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Planning is one of the cornerstones of autonomous
robot navigation. In this paper we introduce an open
source planner called “OpenPlanner” for mobile robot
navigation, composed of a global path planner, a be-
havior state generator and a local planner. Open-
Planner requires a map and a goal position to com-
pute a global path and execute it while avoiding ob-
stacles. It can also trigger behaviors, such as stopping
at traffic lights. The global planner generates smooth,
global paths to be used as a reference, after consid-
ering traffic costs annotated in the map. The local
planner generates smooth, obstacle-free local trajecto-
ries which are used by a trajectory tracker to achieve
low level control. The behavior state generator han-
dles situations such as path tracking, object following,
obstacle avoidance, emergency stopping, stopping at
stop signs and traffic light negotiation. OpenPlanner
is evaluated in simulation and field experimentation
using a non-holonomic Ackerman steering-based mo-
bile robot. Results from simulation and field exper-
imentation indicate that OpenPlanner can generate
global and local paths dynamically, navigate smoothly
through a highly dynamic environments and operate
reliably in real time. OpenPlanner has been imple-
mented in the Autoware open source autonomous driv-
ing framework’s Robot Operating System (ROS).

Keywords: autonomous driving, path planning, open
source software

1. Introduction

Autonomous robot navigation requires perception, lo-
calization, control and planning. Although there are

currently many open source resources available to re-
searchers for perception, localization and control, it is
hard to find an open source planner that is general enough
to be used directly or which can be easily modified to suite
a particular application, because planning is the core mod-
ule that connects everything together and it is also appli-
cation dependent.

In this study we concentrate on two types of plan-
ning, path planning and behavior planning, since both are
needed in completely autonomous navigation systems for
mobile robots. Museum tour guide robots are one exam-
ple of autonomous navigation in indoor robots [1]. Stud-
ies on long-range outdoor robot navigation [2, 3] have
shown that state-of-the-art techniques can achieve good
results. Moreover, the well-known DARPA Urban Chal-
lenge has shown that robotic navigation of car-like ve-
hicles operating in real traffic is feasible [4, 5]. Even
though there have been successful implementations of au-
tonomous vehicles, autonomous navigation is still a diffi-
cult problem given the vast number of possible conditions
in dynamic environments. As a result, there are few open
source planners that can deliver reliable results. There-
fore, our goal in this study was to develop an open source
autonomous navigation system that can handle dynamic
environments while being extensible enough for the open
source community to use, customize and enhance.

The architecture of OpenPlanner is illustrated in Fig. 1.
It includes a global planner that generates a global refer-
ence path from a vector (road network) map. The system
then uses this global path to generate an obstacle-free lo-
cal trajectory from a set of sampled roll-outs. At the cen-
ter of the planner, the behavior generator uses predefined
traffic rules and sensor data to function as an orchestrator,
using collision and traffic rule cost calculations, selection
of optimum trajectories, replanning commands and veloc-
ity profiling.
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Fig. 1. OpenPlanner architecture.

The research presented in this paper was originally de-
veloped for autonomous driving applications, and the sys-
tem can also be found as part of the Autoware frame-
work [a]. Autoware is an open source autonomous driv-
ing framework developed by Nagoya University which
is used by many researchers for autonomous driving re-
search and development [6]. Autoware is based on the
Robot Operating System (ROS) described in [7]. It
is a collection of ROS packages such as OpenPlanner,
plus additional helper libraries. OpenPlanner is general
enough to work with any mobile robot by simply adjust-
ing its parameters, and has been used with both differen-
tial drive and non-holonomic robots. In this study we use
an Ackerman-based steering robot, based on a mobility
scooter, which was used in the Tsukuba Real World Robot
Challenge (RWRC) [b] where we tested the planner.

RWRC is an annual mobile robot challenge held in the
city of Tsukuba, Japan. The robots participating in the
event must be able to achieve accurate localization and
autonomous navigation in a dynamic environment, han-
dle traffic lights and street crossing situations, navigate
through an automatic sliding door, go inside a shopping
mall and search for a designated person. Our goal in
participating in the RWRC was to use OpenPlanner to
achieve as many of these tasks as possible. Many innova-
tive and effective planning algorithms are developed for
this challenge every year, but unfortunately most of these
planners are proprietary. Every year, new participants
much develop their own planning systems from scratch,
and only a limited number of the outlines and details of
these systems are described, usually quite briefly, in pub-
lished papers. Thus, one of the motivations for us to de-
velop an open source planner was to provide the robotics
community with a planner that is easy to understand and
use which can also be continuously developed by its users.

In Section 2, we survey related state-of-the-art work.
In Section 3, we provide an overview of the OpenPlan-
ner system and its architecture. In Section 4, we give a
detailed explanation of the system’s global path planning
method, including the use and structure of vector maps.

The local planner is discussed in Section 5, and behav-
ior state generation and the design of the state machine
are explained in Section 6. In Section 7, our experimental
set-up is described and our experimental results are evalu-
ated quantitatively and qualitatively. We present our con-
clusions in Section 8. In Appendix A, we discuss current
implementation and the wide range of platforms Open-
Planner can be used with. We also provide tips for users
and developers for extension and parameter tuning. Algo-
rithms are listed in Appendix B.

2. Related Work

In robotics, path planning is the task of finding a
collision-free trajectory from a starting position to a
goal location, and determines navigation decisions. Path
planning has been widely studied, from simple collision
avoidance in simulated environments [8] to advanced al-
gorithms which include vehicle constraints and uncer-
tainty [9, 10]. Path planning for robot navigation usu-
ally involves the computation of global and local plans.
Global planners compute paths from a current position to
a goal location by satisfying optimal functions, usually
using distance constraints as in Dijkstra [11]. Task plan-
ners function as an orchestrator by deciding when to start,
stop, create a new plan, switch to an emergency state, and
so on. In the following subsections we cite examples of
related work for each specific aspect of our proposed plan-
ning system.

2.1. Global Planning
Some global path planners, such as A* [12] use heuris-

tic functions while others, such as Anytime dynamic
A* [13] and the D* algorithm [14] also employ re-
planning. There are topological approaches as well, such
as Voronoi graphs [15] which compute collision free
paths. These techniques are based on grid maps updated
with sensor information, called cost maps. Such tech-
niques create global planes for unstructured environments
like off-road navigation and parking situations. Another
type of global planning environment is a network of struc-
tured roads extending for several kilometers. With maps
of this size, cost maps become impractical and different
environment presentation method is needed.

At the 2007 DARPA Urban Challenge, the teams re-
ceived a road network definition file (RNDF) for the com-
plete course. The teams used this file to globally plan their
motion through the challenge objectives, as described
in [4, 5]. Dynamic programming techniques for global
planning were used by Stanford University’s team as de-
scribed in [16], which involved dynamic programming
with accelerating nodes.

Clearly, this kind of structured environmental informa-
tion made it practical for teams to plan global paths in-
cluding lane changes, intersection negotiation, stop signs,
traffic lights and parking. Since then, RNDF has become
essential for autonomous navigation. In [17], optimized
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RNDF for autonomous driving was introduced and many
companies are working on accurate RNDF-based maps
called vector maps. Although the structure of these maps
is similar to open street maps [8], they are much more
precise and include additional, regularly updated, infor-
mation.

2.2. Behavior State Machine
The other important planning function besides path

planning is task planning, also called behavior generation,
which generally uses a state machine to represent tasks
and apply the rules that govern transitions between these
tasks. In [18] researchers transformed a continuous driv-
ing behavior state into discrete state spaces, and then used
a search algorithm to obtain the optimal task sequence to
reach the goal conditions in a symbolic space.

2.3. Local Planning
Several types of local planners have been proposed.

Potential field approaches assign repulsive forces to ob-
stacles and attractive forces to obstacle-free spaces [14].
Other successful obstacle avoidance algorithms consider
vehicle constraints while predicting the future position of
the vehicle [19]. The global dynamic window approach
integrates global path information and uses it for obsta-
cle avoidance [20, 21]. More recently developed planners
take human factors into account, in order to compute paths
which are comfortable for passengers [16, 22]. Efficient
methods of local planning which generate multiple roll-
outs, starting from the center of a vehicle and running par-
allel to a reference path, have also been introduced [4, 23].
These roll-outs are then linearly sampled and optimized to
satisfy vehicle kinematics.

Object tracking is an important component of many lo-
cal planning approaches, including ours. Noisy sensors,
faulty detection algorithms and weather conditions con-
tribute to false positive and false negative detections. It is
essential that local planning methods have reliable object
tracking capabilities, especially in outdoor autonomous
navigation applications. In [24], multiple hypothesis
tracking (MHT) was used to achieve multiple target track-
ing, while other researchers have used probabilistic filters,
such as Kalman or Particle filters.

2.4. Open Source
The two major open source planners currently available

are the Open Motion Planning Library (OMPL) [25] and
Navigation Stack [c]. OMPL is basically a collection of
APIs which can be used with or without ROS, while Navi-
gation Stack, on the other hand, is part of ROS and cannot
be used outside it. OpenPlanner is similar to OMPL in
that it is a collection of C++ APIs which can be used as
a black box on a wide range of platforms. It also has ROS
nodes that could be used directly with Autoware or any
other ROS-based framework.

Open-rdc is an open source, robotic navigation pro-
gramming software [d] based on the ROS Navigation

Stack [c]. It can be used as an extension to Navigation
Stack for applications involving differential-drive mobile
robots. Open-rdc was developed for use at the Tsukuba
RWRC in 2015.

OpenPlanner is intended to be used for autonomous
navigation of mobile robots in general, and more specifi-
cally, for autonomous driving applications. It is designed
to use vector maps or road network maps and use all the
discrete information they contain, such as locations of
traffic lights, traffic signs, intersections, stop lines, and so
on, which is one of its main advantages over other open
source general purpose planners like OMPL and Naviga-
tion Stack. Use of vector maps allows easier and faster
global and local planning by removing kinematic opti-
mization from the equation and using vector maps to han-
dle that problem. Of course free space global planners like
RRT* [26] and Hybrid A* are important for parking and
off-road situations. In these situations, we can switch to a
free space planner for global planning and still use Open-
Planner’s behavior state machine and local planner. An-
other advantage OpenPlanner has over Navigation Stack
is that OpenPlanner can also be used with non-holonomic
platforms.

The function of behavior state machines is hard to gen-
eralize because their use differs from one robot to the next.
ROS, for example, provides basic behavior state machine
functionality which the user can customize. OpenPlanner
also provides basic behavior state machine functionality,
and adding new states is as easy as with ROS. OMPL,
on the other hand, doesn’t provide a state machine or dis-
crete behavior planning. Regarding the mapping require-
ments of the planner, both Navigation Stack and OMPL
require cost maps, which OpenPlanner does not require
unless switching to a free space planner; only a vector
map is needed. In summary, OpenPlanner is more suitable
for autonomous robot navigation systems that obey traffic
rules, it requires only a vector map and goal location for
global planning, and for local planning and behavior state
generation it only requires current position and detected
obstacles.

3. System Overview

Figure 1 shows the general architecture for OpenPlan-
ner, the main three components of which are a global plan-
ner, a behavior state generator and a local planner.

3.1. Overview of Global Planner
The global planner handles path routing. It takes the

vector map, a start position and a goal position as in-
put and then finds the shortest or lowest cost path using
dynamic programming [4]. The global planner used by
OpenPlanner can support complicated vector maps, but
for this study the maps used were very simple. The entire
map for the Tsukuba RWRC is shown in Fig. 2. We an-
notated the map manually with traffic rules and features,
such as traffic lights and stop lines, from start to goal.
More details will be provided in Section 4.
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Fig. 2. Tsukuba Real World Robot Challenge vector map.

Fig. 3. Current system behavior states.

3.2. Overview of Behavior State Generation
The behavior state generation module of OpenPlanner

functions as the decision maker of the system. It is a fi-
nite state machine in which each state represents a traffic
situation. Transitions between states are controlled by in-
termediate parameters calculated using current traffic in-
formation and pre-programmed traffic rules. Fig. 3 shows
the currently available states in the OpenPlanner system.
More details are provided in Section 6.

3.3. Overview of Trajectory Generation
Inputs for the local path planner are the global ref-

erence path and the current position. Several candidate
trajectories are then generated as roll-outs and the local
planner selects the one with the lowest collective cost.
Fig. 4 shows seven possible rollout trajectories, includ-
ing the center one. We used a modified version of the
Stanford approach presented in [4]. The implementation
algorithms will be explained in Section 5.

4. Global Planner

In Section 2, we discussed the different approaches to
path planning and the uses of each approach. OpenPlan-
ner uses a vector map as the main input for global plan-
ning, and for the calculated reference path used by the
local planner to generate roll-out trajectories. In this sec-
tion, we elaborate further on vector maps and global plan-
ning.

(a) (b) (c)

Fig. 4. Local planner in action, in (a) central trajectory is
free, in (b) obstacle blocks central trajectory so the most fea-
sible one was the most right trajectory, in (c) the most feasi-
ble one was the second on the left.

Table 1. Vector map components, in order of importance to
most planning algorithms.

Component Potential usage
Lanes network: Lane ID, Previous
lanes, Next lanes, List of central way-
points

Generating global reference path and
lane change commands using global
planner

Traffic light Traffic light detection

Stop lines Stop lines for traffic lights, stop signs
and intersection

Traffic signs Signs detection and planning

Lane boundaries and road signs Safety and localization

4.1. Vector Maps
One of the most widely used approaches for au-

tonomous vehicle navigation is the use of vector maps,
sometimes called high definition maps to differentiate
them from maps used in geographic information system
(GIS) applications such as open street maps [8]. Vector
maps include data that autonomous navigation modules
need to make sense of the surrounding environment. Ta-
ble 1 shows some common components of vector maps
and the potential uses of each component in autonomous
driving systems. OpenPlanner uses a 2.5D map, which
means it includes elevation information used only when
needed. This allows increased planning performance
since most planning is done in 2D, but 3D information can
also be used in rare situations, such as when very steep
slopes are encountered.

Representing the center of lanes in vector maps with
high order polynomials will help us interpolate way-
points having the required density, but the disadvantage
of using polynomial curves is computational overhead.
There is no problem if the map is loaded from a file once,
but if the map is updated from a map server it can slow the
planning process. For this reason, we developed an effi-
cient algorithm to adjust the density of lane center lines,
as shown in Table 6 in Appendix B. The center lines of
manually created maps are not smooth due to human er-
ror, so an additional step of smoothing using the conjugate
gradient (CG) method [27] is applied.

Although the Tsukuba RWRC map is very simple
(Fig. 2), as is our testing map for the Nagoya University
campus (Fig. 5), OpenPlanner also supports road network
compatible vector maps such as the one shown in Fig. 6.
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Fig. 5. Experimental vector map for Nagoya University.

Fig. 6. Vector map with complex structures.

4.2. Global Planner

Autonomous vehicle planning is divided into two main
categories, depending on the driving environment. The
first type of planning involves unstructured environments
like those encountered during off-road driving or in park-
ing situations, locations in which we cannot use vector
maps. The most suitable type of mapping in these sit-
uations is a cost map. The second type of environment
involves structured environments where we have clearly
defined roads, traffic lanes, intersections, etc., as well as
traffic signs, all of which can be described in vector maps.
The main objective of path planning is to find the optimal
path from a starting point to a goal, but in structured envi-
ronments we must follow the traffic rules, such as driving
in the center of the lane, traveling in the right direction,
changing lanes only when allowed to and moving into the
correct lane to make right or left turns.

When using dynamic programming to find the optimal
path, we trace possible routes forward starting from the
current position of the vehicle to the goal. During route
tracing, we construct a tree of possible paths which fol-
low the defined rules until the vehicle reaches the goal, as
shown in Fig. 7(a). Once we reach the goal, we trace the
route back from the goal to the start position, annotating
the path with all the information the local planner needs
to generate a local trajectory, as shown in Fig. 7(b). The

(a)

(b)

Fig. 7. Searching the map for the shortest path. Line color
indicates route cost.

local planner needs to know traffic direction, lane change
locations, positions of stop lines, positions of traffic lights
and speed limits.

Sample global paths generated for a complex vector
map are shown in Figs. 8 and 9, the latter of which in-
cludes a lane change. In Fig. 5, we show the global path
for one of the testing environments, which simply repre-
sents the same vector map shown in Fig. 5. Tables 7 and 8
in Appendix B show the algorithms used to find the global
path.

5. Local Planner

A local trajectory planner is a set of functionalities
that generate a smooth trajectory which can be tracked
by path-following algorithms, such as Pure Pursuit [28].
For OpenPlanner, we adapted the roll-out generation ap-
proach (Fig. 4), in which the behavior generator can de-
mand a re-plan at any time to generate fresh, smooth, roll-
out trajectories. Re-planning will be discussed in detail in
the next subsection.
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Fig. 8. Example of complex global planning.

Fig. 9. Global planning including lane change.

Fig. 10. Sections for generating roll outs.

5.1. Roll-Out Generation
Roll-out generation needs to be executed in real time,

as it is a basic requirement that all local planners be able
to work in real time. The target processing time therefore
is a maximum of 0.1 seconds so that the controller can
respond quickly to changes in velocity. The inputs of the
roll-out generation algorithm are current position, plan-
ning distance, number of roll-outs and the next section of
the global path. The output is n smooth trajectories, run-
ning from the center of the vehicle out to the maximum
planning distance.

The sampled roll-outs are divided into three sections as
shown in Fig. 10. The closest section to the vehicle is the

car tip margin, which is the distance from the center of the
robot to the point of lateral sampling, the length of which
determines the smoothness of steering when switching be-
tween trajectories. The next section is called the roll-in
margin, which is the distance from the outer limit of the
car tip margin to the point of parallel lateral sampling, the
length of which is proportional to the vehicle’s velocity.
The faster the vehicle is traveling, the longer this section
should be to generate smooth change. The section far-
thest from the vehicle is called the roll-out section, which
runs from the outer limit of the roll-in zone to the end of
the length of the local trajectory. Straight-forward lateral
sampling is performed by moving perpendicularly from
the global path for a fixed distance, which is called the
roll-out density.

The generation of roll-outs by the local trajectory plan-
ner algorithm includes three main steps, the first of which
is extracting the section of interest from the global path
using the current position of the vehicle and maximum
planning distance. The second step is to sample the new
perpendicular way-points which correspond to the ex-
tracted section of the global path. The sampling starts
from the car-tip margin with a lateral distance of zero,
then increases gradually to reach the roll-out density cal-
culated using each trajectory index at the end of the roll-in
margin. The third step is to smooth each sampled trajec-
tory using a conjugate gradient, which is non-linear itera-
tive optimization technique that eliminates the discontinu-
ity of roll-outs resulting from the sampling step. This also
improves curvature, which leads to smoother steering.

The density of trajectory vertices (way-points) is ad-
justed using piece wise interpolation, as shown in Ta-
ble 6 in Appendix B. Many parametric interpolation tech-
niques are very sensitive to input noise and propagate that
to the output (e.g., cubic splines can lead to arbitrarily
large oscillations in the output as input vertices get closer
to each other) [29]. Therefore, we use a combination of
piece wise interpolation and conjugate gradient smooth-
ing to generate smoother trajectories. The resulting tra-
jectories are generally kinodynamically feasible because
we are using vector maps, thus we assume that all lanes
are kinodynamically feasible. Fig. 11 shows the steps of
roll-out generation, and implementation is demonstrated
in Table 9 in Appendix B.

5.2. Cost Calculation
In addition to roll-out generation, the other important

function of the local planner is obstacle avoidance within
a lane, i.e., swerving. Obstacle avoidance is the process
of selecting the best possible trajectory from the roll-outs
generated using algorithm in Table 9 in Appendix B. In-
puts to the obstacle avoidance process are the roll-outs and
detected obstacles, and the output is the selected trajec-
tory. We use an additive cost function to evaluate each tra-
jectory, which calculates three different normalized cost
measurements, priority cost, collision cost and transition
cost, the smallest of which is selected.

Obstacle detection is achieved using another module in
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(a) (b) (c) (d)

Fig. 11. Steps for generating local trajectories: (a) original
map, (b) path section extracted from global path, (c) sam-
pling, (d) smoothing using conjugate gradient.

Autoware [a] which outputs two types of obstacle rep-
resentations, bounding boxes and clusters of point cloud
data. Obstacle representation is essential for both accu-
racy and performance, and by using bounding boxes we
can dramatically improve obstacle detection performance,
but at the expense of accuracy. Using the point cloud data
greatly improves detection accuracy but degrades perfor-
mance drastically. We solved this trade-off problem by
using only a sample of the contour points from the clus-
ters of point cloud data, with a maximum of 16 points for
each obstacle.

The maximum number of contour points is one of the
parameters of the local planner, and by increasing this
number we can achieve finer representation, which leads
to more accurate obstacle avoidance. Fig. 12 shows an ex-
ample of obstacle detection using 8 contour points. Con-
tour representation is calculated in three stages: first, we
divide the xy-plane into n sectors; second, we find the dis-
tance and angle between each point and the center point,
and use the angle to assign the point to a sector; third, we
select the final contour points, which will be the points at
the maximum distance from the center of each sector.

5.2.1. Center Cost

Center cost constrains the vehicle to drive along the
center of a lane at all times, and each roll-out is calcu-
lated using the absolute distance from this lane-centered
trajectory.

5.2.2. Transition Cost

Transition cost constrains the vehicle from jumping
roll-outs, which contributes to smoother swerving. This
cost is calculated using the normalized perpendicular dis-
tance between roll-outs as well as the currently selected
trajectory.

(a) (b)

(c) (d)

Fig. 12. Obstacle data representation using only the contour
points from the point cloud data. In (a) we show sample
random point cloud points. Step 1 of the contour calculation
is shown in (b); we find the point cloud center point and from
that point we divide the point cloud into 8 quarters, number
of quarters is a parameter and could be changed to get higher
resolution contours. In (c) we show step 2 of the process, for
each quarter we calculate Euclidean distance between center
and each point belongs in this quarter, then we find the point
with maximum distance. (d) shows the final contour result
with only the selected points from each quarter.

5.2.3. Collision Cost
Collision cost is calculated in two stages to improve

performance. In the first stage, we test each trajectory by
measuring the distance from the obstacle contour points
to each generated trajectory. Since all of the trajectories
are parallel to the center trajectory after the roll-in section,
we don’t have to apply an explicit test after the roll-in dis-
tance. The obstacle test is achieved using a “point inside
a circle” test, where each contour edge provides the test
points, circles centers are the way-points, and the radius
of each circle is half the vehicle width plus a detection
margin of error.

The second stage of collision cost calculation is check-
ing distances between the detected obstacles and the gen-
erated trajectories after the roll-in limit. After the roll-in
limit all generated trajectories are parallel, so we don’t
need to calculate the collision cost for each trajectory sep-
arately. We calculate the distance from the contour points
of the detected obstacles to the central trajectory, then
use the signed distance from each trajectory to the cen-
tral trajectory to find the collision cost for each trajectory.
Fig. 13 shows color coded center costs, and Fig. 14 illus-
trates the normalized total cost when there is an obstacle.

6. Behavior Generation Using State Machine

Situations like stopping at a traffic light, deciding to
change lanes, stopping and waiting at a stop sign and
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Fig. 13. Center cost keeps the robot in the center of a lane.
Selected trajectory is at the center, with other trajectories
gradient color represents cost.

Fig. 14. Effect of an obstacle on cost calculation.

yielding to pedestrians are difficult to handle using one
algorithm. Like other traffic rules, these events are def-
inite in nature but the rules vary from country to coun-
try. Moreover, special traffic rules or objectives could be
added or disabled any time. We call responses to these
events behaviors, tasks, objectives, states or situations. In
this study, we use the term “behavior state” to represent
all of these event responses, as well as to refer to the tran-
sition rules between these states. Fig. 3 shows the be-
havior states used for OpenPlanner during the Tsukuba
Real World Robot Challenge. Table 2 shows the transi-
tion rules for each state.

There are several parameters controlling transitions be-
tween states. These parameters are calculated determinis-
tically every iteration. Theoretically, a probabilistic ap-
proach should result in smoother transitions, but it is
slower and more complicated to implement and maintain
over a wide range of applications. One solution to this
problem is to introduce timers and counters. For exam-
ple, when an obstacle is moving very close to a threshold,
the behavior generator will rapidly switch back and forth
between the Swerve and Follow states. A counter or timer
can break this cycle. Another situation in which counters
will give better results is when a traffic light switches to
red or green and the light detector is not reliable enough
to handle the change. In such cases, it is necessary to
receive the signal multiple times to assure the reliability
of the signal and switch to the next state. Therefore in
the initialization of each behavior state we set a minimum
transition time, so that a state will keep executing itself
unless a set amount of time has elapsed or emergency state
conditions are met.

Table 2. Behavior states transition conditions.

State Switch to Condition
Start Forward Receive start signal from joystick

Forward Swerve Current trajectory is blocked, not all tra-
jectories are blocked

Forward Follow All trajectories are blocked

Forward Traffic light
stop

Traffic light is red within the stopping
distance range

Forward Stop sign stop Stop sign within the stop distance range

Forward Mission
accomplished

Goal position within the distance range

Swerve Follow All trajectories are blocked

Swerve Forward Drive parallel to the center

Follow Forward Not all trajectories are blocked

Traffic light
stop

Traffic light
wait

Not green light and velocity is zero

Traffic light
stop

Forward Green traffic light

Traffic light
wait

Forward Green traffic light

Stop sign stop Stop sign wait Velocity is zero

Stop sign wait Forward After stopping for time range

Any state Emergency
stop

Receive emergency stop signal

Emergency
stop

Forward No emergency stop signal

Fig. 15. Experimental vector map with stop lines and traffic
light.

7. Experimental Setup and Results

The first field test was conducted on the campus of
Nagoya University, and a diagram of the route is shown
in Fig. 15. The second field test took place at the Tsukuba
RWRC event, the vector map of which is shown in Fig. 2.
The objectives of these experiments were to test global
planning performance from any current position to any
goal position on the map and to evaluate performance of
obstacle avoidance, stops at stop signs and stops at traffic
lights. Additionally, we also evaluated smoothness, per-
formance, accuracy, practicality and usability. In the sim-
ulation environment, we used real life vector maps com-
posed of lines, intersections, stop lines and traffic signs as
shown in Figs. 6 and 7. For field experiments, we added
traffic information to the map manually.
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Fig. 16. Tsukuba Challenge hardware platform.

Table 3. Parameters configurations.

Parameter Configuration
path density Usually keep path density between 0.25 and 1 meter,

with 0.5 is most recommended. Sure for very small
robots higher path density is required but we never
tested the planner on such platform.

roll out numbers The more roll out we have we achieve smoother avoid-
ance but slower performance. We used from 6 to 12 roll
outs with 8 giving the best combination of accuracy and
smoothness.

sampling tip margin Length of the vehicle gave us good results which was
1.2 meters.

sampling out margin Affects smoothness off obstacle avoidance, but setting
it too big will delay the avoidance until the vehicle be-
come very close to the obstacle, good values for it was
between 5 and 8.

following distance This value should be greater than “distance to avoid”
and good values for “following distance” is 12 meters.

distance to avoid Good value for this parameter is 8 meters.

The experiment platform is shown in Fig. 16, same
platform is used in [30]. It is a modified mobility scooter
so it could be controlled by computer. It includes one
HDL32 Velodyne LIDAR sensor which is used for local-
ization and object detection. In addition to the 3D LIDAR
we use three 2D LIDAR for curbs and near obstacles de-
tection. For the software part we had multiple ROS nodes
for localization, obstacle detection, control, global plan-
ning, local planning and path following. In Appendix A
we provide technical information about OpenPlanner for
ROS users.

In this section we will discuss the qualitative results
first, then present key results from our simulation, experi-
ments on the Nagoya University campus and participation
in the Tsukuba RWRC event. Both the simulation and
field tests had positive results.

The Table 3 shows the used parameter configurations
for simulation and field experiments.

7.1. Qualitative Results
The first qualitative aspect of our experiment is to eval-

uate stability, which means OpenPlanner should work all

(a)

(b)

Fig. 17. The angle of each way-point shows curvature of the
generated path with and without smoothing.

the time. Even if faulty data is provided, meaningful error
messages should appear but the planner should never stop
operating or crash. We tested this in a simulated environ-
ment by running the planner from any start point on the
map, stopping localization at some point, and by jumping
from point to point on the map manually and then switch-
ing to autonomous mode.

The second qualitative aspect is completeness, which
means the system delivers smooth switching between dif-
ferent states and never remains stuck in one state. Exper-
iments showed that the local planner stops successfully at
stop signs and at traffic lights when they are red. Switch-
ing between follow, forward and obstacle avoidance states
also worked properly, but smoothness of transitions de-
pended on the reliability of the obstacle detection node.
When encountering an obstacle-free path while navigat-
ing the map in Fig. 15, the resulting sequence of driving
behaviors were: Forward, Stop Sign, Wait Sign, Forward,
Light Stop, Wait Light, Forward, Finish.

7.2. University Campus Experiment
Here we will concentrate on one section of the campus

field test map, shown in Fig. 15, which consists of two
straight lines, one curve, one stop line and one traffic light.
Fig. 17(a) shows the curvature of the generated path, and
the smoothed output of that path is shown in Fig. 17(b).
Smoothing improves path following performance without
the need to relax the control parameters.

Results when navigating the map section shown in
Fig. 15 are displayed in Fig. 18, which shows the simula-
tion results when navigating this section without any ob-
stacles. Behaviors are represented by the blue line and be-
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Fig. 18. Simulation test results when navigating without
obstacles. Behavior ID values: 2 = move forward; 5 = stop
for traffic light; 6 = wait for traffic light; 7 = stop for stop
sign; 8 = wait for stop sign; 11 = avoid obstacle.

Fig. 19. Behavior state flow while navigating the simulated
vector map without obstacles.

havior ID values. The orange line represents the trajectory
index, which is the currently selected roll-out number. In
this experiment we used 7 roll-outs, with 3 representing
the number of the center trajectory. Fig. 19 illustrates the
behavior transition flow during this experiment.

Using the OpenPlanner in simulation mode enabled us
to insert obstacles of random sizes. We repeated the previ-
ous experiment after adding two obstacles while the robot
was moving, one obstacle before the stop sign and the
other after the stop sign. Fig. 20 shows that both state
transition and trajectory switching results were smooth.
Fig. 21 is a diagram of the behavior state transition flow
when navigating this section with obstacles.

Field experiment results for the same map section,
shown in Fig. 22, were similar and generally stable, with
the vehicle stopping at the stop line and traffic light and
avoiding obstacles when necessary. However, noisy input
data resulted in an additional state transition.

7.3. Tsukuba RWRC Experiment
One of the most difficult tasks during the Tsukuba event

was the street crossing, which required stopping at a traf-
fic light, crossing the street, making a very tight U-turn,
stopping at a second traffic light and crossing the street
again. By using vector maps we were able to dynamically
choose to continue through this stage or bypass it. The
default behavior of the planner is to find the shortest route
from the current position to the goal, so normal route se-
lection would result in the route shown in Fig. 23(a). If
we wanted to attempt the task and cross the street, we

Fig. 20. Simulation test results when navigating with obsta-
cles. Behavior ID values: 2 = move forward; 5 = stop for
traffic light; 6 = wait for traffic light; 7 = stop for stop sign;
8 = wait for stop sign; 11 = avoid obstacle.

Fig. 21. Behavior state flow while navigating the simulated
vector map with obstacles.

Fig. 22. Field test results. Behavior ID values: 2 = move
forward; 5 = stop for traffic light; 6 = wait for traffic light;
7 = stop for stop sign; 8 = wait for stop sign; 11 = avoid
obstacle.

could simply increase the cost associated with the short-
cut. Fig. 23(b) shows the planner choosing the longer
route to avoid the high cost assigned to the shortcut. The
resulting global paths are shown in Figs. 24(a) and (b)
respectively. Behavior states when following both routes
are simulated in Figs. 25(a) and (b).

7.4. Performance
In the campus field experiment, we were able to achieve

real time performance of 14.6 iterations per second for
local planning and behavior state generation, while de-
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(a) (b)

Fig. 23. Section from Tsukuba Challenge path represented
by rectangle in Fig. 2. Global planning dynamic cost calcu-
lation, (a) without and (b) with a high shortcut penalty.

(a) (b)

Fig. 24. Section from Tsukuba Challenge path represented
by rectangle in Fig. 2. Global planning final paths, (a) with-
out and (b) with a high shortcut penalty.

tecting an average of 62 obstacles and an average total
of 1,255 contour points (Fig. 26). For each iteration we
calculate the obstacles contours, track the obstacles us-
ing a Kalman filter, calculate the costs and then generate
new roll-outs if needed. In Fig. 26 yellow curve repre-
sents the execution time for cost calculation step and blue
curve represents the number of detected obstacles, we can
see that both curves almost have the same trend; when
number of detected obstacles increases the execution time
increases and vice versa. Cost calculation is clearly a per-
formance bottleneck. At this point, no performance en-
hancement techniques were used, not even a compiler op-
timization directive, but we were still able to achieve real
time performance. The next objectives for OpenPlanner
are smoother obstacle presentation and a larger number
of generated roll-outs.

7.5. Accuracy
Our mobility scooter was able to avoid static and mov-

ing obstacles successfully, depending on localization ac-
curacy. Our testing platform had an original localization
accuracy of within 10 cm, so we added 20 cm to its width
and length as a safety margin for the robot. As a result, in
some cases the robot got as close as 5 cm to an obstacle
while avoiding it. Recorded videos of experiments includ-
ing visualization of environment is shown at OpenPlanner

(a)

(b)

Fig. 25. Behavior state results when selecting the shortest
route (top) or choosing to cross the street (bottom). Behavior
ID values: 2 = move forward; 5 = stop for traffic light; 6 =
wait for traffic light; 7 = stop for stop sign; 8 = wait for stop
sign; 11 = avoid obstacle.

Fig. 26. Performance results of campus field test. Y -axis on
the left shows processing time used for calculating (obstacle
tracking, trajectory cost, behavior selection, and trajectory
generation) in seconds, with relation to number of detected
obstacles represented by right Y -axis.

channel [e] on Youtube. We tested several parameters us-
ing the same route section illustrated in Fig. 27. Since we
added a 20 cm safety margin to the width and length of the
robot, it became difficult for the robot to drive in a straight
line in the narrower sections. By changing the car tip and
roll-in parameters, we were able to achieve a smoother
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Fig. 27. A narrow pathway was used in the campus testing
area to evaluate performance when avoiding nearby obsta-
cles.

(a)

(b)

Fig. 28. Driving between cones and trees generated many
changes of direction. In (a), using smallest roll-in margin,
the motorized scooter changes direction more quickly but
not smoothly. In (b) we used bigger car tip and roll-in mar-
gins, so the results became smoother.

driving path when traveling through this section. Fig. 28
shows data from several trials while navigating through
the section shown in Fig. 27.

8. Conclusion

OpenPlanner is an integrated planner in the sense that
it performs global, local and behavior planning. It is an
open source planner for the robotics community to take

advantage of, use, modify and build on. In this paper we
explained our methodology, vector map design and the
dynamic programming of the global planner. Also we ex-
plained how the local planner generates trajectories and
safe trajectory selection criterion. We outlined behavior
state generation using a state machine transition matrix
and explained the functions and usage of related ROS
nodes. We conducted a simulation experiment and then
performed two field tests, one on the campus of Nagoya
University and the other at the Tsukuba Real World Robot
Challenge. Our results showed that OpenPlanner is able
to plan trajectories through complex vector maps and nav-
igate through dynamic environments while handling a va-
riety of discrete behaviors such as stopping at stop signs
and traffic lights and avoiding obstacles. Without fur-
ther optimization, OpenPlanner can function in real time
at more than 10 Hz, even when number of obstacles in-
creases to around 100. OpenPlanner can also generate
very smooth trajectories, which allows for much smoother
control.

The main contribution of this paper is to provide Open-
Planner as an open source resource for the robotics com-
munity to use and enhance. The source code is avail-
able as a collection of ROS packages within the Autoware
project. It can be used as a stand-alone package or within
the Autoware framework. It can use .kml format RNDF
map files, which can be easily created and modified, and
Autoware supported vector maps. The basic functionality
of OpenPlanner is available as shared libraries, thus users
can use it for development outside the ROS environment.

In this study we demonstrated that OpenPlanner can
operate effectively and safely in dynamic environments by
using a modified motorized scooter to successfully navi-
gate through the Tsukuba Real World Robot Challenge
and by navigating similar environments on the Nagoya
University campus. Successful autonomous navigation
requires avoidance of moving objects and pedestrians, the
ability to follow moving objects along a path, navigating
through narrow corridors, negotiating automatic doors,
and stopping for traffic lights and stop signs. In our field
tests, OpenPlanner demonstrated its ability to perform all
of these tasks.

Finally, we are open to suggestions and coopera-
tive projects in order to continue to improve OpenPlan-
ner, the latest version of which can be found under
“feature/OpenPlanner-dev” at the Autoware GitHub web-
site [a]. Additional illustrative videos and field experi-
ments can be seen on the OpenPlanner channel [e].
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Appendix A. Implementation

In this section, we explain how the open source na-
ture of OpenPlanner makes it easy for other engineers
and researchers to use and modify it. OpenPlanner’s
source code is part of the Autoware framework and is di-
vided into two ROS nodes, way planner and DP planner.
Both nodes use two shared libraries, utilityh.so and plan-
nerh.so, which contain reusable functionality for all plan-
ning tasks. Both doxygen-based documentation and wiki
pages are provided for these nodes/libraries. Since the
OpenPlanner ROS nodes basically use these two libraries
as the system’s core functionality, the basic planner could
be used outside ROS with any other platform, for example
as in [31, c].

A.1. Way Planner Node
The way planner node functions as a global planner by

finding the reference path to the goal position, and can be
run upon request. The reference path contains multiple
trajectories which guide the local planner to execute lane
changes. By disabling the lane change option, only one
trajectory is returned, if possible. Inputs for the way plan-
ner node include a vector map, current position and goal
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Table 4. Global planner parameters description.

Parameter Description

pathDensity Distance between every two way points in the generated
path. the longer the path the slower fixing the path den-
sity will be. recommended values ranging from [1,0.1]
meter. it is useful when spars vector map is used.

enableSmoothing Use CG to smooth the generated path. only use this if
the vector map has misaligned and spars way points.

enableLaneChange When the vector map includes lane change information
the planner will find multiple small trajectories which
contains lane change information and one reference path
to goal. when enabling the lane change option global
planner should be called regularly to plan for the next
lane change.

enableRvizInput In simulation mode user can select goal position using
rviz [ref to rviz], if not local planner will send the goal
information using the proper ros topic name.

mapSource Select between different map sources, currently the node
can use Autoware map messages or load the map from
our custom .kml file.

mapFileName When mapSource is set to 2, this should contain the kml
map file name.

position. Output is the shortest path or paths from the map
after taking into account predefined traffic costs, as shown
in Figs. 8 and 9.

The launch file for the way planner node has several pa-
rameters that enable users to control the behavior and per-
formance of the node, as shown in Table 4. Additionally,
the way planner global planning node could be used with
any local planner. It is the responsibility of the task plan-
ner to invoke the way planner node and send it the goal
position. Currently, the goal position can also be speci-
fied using rviz (ROS visualization); in simulation mode,
start and goal positions are specified in this manner.

A.2. DP Planner Node
The DP planner node functions as a local planner.

When there is a global path available, it generates roll-
out trajectories and then selects the best one to output, de-
pending on the obstacles detected. Also it outputs behav-
ior state messages (current state, maximum velocity, min-
imum velocity, stopping distance, following distance, fol-
lowing velocity). Values in these messages are calculated
to support a variety of different controllers. In our test-
ing environment, we used a feed-forward PID controller
which only uses current trajectory, state and maximum
velocity. Other controllers may use following distance or
velocity to generate smoother control signals. Users can
choose to run off a way-point follower or use Pure Pursuit
nodes from Autoware to follow the generated trajectory.
Description of the important parameters for DP planner
node is provided in Table 5.

Appendix B. Algorithms

In this section we list the main algorithms used in
OpenPlanner. The algorithm in Table 6 fix errors in the
vector map raw data by interpolating points along the path
with fixed distance. In Tables 7 and 8 the main algorithm

Table 5. Local planner parameters description.

Parameter Description

mapSource Select between different map sources, currently the
node can use Autoware map messages or load the
map from our custom .kml file

mapFileName When mapSource is set to 2, this should contain the
kml map file name

maxVelocity Maximum velocity that planner should not exceed

maxLocalPlanDistance Length of the local trajectory roll-outs

samplingTipMargin Length of the roll-outs tip margin

samplingOutMargin Length of roll-outs roll in margin

rollOutDensity Distance between each two roll-out trajectories

rollOutsNumber Number of roll-outs not including the center trajec-
tory, this number should be even number

pathDensity Distance between each way-points of the local tra-
jectory

minFollowingDistance Distance threshold for exiting following behavior

maxFollowingDistance Distance threshold for entering following behavior

minDistanceToAvoid Distance threshold for obstacle avoidance behavior

enableSwerving Enable obstacle avoidance inside the lane (no lane
change)

enableFollowing Enable following next car with the same velocity

enableTrafficLightBehavior Enable wait for traffic light to be green, if this is
enabled and not traffic light detection is available,
planner will assume that it is always red

enableLaneChange Enable obstacle avoidance to through lane change
(over tack)

width Vehicle width in meters

length Vehicle length in meters

wheelBaseLength Vehicle wheel base in meters

turningRadius Vehicle min turning radius in meters

Table 6. Algorithm for interpolating path points with fixed
density.

Algorithm 1 Adjust path waypoints density (maxDistance)

01: remainingDistance = 0

02: for I = 0 to pathSize() - 1

03: d := distance(Pi, Pi+1)

04: nNewPoints := d / maxDistance

05: if remainingDistance == 0

06: newPath := Pi

07: end if

08: a = angle(Pi+1, Pi)

09: for j = 0 to nNewPoints -1

10: Pix’ := Pix’ + maxDistance * cos(a)

11: Piy’ := Piy’ + maxDistance * sin(a)

12: newPath := Pi

13: end for

14: end for

15: return newPath

for finding global path between start and goal points. The
algorithm in Tables 9 and 10 used to generate roll out tra-
jectories for the local planner.

Journal of Robotics and Mechatronics Vol.29 No.4, 2017 681



Darweesh, H. et al.

Table 7. Algorithm for finding global path connecting start
point to goal point.

Algorithm 2 FindGlobalPath (sNode, goal)

01: procedure FindGlobalPath(sPose, gPose)

02: sNode := FindStartNode(sPose)

03: gNode := BuildSearchTree(sNode, gPose)

04: path := emptyPath

05: paths := emptyPathsList

06: TraceToStart(gNode, sNode, path, paths)

07: return paths
08: end procedure

Table 8. Detailed algorithms of procedure in Table 7.

Algorithm 2 procedures
01: procedure BuildSearchTree

02: s := sNode

03: while (not s.isEmpty ) do
04: node = popSmallestCost(s)

05: if IsGoalAchieved(node, goal, MIN-DIST)

06: return node

07: end if
08: if IsNewNode(node)

09: if node.LeftLane

10: synamic leftNode = ExpandLeft(node.LeftLane)

11: CalculateCost(node, leftNode)

12: s := leftNode

13: end if
14: if node.RighttLane

15: rightNode = ExpandRight(node.RighttLane)

16: CalculateCost(node, rightNode)

17: s := rightNode

18: end if
19: for i = 0 to node.NextNodes

20: nextNode = ExpandNext(node.NextNodes[i])

21: CalculateCost(node, nextNode)

22: s := nextNode

23: end for
24: end if
25: end while
26: end procedure
27:

28: procedure TraceToStart(node, sNode, path, paths)

29: if (node NOTEQUAL sNode)

30: if (node.previousNodes.size() ¿ 0)

31: paths := path

32: prevNode = FindMinCost(node.previousNodes)

33: TraceToStart(prevNode, path, paths)

34: node.dir = FORWARD

35: path := node

36: else if (node.leftNode)

37: TraceToStart(node.leftNode, path, paths)

38: node.dir = LEFT

39: path := node

40: else if (node.rightNode)

41: TraceToStart(node.rightNode, path, paths)

42: node.dir = RIGHT

43: path := node

44: end if
45: end if
46: end procedure

Table 9. Algorithm to generate roll out trajectories used in
local planner.

Algorithm 3 GenerateRollOuts(sPose, maxDistance, globalPath, nRollOuts)

01: path-section := ExtractPlanningSection(sPose, maxDistance, globalPath)

02: SampleTrajectories(sPose, path-section, nRollOuts)

03: rollouts := SmoothRollOuts(rawRollOuts)

04: return rollouts

Table 10. Detailed algorithms of procedure in Table 9.

Algorithm 3 procedures
01: procedure ExtractPlanningSection(sPose, maxDistance, globalPath)

02: index := FindClosestWaypoint(sPose, globalPath)

03: while distance LESSTHAN maxDistance

04: pathSection := globalPath(index++)

05: end while
06: FixPathDensity(pathSection)

07: SmoothPath(pathSection)

08: return pathSection

09: end procedure
10:

11: procedure SampleTrajectories(sPose, pathSection, nRollOuts, carTipMargin,
rollInMargin, rollOutMargin)

12: rollOuts := CreateList(nRollOuts)

13: for i = 0 to nRollOuts

14: rollOuts[i] = AddCarTipSection(pathSection, carTipMargin)

15: distanceFromCenter = rollOutDensity * (i - nRollOuts/2)

16: rollOuts[i] = SampleRollInSection(pathSection, distanceFromCenter,
rollInMargin)

17: rollOuts[i] = AddRollOutSection(pathSection, rollOutMargin)

18: SmoothPath(rollOuts[i])

19: end for
20: return rawRollOuts

21: end procedure
22:

23: procedure SmoothRollOuts(rawRollOuts)

24: return rollOuts

25: end procedure
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