current vision SLAM methods (and
thus localization) are not free from scale drift due to their
inherent limitations [16]. An example of solution of com-
bined vision-based navigation that works in topological
space is devised in [17] and [18].

In our previous paper [7], we have developed metrically
accurate localization system that provides reasonable ac-
curacy in metric space. This method works by augment-
ing keyframe positions in the vision map with the accurate
metric pose estimated by the other 3D geometric map-
based localization. Assuming that scale drift is small in
vicinity, position estimation in metric space can be ob-
tained by scaling the translation from keyframe.

A similar method to ours can be found in [19]. In this
work, 3D reconstructed feature points from local bun-
dle adjustment are matched with 3D LIDAR maps. Us-
ing accurate geometric maps to cope with the scale drift
problem in monocular vision-based system is same idea.
The method proposed here is a geometric-based match-
ing method because 3D reconstructed features are di-
rectly matched with the LIDAR maps in metric frame.
In contrast, our proposal is an appearance-based match-
ing method because ORB-SLAM estimates own pose by
comparing ORB features. These methods have different
advantages from each other.

Current progress of visual place recognition for SLAM
purposes have been surveyed in [20]. As mentioned in the
paper, handling variable illumination conditions is critical
for place recognition performance. One possible solution
is by tweaking color-to-grayscale conversion; as shown
in [21], this commonly ignored process has significant
contribution for accuracy of image recognition. An in-
teresting possibility instead of simple color conversion is
to perform change image colors to illumination-invariant
color space [22]; which can be used to tackle shadows and
light changes throughout times of day.

3. Monocular Vision-Based Mapping and
Localization

Most vision-based SLAM methods are based on
Structure-from-Motion (SfM), as surveyed in [23] and
[24]. General workflow of the SfM as implemented in
ORB-SLAM is described in Fig. 2. Explanation of each
major parts will be accompanied with details of their im-
plementation in ORB-SLAM that we use.

This workflow is applied for mapping process. For lo-
calization process, generally the system does not include
map modification so that local mapping and loop closure
are omitted from the workflow.

3.1. Feature Tracking
First step in pose and structure recovery is detection

of distinct feature points in the frame. In ORB-SLAM,
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Fig. 2. General vision-based SLAM workflow.

ORB (Oriented FAST, Rotated BRIEF) is used as fea-
ture detector [25]. It has been found to be invariant
against rotation, but not against scaling and illumination
change [26]. Next, the system must match and track these
feature points in subsequent frames, so that these points
may be used for triangulation.

In our observation, the matching and tracking subsys-
tem will provide better accuracy for high parallax fea-
tures; this requires that tracked features lie in near places
(e.g., low-height vegetations, paving tracks and signs).
However, features in low parallax (i.e., far places) such
as trees and buildings are also required for place recogni-
tion. Meanwhile, the feature detection and tracking must
be prevented from matching features in bright skies and
clouds, which may confuse visual odometry.

In practice, the camera is not always able to cope with
these two competing requirements due to limited camera’s
dynamic range. This situation is prevalent in high contrast
areas due to strong illumination in sky but dark shadows
in the ground are looming. Therefore, in this research we
insert an image preprocessing step that perform gamma
correction based on histogram measurement of adjustable
image portion (see Figs. 3 and 4).

3.2. Local Mapping and Triangulation
A number of distinct frames are recognized as

keyframes when they contains enough changes from
surrounding frames. Position and orientation of these
keyframes are computed from fundamental matrix as de-
scribed in [16]. Next, map points are computed from two
consecutive keyframes using triangulation, also in [16].
The triangulation process has higher uncertainty in trans-
lation motion than rotation, which in turn makes corre-
sponding keyframes and map points more difficult to be
recognized. This uncertainty is shown in our previous pa-
per, which describes no coverage in starting point that in-
volved long and straight motion.

Due to inherent nature of 3D poses and points recon-
struction that can be only computed up to an unknown
scale [27, 28], the map will contains scale drift [15]; there-
fore it is necessary to correct this deficiencies. In the

Fig. 3. Flowchart of the proposed mapping method. Con-
struction of custom vocabulary from the final visual map is
new addition from the previous method. We also inserted
gamma control as image preprocessing prior to feature ex-
traction.

Fig. 4. Flowchart of the proposed localization method.
Place recognition process uses custom vocabulary instead
generic vocabulary. Similar to mapping, localization also
uses gamma control for frame preprocessing.

ORB-SLAM, scale drift is corrected by using local bundle
adjustment, in which nearby keyframes and map points
are adjusted to give cumulative projection error. However
in our observation, the local adjustment may fail when
most map points are present in objects that have low par-
allax (for example, cloud in the sky and/or faraway build-
ings). This situation comes for example, when high con-
trast between sky and ground are present in the scene.

3.3. Loop Closure and Place Recognition
Loop closure is crucial for enhancing accuracy of

SLAM algorithms, determining whether the robot has
returned to visited locations after discovering new ter-
rain and proceeding to adjust keyframes and map points.
In the ORB-SLAM, loop closure uses image-to-map ap-
proach [29]. This is performed by querying extracted
ORB features of current keyframes against the database
of bag-of-words [30], and performing global bundle ad-
justment against the whole map.

One critical element in loop closure is place recognizer
that are also used in initializing localization process [20].
The place recognition enables ORB-SLAM to perform
global localization, thus eliminating requirement of start-
ing localization in point zero of the map.

3.4. Scale Correction to Metric Space
Our previous paper [7] has derived scale correction

to transform poses in ORB-SLAM coordinate frame to
metric space, by assuming that scale changes in small
movements are uniform. This is performed by storing
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Fig. 5. Scale correction to metric space from ORB-SLAM
frame.

keyframes’ accurate metric pose estimated from an exter-
nal localization method (e.g., using LIDAR) in the map-
ping phase.

Figure 5 shows illustration of correction to metric
space. During mapping phase, keyframes’ real poses in
metric space are recorded along with their computed po-
sitions in ORB-SLAM frame as Pn and Pk, respectively.
Each pose P consists of translation vector t = (x,y,z)T

and rotation matrix R. In localization phase, robot pose in
metric frame as Pc is predicted as scaling-up from ORB-
SLAM pose Po. First, we search for nearest keyframe in
ORB-SLAM frame as Pk and its offset as P′k; their posi-
tions in metric frame are Pn and P′n. Next, scale factor s is
calculated as

s =
||t′n− tn||
||t′k− tk|| . . . . . . . . . . . . (1)

P′r is transformation from Pn to Pc, computed by the
following expression:

P′r =
(

R(qr) str

0T 1

)
, . . . . . . . . . (2)

where R(qr) is the rotation component of Pr . Lastly, final
pose in metric frame is derived from:

Pc = PnP′r . . . . . . . . . . . . . . (3)

4. Proposed Improvements to Previous Local-
ization System

Our previous paper has proposed metric-based vision
based localization system. The readers are encouraged to
refer to this paper for explanation of our modification to
original ORB-SLAM and how to obtain pose estimation
in metric space. In this paper, we propose additional im-
provements that aims to increase coverage. Main features
of current addition are:

1) custom vocabulary for place recognition;

2) automatic gamma control; and

3) non-strict keyframe selection.

Framework of our localization system is shown in Figs. 3
and 4. These figures describe the map building and local-
ization processes.

4.1. Use of Custom Vocabulary
Original ORB-SLAM employs a generic vocabu-

lary extracted from an unspecified training image se-
quences [8], which was noted to work well for a number
of publicly available datasets. As described in [30], this
vocabulary is used for transforming detected features of
the image into a sparse numerical vector (thus the name
“bag-of-words”). In 2015 and 2016 Tsukuba Challenge,
we found that it was not the case, as the place recogni-
tion may fail when using generic vocabulary. Therefore,
the first proposed addition for ORB-SLAM is to utilize
custom vocabulary for any specific location (in this one,
the Tsukuba Challenge track) to increase probability of
matching query image against the image database [31].
The vocabulary is extracted following the mapping pro-
cess, as the image sequence is required.

Constructing image vocabulary is basically a form of
vector quantization [32, 33], in which the vocabulary is
arranged as tree. The process of extracting vocabulary
is performed by collecting a rich set of feature descrip-
tors from training images. As described in [30], the
extracted descriptors are discretized and clustered using
k-means and inversely weighted according its relevance
in the training sequence. The whole vocabulary construc-
tion are processed by DBoW2 library [30].

4.2. Automatic Gamma Control
As described in [26], there are no feature detectors

and descriptors that are illumination-invariant; hence fea-
ture matching may not work under varying brightness.
We apply gamma correction to handle high contrast sit-
uation in daytime lighting as often encountered in the
Tsukuba Challenge track. The gamma correction basi-
cally works by applying exponential correction for pixel
value: Ii ← Iγ

i , where Ii (0 ≤ I ≤ 255) is a pixel value of
i-th pixel.

To automatically decide the value of γ , we first compute
histogram of pixel values, h(I), included in masked region
on the image, A, denoted as:

h(I) = ∑
i∈A

δI,Ii , . . . . . . . . . . . . . (4)

where δ is Kronecker delta. Cumulative distribution func-
tion (CDF), c(I), is then calculated from the histogram as:

c(I) =

I

∑
0

h(I)

255

∑
0

h(I)

. . . . . . . . . . . . (5)
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Fig. 6. Mapping without (top) and with (bottom) gamma
correction. In top figure, almost all tracked ORB features fall
in the skies and clouds, resulting in closely spaced keyframes
but sparse map points; signifying relatively little motion
(pyramid markers depict keyframes). In contrast; using
gamma correction, result keyframes are uniformly spaced,
and more map points fall in the ground with distinctive pat-
terns following their placement in the ground.

Then we compute the value of γ to adjust for the mid-
tone that aims to simulate human visual response against
strong backlight [34] as:

γ =− ln I50

ln2
, . . . . . . . . . . . . . . (6)

I50 = c−1(0.5). . . . . . . . . . . . . (7)

The γ value is calculated from masked region which rep-
resents the midtone intensity of that region; however, we
apply the gamma correction to whole image. The masked
region may be determined arbitrarily; but the best results
are obtained when it is taken from lower half of image, as
this region is subject to be dark when the camera is facing
high contrast scenes.

Effect of this gamma correction is to add brightness
and contrasts in shadow areas, while reducing contrast in
highlighted ones. In turn, there are more ORB features to
detect and tracked in the ground (closer to camera). This
is shown in Fig. 6.

4.3. Non-Strict Prediction for Relocalization
Original ORB-SLAM implementation stipulates re-

localization by bag-of-words (BoW) search in internal
database for looking up keyframe candidates. This
set of candidates are then filtered by discarding similar

Algorithm 1: Relocalization after Lost Occurrence

Data: Image Frame with descriptors
Result: Keyframe Candidate c or /0

1 if prior keyframe is not found then
2 Find keyframes from database that share descriptors

with image frame as K
3 else
4 Search keyframes that have topological relation

with last good keyframe as K
5 end
6 Compute scores for all in K
7 Select candidate c with max. score
8 Geometry check:
9 Project all keypoints in c

10 if Keypoints in c match with image frame then
11 return c
12 else
13 return /0
14 end

keyframes and its preference to keyframes that have his-
tory of previous match with prior queries. The candidate
filtering acts to reduce computation time, as the next step
(scoring and geometry check) is quite expensive. In prac-
tice, this method often fails because either the number of
candidates is too few, or the candidates do not match with
geometry check. To increase success probability of relo-
calization, we propose modification of candidate selection
by removing the candidate filtering. Instead, we compute
scores of all candidates and select 25% best keyframes.
Obviously, this necessitates trade-off between CPU usage
and coverage.

To accelerate position finding, we also add searching
nearest keyframes that share visible map points with last
good keyframes. Consequently, this method is not usable
for initializing global localization when the system starts,
as no prior information of keyframes exists. The idea of
searching nearest keyframes is not new; it is actually in-
spired by PTAM [35]. Here, we combine this method with
BoW search as fallback. Complete algorithm for relocal-
ization is listed in Algorithm 1.

5. Experimental Procedure

We conducted three experiments to examine efficacy
of our method. First experiment is used to validate per-
formance characteristics in terms of accuracy and cover-
age against recent (2016) Tsukuba Challenge track. We
also want to identify which situations may cause failure
of our method. This information will be important for
further deployment of vision-based localization in public
road cases. The trajectory of 2016 Tsukuba Challenge
is shown in Fig. 7. One mapping run and four localiza-
tion runs were conducted separately for this experiment;
all runs were from same timeframe. We also took ground
truth measurements in both mapping and localization runs
using results from LIDAR-based localization.
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Fig. 7. Trajectory of 2016 Tsukuba Challenge with overlay of top-down point cloud map projection. (1) is starting point; (2) and
(3) are the bridge area.

Second experiment involved previous (2015) Tsukuba
Challenge dataset, on which the results has been reported
in our paper. For this experiment, one mapping run and
two localization runs were performed within same time-
frame. Similar to 2016 experiment, ground truths were
established from LIDAR-based measurements.

Third experiment is by using map from 2015 dataset but
applied to 2016 dataset. The objective of this experiment
is to find out if our vision-based localization method is
applicable for lifelong usage.

5.1. Data Collection
To evaluate our method, we collected two types of

datasets, which consists of 2015 and 2016 Tsukuba Chal-
lenge track. All datasets consist of image streams from
PointGrey Grasshopper3 camera and LIDAR scans from
Velodyne HDL-32. The LIDAR scans were used for es-
tablishing ground truths in both mapping and localization.

The robot platforms for each year were different but
system architecture related to localization is almost all
same. The platform for 2015 Tsukuba Challenge has been
described in previous paper. For 2016, we used the robot
shown in Fig. 8 and G-Tune as laptop (CPU: Intel Core
i7-6700HQ, RAM 64 GB, GPU: GeForce GTX 970M).
Although G-Tune installs a GPU, we only used CPU to
perform proposed vision-based localization.

5.2. Evaluation Criteria
In this paper, we use three criteria to evaluate perfor-

mance of our localization method. First, coverage mea-
sures percentage of time the robot was able to localize
its position in the map. Second, accuracy measures met-

Fig. 8. Experimental platform used in Tsukuba Challenge 2016.

ric error of robot pose estimation related to ground truth
from NDT localization.

6. Experiment Results and Discussions

The results of our three experiments are summarized
in Table 1 for 2015 experiment, Table 2 for 2016 ex-
periment, and Table 3 for long-term localization exper-
iment. In general, our method shows improvements in
term of coverage; previously, our method recorded cover-
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Table 1. Coverage and accuracy from 2015 experiment.

Runs
Coverage [%] Current Errors [m] Prev. Errors [m] [7]

Current Previous Avg. Max. St.Dev Avg. Max. St.Dev
11-03 96.7 68.3 0.74 13.36 0.91 0.38 26.41 1.60
11-07 97.3 68.4 0.68 3.08 0.49 0.08 1.21 0.11

Table 2. Coverage and accuracy from 2016 experiment.

Runs Coverage [%]
Errors [m]

Avg. Max. St.Dev.
10-15 13:56 90.8 0.13 3.05 0.10
10-15 15:14 98.5 0.14 1.86 0.12
10-16 13:32 97.2 0.16 3.72 0.15
10-16 14:36 98.4 0.16 2.21 0.17

Table 3. Coverage of localization in 2016 experiment using
2015 map.

Datasets Coverage (cross-track) [%]
10-16 13:56 19.7 (75.8)
10-16 15:14 16.7 (64.0)
10-16 13:32 25.7 (98.5)
10-16 14:36 16.5 (64.0)

age about 68% in 2015 datasets using single map. With
current modification, our single-map vision-based local-
ization shows high percentage (90% at minimum) when
using maps created from corresponding date and time
(i.e., same year).

Table 3 shows coverage performance of our vision-
based localization in 2016 experiment using map created
from 2015 as a type of lifelong localization. Overall, map
created from last previous year does not perform well due
to low overlap between each trajectory (26.1%). How-
ever, relative comparison in only overlap areas results
in favorable results of lifelong localization. Due to sig-
nificantly different ground truths between two years, we
could not report on accuracy of lifelong localization.

6.1. Coverage
As shown in Table 1, the coverage for first experiment

(2015 datasets) shows high level of coverage; 96.7% and
97.3% for first and second runs respectively. Compared to
our previous results, there have been significant improve-
ments in term of localization coverage; our previous paper
recorded coverage of 67%. In current results, coverage
improves to more than 97%. This means that the vision-
based localization has been quicker to recover from the
lost occurrence. The potential areas of lost are shown
in Fig. 9. We found that these lost events were mostly
took place either in the turnings or strong intensities (and
smears).

Fig. 9. Lost events position according to ground truth in the
2015 datasets experiment as pointed by bold points. Top:
lost occurrences for 2015-11-03. Bottom: 2015-11-07.

For second experiment, our vision-based localization
method showed more variations, but still exhibited high
level of coverage. Lowest coverage came from first run of
2016 (15th October 13:56) that amounts to 91%. In this
dataset, as shown in Fig. 10, we encountered long part
of lost occurrence that happened after hard bump prior to
entering the bridge. Other significant part of unrecover-
able vision localization was in the forest area, in which
the camera was facing the sun, thus getting frequent lens
smears.

In the third experiment, we performed localization in
the 2016 datasets using map created from 2015 (Table 3).
Overall, 2015 map could only covered less than 26% of
the 2016 track. This is understandable, since only 26.1%
of 2016 trajectory that overlaps with 2015 one.

A particular part of Tsukuba Challenge that is difficult
for lifelong localization is the paved pedestrian area cov-
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2016-10-15 13:56 2016-10-15 15:14

2016-10-16 13:32 2016-10-16 14:36

Fig. 10. Positions of lost occurrences in the 2016 datasets as pointed by red markers.

Fig. 11. Same place, unrecognized: left is 2015 situation,
while right is from 2016 in the same place.

ered by large trees. In 2015 datasets, large amount of this
area were littered by falling leaves; however this cover
was almost non-existent in 2016. Therefore, the changes
between both years were substantial; making the place
recognition subsystem failed. Fig. 11 shows an example
of this situation. Inversely, prominent places where static
image features are dominant and highly visible make the
place recognition easier. Example of these places are the
starting point and the bridge area (pointed by (1) and (2)
in Fig. 7). Overall, coverages for third experiment are
shown in Fig. 12.

6.2. Accuracy
Tables 1 and 2 list errors of our vision-based localiza-

tion method in all experiments. For the 2015 datasets,
the new method recorded lower accuracy than previous
one, as shown by the average errors for both testing runs.
However, in the first test runs of 2015 dataset the large
maximum errors was improved to 13.4 m from previous
error of 26.4 m. This improvement did not take place in
second run, as maximum error had increased to 3.1 m.

Our method registered much better accuracy in the
2016 experiment. The maximum average errors is now
below 20 cm, while the maximum errors are significantly

reduced below 4 m. Also, overall maximum errors has
dropped significantly below in order of below 4 m.

To identify sources of localization errors and how they
develop, the size of error are plotted as circles in their
respective locations for each experiments. For the sake
of brevity, only one datasets are plotted from each ex-
periments as all of the datasets behave similarly in term
of error distribution. This error distribution relative to
locations are plotted in Figs. 13 and 14. From both ex-
periments, most of large errors occurred in three location
types:

• Before and/or after recovery from lost.

• Hard turns.

• Open space, where image features fall in far places.

Relationships between accuracy and coverage for all
datasets are shown in Fig. 15. Here, for 2016 experi-
ment most of the time (above 90%) localization system
were able to provide positions within errors below 50 cm,
which is adequate for most purpose of navigation. For the
rest of time, sensor fusion with odometry will be able to
cover the localization requirement [7]. This sensor fusion
is also able to mask the large “jumps” that occasionally
appears. For 2015 experiment, during 80% of time the
localization system could only provide accuracy within
1.2 m, which is not enough for navigation. This was
caused by time discrepancies between computers used in
logging the image stream and LIDAR.

6.3. Computational Time
Figure 16 plotted fluctuation of per-frame computa-

tional time of typical localization test. In average, per-
frame time amounts to 83.4 milliseconds, that equals to
12 frame per seconds. This is slightly lower to 15 fps of
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2016-10-15 13:56 2016-10-15 15:14

2016-10-16 13:32 2016-10-16 14:36

Fig. 12. Coverage plots of 2016 track using 2015 map; green markers point to navigable areas.

Fig. 13. Error distribution by position for 2015 experiment.
Lost occurrences are marked by red points.

Fig. 14. Error distribution by position for 2016 experiment.
Lost occurrences are marked by red points.

Fig. 15. Cumulative distribution function of errors in each
dataset.
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Fig. 16. Fluctuation of CPU time per frame; lost occur-
rences are marked by red points.
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camera image rate that we use, but usable for real-time
(as comparison, typical LIDAR-based localization meth-
ods make for 10 Hz due to hardware scan rate). However,
when localization is lost, the system will perform global
relocalization by place recognition that increase compu-
tation time significantly (occasionally exceeding 1 sec-
ond). Compared to the original ORB-SLAM, these surges
of CPU usage are not good signs for real-time usage.
The increase of time amount is proportional to number
of keyframe candidates for place recognition.

6.4. Discussions
From these three experiments and by looking at three

parameters (coverage, accuracy and computational time),
we put together the following findings:

1. Modified keyframe search for place recognition with
custom vocabulary work correctly. Compared to
our previous results, the localization system has suc-
cessfully addressed lack of coverage. In the 2015
datasets experiment and 2016 datasets experiment
as shown in Figs. 9 and 10, lost occurrences have
dropped and the system is now able to recover
quickly.

2. Image features from both far and near places are
required. Features from prominent landmarks (i.e.,
buildings) could help for place recognition. How-
ever, existence of this type of features alone without
features from near places may cause visual odom-
etry subsystem to deduce very small motion. In
contrast, near-place features (e.g., from trees and
paving blocks) are not quite useful for landmarks as
shown by third experiment because they are prone
to changes. In this regard, gamma control to regain
brightness in dark areas has contribution for accu-
racy of localization as it could help to recover fea-
tures from near places.

3. Lifelong localization is possible. In the third ex-
periment, localization performed successfully in the
places that had not change considerably. Also, as
shown from second findings above, prominent land-
marks in the frame will help for global localization.

4. There is trade-off between robust place recognition
and CPU usage. Compared to the original ORB-
SLAM, our keyframe search method basically per-
forms brute-force search against all candidates rather
than filters just the most likely ones. As a con-
sequence, this increases CPU time as complexity
of scoring function of keyframe matches is linear
against number of features.

7. Conclusions and Future Work

In this work, we have described and evaluated our
vision-based localization in the Tsukuba Challenge en-
vironments. From the point of view of coverage, the

localization system is capable to provide high availabil-
ity, higher than 90% for all the log data tested in the
Tsukuba track. It also could cope with data of different
years providing coverage of 75%, as long as environmen-
tal changes were low. The coverage was improved using
a combination of non-discriminatory keyframe selection
and custom vocabulary that is unique for each scene.

The capability to support fully vision-based navigation
is still limited due to concern of large errors that may
occur in some areas. We have shown previously that it
is possible to combine this method with other metric lo-
calization systems such as odometry with particle filter
which can cope with these issues. It is left for future work
the exploration for methods that strive to increase accu-
racy for any general situations.

We would like to explore the combination of LIDAR
and camera in the mapping process. Especially, we would
like to explore and eliminate pose estimation by camera
and replace it using accurate pose from NDT. By doing
this, triangulation process will result in metric landmarks
and map points. This will lead to the elimination of scale
correction as pose estimation has already been in metric.
Another effect is that particle filter may be evaluated di-
rectly in metric coordinate, as particle position is now able
to use map point projection for scoring.

Another area worth investigating is Long-Term Map-
ping; which would provide with the capability to build
and grow a map of the area from different times. In this
regard, we have proved possibility of lifelong localization
but also noted failures in the unmapped or vastly changing
areas.
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