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In order for a robot to provide service in a real world
environment, it has to navigate safely and recognize
the surroundings. We have participated in Tsukuba
Challenge to develop a robot with robust naviga-
tion and accurate object recognition capabilities. To
achieve navigation, we have introduced the ROS pack-
ages, and the robot was able to navigate without major
collisions throughout the challenge. For object recog-
nition, we used both a laser scanner and camera to rec-
ognize a person in specific clothing, in real time and
with high accuracy. In this paper, we evaluate the ac-
curacy of recognition and discuss how it can be im-
proved.

Keywords: mobile robot, object recognition, neural net-
work, Tsukuba Challenge

1. Introduction

Tsukuba Challenge is an open experiment for au-
tonomous mobile robots in outdoor environments. The
robots are required to travel more than 2 km and search
persons wearing specific clothes.

In previous Tsukuba Challenges, some teams proposed
target-searching methods based on point cloud informa-
tion or on camera images [1–3]. The identification ac-
curacy of the method of Akimoto et al. [1] was 92.3%.
The robots of Nomatsu et al. [2] and of Eguchi et al. [3]
missed several search targets, and their identification ac-
curacy could be further improved.

In recent years, an identifier using a convolutional neu-
ral network (CNN) has produced good results in image
recognition [4, 5]. Neither of the groups in Tsukuba Chal-
lenge of 2014, or before that year, employed the CNN.
The authors began using the CNN to identify search tar-
gets in Tsukuba 2015.

Most image-recognition technologies use input images
mostly consisting of a foreground scene. However, in
Tsukuba Challenge, the images acquired by the robots
contain various objects, and additional techniques would
be necessary to identify a single object located in a part
of the image. Some CNNs assume an area where the ob-
ject could be located and recognize it, but most of them

run in real time and a GPU needs to be installed on the
robots [6, 7]. In addition, because it is necessary to spec-
ify not only labels but also object areas as a train set, the
workload to create the train set is larger than that of a sim-
ple identifier which only makes object recognition.

We therefore developed a system that could perform
object recognition, at high speed and with high accuracy,
by processing the information data from laser sensors and
cameras in a step by step manner. First, a point cloud,
obtained from the laser sensors, is segmented, dividing it
into point clouds of individual objects. Next, the recogni-
tion targets are narrowed down according to the physical
size of the objects. Because the point clouds indicate the
position and size of objects more directly than images, an
object can be detected at a lower computational cost than
when using a CNN, which estimates a foreground scene
from an image. Therefore, in order to achieve high ac-
curacy, the image area where the object is located is ex-
tracted from the image and the CNN is used to identify
the object.

This study is intended at realizing a system that allows
a robot to travel in a city making highly accurate recogni-
tion of objects lying in the surrounding environment. We
participated in Tsukuba Challenge to verify the validity
of the developed system. In that challenge, a system is
considered to have sufficient performance if it could au-
tonomously navigate and reach the goal, successfully de-
tecting the four search targets.

In Tsukuba Challenge 2015, during the learning pro-
cess of the CNN, the system accuracy to detect target ob-
jects was 99.5%. However, in the final run of Tsukuba
Challenge 2015, the robot detected wrong objects as
search targets, and approached them without reaching the
goal. Even if it had reached the goal, the wrong recog-
nition could have caused an unexpected movement of the
robot and endangered the people around. Thus, it was
found in Tsukuba Challenge 2015 that extremely high ac-
curacy in object recognition is required for the robot to
not only recognize the object but also take action based
on the recognition result.

After a full review of this failure, we improved the
robot’s recognition ability for the final run of Tsukuba
Challenge 2016. In this paper, we introduce and discuss
the improvement and its result. Nevertheless, it was found
in the final run of Tsukuba Challenge 2016 that the im-
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Fig. 1. Appearance of Kerberos without (left) and with
(right) external cover.

proved recognition system was not sufficiently accurate.
Therefore, we made an additional improvement of the
recognition system, which is also explained in this paper.

In Section 2, we explain the autonomous navigation
system of the robot. In Section 3, the procedure of the
object recognition algorithm is explained. The result of
the robot’s performance in Tsukuba Challenge 2016 is
shown in Section 4, and the improvement in its object-
recognition accuracy is included in Section 5. Section 6
presents a summary and discusses problems to address in
the future.

2. Autonomous Navigation System

2.1. Hardware Configuration

Figure 1 shows the appearance of our developed robot,
Kerberos. Each rear wheel was equipped with a DC motor
and a differential steering system was used to control the
movement of the robot. A urethane board with waterproof
cloth covered the exterior of the robot to enhance its water
resistance.

An internal sensor was used, with motor encoder and
NAV420 (Crossbow) IMU, and the translational motion
distance obtained from the encoder and the azimuth an-
gle obtained from the IMU were used to calculate the
odometry quantities. As external sensor, a VLP-16 (Velo-
dyne) was attached at the height of about 1 m, with three
web cameras of c920t (Logicool) directly under the VLP-
16, and a UTM-30LX (TOP-URG) (Hokuyo) laser scan-
ner at the height of 0.3 m in the front and rear sides.
The horizontal view-field angle of each camera was about
70◦. The wide horizontal view-field angle was realized
by placing the cameras with angle intervals of 90◦. Al-
though the c920t cameras were able to shoot images as
large as 1920× 1080 pixels, the resolution of each cam-
era was reduced to 854× 480 pixels to suppress commu-
nication load on the USB. On the front side of the robot, a
YVT-X002 (Hokuyo) 3D laser scanner was mounted up-
side down for securely detecting objects located near the
front road surface at various heights.

Fig. 2. Software configuration. The white color shows ex-
isting packages, and gray shows those created by our group.

As power supply, two lithium-ion batteries originally
made for electric-assist bicycles were used, with the volt-
age transformed and connected in parallel. Because each
of them could perform hot swapping, the batteries could
be replaced without stopping the working program.

A barebone kit (Shuttle) with an Intel Core i7-6700 pro-
cessor was used as PC.

2.2. Software Configuration
Figure 2 shows the entire configuration of the software.

The robot operating system (ROS) [8] was used for the
implementation of the software. Readily available pack-
ages were used for the sensor driver, self-localization, and
map creation, while the software for point cloud process-
ing and image recognition was created by the authors.
Other libraries, such as OpenCV for image deformation
and Caffe for CNN recognition, were used [9]. Our de-
veloped YP-Spur was also used to calculate the rotation
speed of each motor from the translational speed and ro-
tation angular speed of the robot.

2.3. Autonomous Navigation
The autonomous navigation of the robot was

mostly realized by combining existing packages.
The slam gmapping package was used for map creation,
the amcl package for self-localization, and move base of
the navigation package for action planning.

Maps were created from the odometry of the manual
travelling performed in advance and the log data of the
VLP-16. The odometry was calculated based on the dis-
tance obtained from the rotation of the wheels and the az-
imuth angle obtained from the IMU to reduce error from
tire slipping. Lasers close to horizontal were extracted
from the sixteen lasers of the VLP-16 to create a two-
dimensional map, which is shown in Fig. 3. The cre-
ated map was saved as an occupancy grid map, with a
0.05 m grid, and loaded with a map server package dur-
ing the navigation. The package amcl was used for self-
localization during the navigation. As in the map creation,
one of the lasers of the VLP-16 was used for input to the
amcl.
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Fig. 3. Occupancy grid map created by slam gmapping. The white color shows the areas where the robot can
travel, black shows the obstacles, and gray shows unknown areas. Arrows indicate the waypoints placed with
intervals of 1 m.

Data from both the Top-URG and VLP-16 were used
for obstacle detection. A height map package was used
to process three-dimensional point cloud data from the
VLP-16 for obstacle detection. The height map creates
a two-dimensional grid map of the area surrounding the
robot and identifies an obstacle by judging whether the
difference between the highest and lowest points in each
grid exceeds a certain threshold. The obstacle detection
was conducted in an area of size 20 m × 20 m around the
robot, with the grid size being 0.1 m and the height thresh-
old being 0.075 m. However, the VLP-16 has a sensor at
a high position, and hence, has a blind area. Moreover,
it cannot get data of the area within 1 m from the sen-
sor. Thus, we added data from the TOP-URG to allow de-
tection of low-height obstacles near the sensor. Because
a slope on which the robot was supposed to travel was
sometimes wrongly detected as an obstacle, an elevation
angle of 2◦ was set to the TOP-URG to avoid wrong de-
tection, although this was done somehow on an ad-hoc
basis.

If the robot position, obstacles around the robot, and
goal are provided, move base of the navigation package
calculates the travelling path and speed of the robot. For
the robot position, the calculation result from amcl was
provided, whereas for the goal position, waypoints with
intervals of 1 m were placed along the travelling path, as
shown in Fig. 3. However, owing to the specifications of
move base, a travelling path for the waypoints on which
the obstacles were laid was not calculated. If an obstacle
was detected on a waypoint, this waypoint was skipped
and the next one was immediately referred to. If 20 or
more waypoints were skipped, the next one was referred
to every 15 s.

When a search target was found, the robot approached
it by adding a waypoint 0.6 m before the search target.
The waypoint of the search target was placed behind the
closest waypoint to the search target, among the way-
points that the robot had not reached. When an obstacle
was found on a waypoint to the search target, the way-

point was moved to a point on an arc having the center at
the search target.

3. Recognition of Search Target

A CNN was used for identification of the images ob-
tained from the cameras to find a search target. To keep
high identification capability, objects to be recognized
need to be large enough on the image. However, the im-
ages from the cameras were occupied mostly by back-
ground scenes and the objects to be recognized were not
correctly identified. In Ref. [10], the CNN extracted an
object area, which increased the load to create a train set.

Therefore, we solved the problem by preprocessing the
images based on the point cloud data from the VLP-16.
If one can measure the position and size of an object near
the robot using a laser scanner, the image area where the
object is located can be calculated. We detected possi-
ble search targets and extracted their image areas using
data from the VLP-16, and the CNN was used to iden-
tify search targets in the extracted image areas. The de-
tailed procedure for recognition of the search targets is
described below.

3.1. Object Detection Based on Point Cloud
First, the three-dimensional point cloud data obtained

from the VLP-16 are segmented, dividing the point cloud
into those corresponding to each object. The segmenta-
tion method that we used was the same as that in Kikuchi
et al. [11], which used a vicinity search based on the VLP-
16 data structure, and was faster than segmentation using
Kd-tree. Because the VLP-16 captures three-dimensional
point cloud data of the shape of surrounding objects by
rotating 16 vertically aligned lasers to the horizontal di-
rection, the scanning data obtained in a single scan of the
VLP-16 lasers can be processed as panorama distance im-
ages, containing elevation and azimuth angles. The three-
dimensional distance from a target point to each of eight
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pixels next to it is measured and, if the distance is shorter
than a threshold value, the pixel is labelled as the one be-
longing to the same object as the target point.

Next, the obtained segments are tracked. The tracking
starts from the centroid of each segment. Calculating the
distance from the centroid of the latest segment of an ob-
ject and that of the second latest segment, we identify the
pair of segments that have the shortest inter-distance as
the same object to track. Because the movement speed
of the centroid of a segment can be calculated once it is
successfully tracked, the centroid can be forecasted in the
next scanning. Therefore, in the judgment in the second
or subsequent tracking, the centroid forecasted from the
past segment data is used for stable tracking of a moving
object.

Next, the size of a rectangular parallelepiped that con-
tains a segment is calculated. If the size is close to that
of a person sitting on a chair and if the rectangular par-
allelepiped has a sufficiently small velocity, the rectan-
gular area that contains the rectangular parallelepiped is
extracted from the camera image. The extraction method
will be explained in detail in the next section. Rectangular
parallelepipeds, which enclosed segments with depth and
width of 0.2 ∼ 0.8 m and height of 1.0 ∼ 2.0 m, and that
moved at the speed of 0.5 ms−1 or lower, were extracted.
This size was chosen in order to be sufficiently large, be-
cause the upper and lower bodies of a person sitting on a
chair were sometimes classified in different segments.

3.2. Extraction of Object from Image
To extract an object area from a camera image, the

apexes of the rectangular parallelepiped that contains the
segment of the object were mapped onto the image.

When the focal length of the camera is known and the
camera follows a pinhole camera model, the correspon-
dence between a three-dimensional coordinate point and
a pixel on the image can be geometrically determined.
The focal length was calculated with a USB cam package,
which identifies internal parameters of the camera using
the method of Zhang et al. [12]. The three-dimensional
coordinates of the apexes of the rectangular parallelepiped
were converted to the camera image coordinates and a
rectangle with the mapped apexes was extracted.

However, it is difficult to accurately measure the rela-
tive positions of the camera and 3D LiDAR, and the pro-
jection of a three dimensional point onto a camera image
contains an error. The image error was the largest, as large
as 7 pixels, near the edge of the image because of the lack
of distortion correction of the lens. We therefore extracted
a little larger area to contain the whole body of the object.
The margin of the extracted image is set to be proportional
to the area of the extracted image, in such a way that the
ratio of the foreground area to the background area does
not significantly change, even with the extracted image of
a distant object.

Figure 4 shows an example of the segmented point
clouds, original image, and extracted image areas. The
extraction was conducted every 0.1 s, which was the same
period as the sensor’s image acquisition period.

Fig. 4. Point cloud segmentation result (upper), original im-
age (middle), and extracted possible search targets (lower).
The point clouds are colored differently depending on the
segments.

3.3. Identification by CNN
The learning of the CNN model was performed offline

in advance by using DIGITS. The learning of the network
was performed with random initial parameters. For the
learning, a GPU GeForce GTX TITAN X (RAM 12 GB)
was used, and the solver was set to a stochastic gradient
descent, the initial learning ratio to 0.01, and the number
of epochs to 30. The learning took about 1.5 hours.

The train set consisted of images of the trial run and
final run of the last Tsukuba Challenge and the trial run
of this year’s Tsukuba Challenge. The train set contained
images having various weather conditions, and the bright-
ness and details are shown in Table 1. The amount of pre-
cipitation in Table 1 was based on the 10-minute-period
weather data from the Meteorological Agency and the
sunlight was based on the hourly record from the agency.
In Table 1, 10% of the images were used as test data and
90% as train set.

Recognition on each image extracted by the CNN, for
which the learning had been made, was conducted dur-
ing navigation of the robot to find whether it contained a
search target. Because the robot did not have a GPU, only
the Intel Core i7-6700 CPU was used for the recognition.

3.4. Changes from FY2015
The following four changes were made during the pe-

riod from FY2015 to FY2016:

• Change of network.

• Increase of train set.
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Table 1. Description of train set.

Date # of target images # of non-target images Weather Precipitation [mm] Sunlight [MJm−2]
2015/11/03 5445 113,462 Fine – 1.90
2015/11/08 317 53,478 Rain 2.0 0.09
2016/09/22 308 160 Rain 0.5 0.33
2016/11/05 301 281 Fine – 2.07

Total 6371 167,381 – – –

• Decrease of the number of recognition operations of
a single object.

• Change in number of judgment operations of search
targets.

The first change was made to the CNN model.
We used AlexNet in FY2015 and GoogLeNet [10] in
FY2016. This was because GoogLeNet achieved a higher
score than AlexNet in the image recognition competition
ILSVRC and because GoogLeNet was one of the standard
models of DIGITS, and hence, could be easily used.

In previous studies, the authors confirmed that the iden-
tification accuracy could be increased even when smaller
images are used for GoogLeNet [13]. Thus, to reduce
the computational cost, we changed the input images of
GoogLeNet from 224× 224 pixels to 64× 64 pixels. Af-
ter a learning process of AlexNet and GoogLeNet with
the same learning data and hyper parameters, AlexNet
and GoogLeNet were used to perform image recogni-
tion for about 170,000 images acquired on November 6,
2016 to measure the percentage of correct answers, which
was found to be slightly higher for GoogLeNet than for
AlexNet. However, the difference was within 0.0001%
and the change of network did not significantly affect the
performance.

The second change was to increase the amount of the
train set. In FY2015, only images extracted from a trial
run on November 3, 2015 were used for the train set. In
FY2016, images extracted from a trial run in Tsukuba
Challenge FY2016 were added. The images extracted
on November 3 and 8, 2015 were manually labeled. The
CNN learning was performed with these images and then
the images extracted from the FY2016 data that the CNN
identified as search targets were manually labelled and
added to the train set. The number of images in the train
set finally increased from 118,907 to 173,752, and con-
sisted of 6,371 images of search targets and 167,381 other
images. Fig. 5 shows examples of the train images of the
search targets and others. This increased the percentage
of correct answers by 0.1 points, and thus, the percentage
of correct answers reached 99.6%.

The third change was the enhancement of the identifi-
cation speed. As in Ref. [13], the mean identification time
per image with a size of 64×64 pixels is about 0.06 s with
the Intel Core i7-6700 CPU. This indicates that, if only
one object is in the image, real time processing is fea-
sible because the image extraction cycle period is 0.1 s.
However, a single camera image often contains multiple

Fig. 5. Example of train set of CNN. Upper images show
the search targets and the lower show others.

objects. We took the following measure to avoid a situa-
tion where there are too many images to be processed by
the CNN identification processing. The number of times
that each object was recognized was measured from the
tracking data of the point cloud segments, and the proba-
bility of performing recognition processing was changed
in accordance with that number, thus avoiding too many
recognition operations of a single object. In other words,
if the number of times that an object was recognized was
n, then the recognition operation was performed with the
probability of 1/(n+1).

The last change was made in the post-processing of the
CNN identification. As a countermeasure against erro-
neous recognition of the CNN, the system was set to ap-
proach an object only when it was judged as search target
three or more times at the same position.

4. Result of Final Run

4.1. Result of Final Run and Discussion

In the final run, the robot had to drop out at a posi-
tion 530 m from the start after detecting one search target.
Fig. 6 shows the travelling path of the final run. The path
after the robot entered in the search area where search
targets were located was significantly deviated from the
waypoints in Fig. 3, because the robot wrongly recog-
nized ordinary people 15 times and approached them, thus
deviating from the waypoints. Fig. 7 shows an example of
one of the objects incorrectly detected. Most of the erro-
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Start

Prohibited
Area

Stopped
Point

Fig. 6. Travelling path in the final run. The map of the Central Park is omitted as the robot stopped
travelling in the search area.

Fig. 7. Search targets and example of wrong recognition
(false positive).

neously detected objects in the images had the same col-
ors as the search targets, namely, orange, green, or blue.
Finally, the robot erroneously recognized ordinary people
in the no-entry area as search targets, entered the area, and
hence, dropped out.

The following three were considered as causes for the
drop-out.

• Identification accuracy of the CNN.

• Threshold setting for search target recognition.

• Erroneous designation of no-entry area.

The first cause was related to the fact that the last year’s
network was designated in the final run by mistake. Last
year’s network uses the smaller train set of FY2015, and
is less accurate than the above-designed network. This

caused many objects to be wrongly recognized as search
targets. The travelling log data indicated that six incorrect
recognitions would have been made, even if the network
model of FY2016 had been used. The second cause was
closely related to the first one. To reduce the influence of
the CNN incorrect recognition, the robot was set in such
a way that it approaches an object only when the object
is recognized as search target three times at the same po-
sition. However, this threshold was implemented a day
before the final run, and hence, there was not sufficient
examination of the threshold. We set the threshold to be
relatively low because the rules of Tsukuba Challenge did
not charge a penalty to the erroneous recognition of ob-
jects, and this setting of the threshold caused many incor-
rect recognitions. In particular, the robot wrongly recog-
nized an ordinary person in the no-entry area as a search
target, which was one of the direct causes of the dropout.

The third cause was a human error. Part of the search
area was designated as a no-entry area, for safety reasons.
Pylons were placed at constant intervals around the no-
entry area. Because there was no signs or other indica-
tions on the boundary that could be detected by a sensor,
the no-entry area was manually set as additional informa-
tion on the map created by the slam gmapping. However,
we did not check the actual area in the final run and did
not notice that our designated no-entry area was smaller
than the actual one, which caused entry of the robot into
the no-entry area.

4.2. Goal Attainment Level
The attainment level of a robot system that recognizes

an object while travelling along a path, which was the
primary objective of the present study, is here discussed
based on the results of the final run and the cause of the
dropout.

The mean time from the moment the laser sensor ex-
tracted an image to when the CNN finished the identifica-
tion process was about 0.15 s. The search target recogni-
tion took as short as about 0.45 s, since the final judgment
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was made when the CNN identified three times the same
object as search object. This was fast enough for the mo-
bile robot travelling along the path of Tsukuba Challenge
at the speed of 4 km/h or lower. Only the Intel Core i7-
6700 processor was used for object recognition, indicat-
ing that a robot without GPU could recognize objects at
sufficiently high speed.

However, the recognition accuracy is not enough and
needs to be improved, because the robot dropped out ow-
ing to incorrect recognition.

5. Improvement of Recognition Accuracy

We made 15 incorrect recognitions in the final run of
Tsukuba Challenge, and found from the log data that 6
incorrect recognitions would have been made even if the
CNN model of FY2016 had been used. Incorrect recog-
nition causes apparently meaningless actions of the robot,
which disturbs people in the surrounding area. Therefore,
it is important to enhance the recognition accuracy in the
future.

For the improvement of recognition accuracy, we re-
vised the algorithm of the post-processing of the accu-
mulated judgment results of the CNN, and enhanced the
recognition accuracy of the CNN itself.

5.1. Judgment Algorithm Improvement Using
Tracking Information

It is extremely difficult to eliminate all incorrect recog-
nitions of the CNN identifier. So far, we had set the rule
that, when an object was identified as a search object three
times during the tracking of the point cloud data objects,
the identification was assumed a correct one in the fi-
nal judgment. However, this rule largely depends on the
number of extracted images of the object and is therefore
affected by the image extraction period, robot travelling
path, or travelling speed. To circumvent the problem, we
set a new rule, according to which the final judgment was
made not from the number of times that an object was
recognized as a search target but from the ratio of this
number to the total number of times that an object was
recognized. For example, when the ratio of the number
of times that an object is recognized as a search target is
0.5 or higher, the object is judged as a search target. This
results in a judgment that does not depend on the number
of extracted images of the object.

The condition on the existence of a threshold to prevent
incorrect recognition with the present method is expressed
by the following inequality.

min
i∈T

(
ti
ni

)
> max

i∈T̄

(
ti
ni

)
. . . . . . . . . (1)

T , T̄ are a set of search targets and a set of the others, re-
spectively. ti is the number of times that the object i was
identified as search target, and ni is the number of times
that the object i was recognized. The left hand side of the
inequality shows the “minimum value of the percentage

Fig. 8. Ratio that CNN classified objects as search targets.
Gray shows data of the search targets and white shows data
of other objects. An appropriate threshold cannot be desig-
nated because some objects other than the search targets are
repeatedly recognized as search targets.

Table 2. Recognition result of all extracted images.

True False
Target (Positive) 491 705

Not Target (Negative) 175,169 277

of the number of times that a search target was identified
as search target,” and the right hand side shows the “max-
imum value of the percentage of the number of times that
an object other than the search targets was identified as
search target.”

It is checked whether an appropriate threshold could be
found with the CNN for which learning was conducted
this fiscal year. Images were extracted and saved every
0.1 s during the single-speed playback of the travelling
log data of November 6, 2016, and the object recognition
operations were conducted for all of these extracted im-
ages. Since we had only the travelling data of the final
run of Tsukuba Challenge, collected until the first search
target was found, we used log data of the robot travelling
in the search area, collected after the final run. A total of
872 images of the search targets and 175,660 other images
were extracted. However, the images where the search
targets appeared with a small size in the background were
eliminated from those to be analyzed.

Figure 8 shows the percentage of the number of times
that an object was recognized by the CNN as a search
target at least once. From the figure, one can see that
there was an object, other than the search targets, that was
wrongly recognized in a repetitive way, which did not sat-
isfy the inequality (1), indicating the absence of a thresh-
old to find all search targets with no wrong recognition.
Therefore, the identification accuracy of the CNN needs
to be enhanced.

For reference, we show the detailed results of the iden-
tification in Table 2. “Positive” indicates the search tar-
gets and “Negative” the others.
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Fig. 9. Image recognized as target (left) and that wrongly
recognized as object other than target (right). The left im-
age’s resolution is low as it is extracted from a distant area
image.

5.2. Diversification of Train Set

In Section 5.1, we found that the network did not have a
sufficiently high identification capability. Because the im-
ages that looked with almost the same characteristics were
sometimes judged differently (Fig. 9), the learning of ver-
satile characteristics failed and over-learning occurred.
An ordinary countermeasure against over-learning is to
extend data by parallel translation or color change of im-
ages [4, 14]. We improved the train set in the following
three points.

The first improvement is to increase the number of
kinds of the train set. The train set of the previous
identifiers contain data mostly from FY2015 and a small
amount of data from FY2016, and hence, contains a small
number of images of the objects on a path newly added
as search area this fiscal year. Therefore, we decided to
include not only the incorrectly recognized images but
also all the extracted images into the train set. In ad-
dition, because the images extracted every 0.1 s looked
similar to each other, learning about local characteristics
was repeatedly performed, causing over-learning. Of the
images, 10% were randomly chosen from the extracted
images to create image data with virtual intervals of 1 s.
Table 3 shows the details of the train set.

Next, the following data augmentation was made. Each
one of the image edges was randomly trimmed by several
pixels and the brightness was changed by gamma correc-
tion. It was expected that the trimming could make the
images robust against parallel translation and the change
in brightness could reduce the influence of sunlight.

Lastly, in the previous train set, the ratio of the images
of objects other than the search targets to the images of
the search targets was large, and hence, learning of the
characteristics of the search targets and that of the objects
other than the search targets may not be performed under
similar conditions. Therefore, we applied data augmen-
tation to the images of the search targets to make their
number in the train set equal to that of the objects other
than the search targets.

5.3. Identification Performance After Improvement
To investigate the effects of the above three improve-

ments, learning was conducted under different conditions
of the following four patterns, and the resulting perfor-
mance was analyzed.

1. No data augmentation.

2. Data augmentation only for search targets.

3. Augmentation of all data.

4. Data augmentation for search targets after augmen-
tation of all data.

In the patterns 2 and 4, the data augmentation is per-
formed to make the number of the images of the search
targets equal to that of the objects other than the search
targets.

Table 4 shows details of the data and result of the ob-
ject identification. Images extracted on November 6, 2016
not contained in the train set were used for the evalua-
tion. With the increased data set, one can see that every
pattern significantly improved the precision and recall of
the CNN. In the data augmentation of patterns 2 to 4, the
recognition accuracy increased, indicating a positive ef-
fect of the data augmentation.

Figure 10 shows the percentage of the number of times
that the CNN recognized an object as search target under
the condition of the pattern 4. One can see from Fig. 10
that the improved CNN tended to repeatedly recognize the
search targets as search target and recognize the objects
other than the search targets incorrectly in some cases, but
in most cases correctly. Therefore, if a threshold is set to
a value between 0.1 and 0.6, the objects that the CNN er-
roneously recognized as search targets could be correctly
recognized after repeated judgments. In the same way, an
appropriate threshold can be set for patterns 1 to 4, and
then the search targets could be identified without incor-
rect recognition in the playback of the log data of the final
run.

5.4. Discussion
The accuracy of the CNN was improved by 0.23% in

pattern 1, although the number of training images de-
creased compared with that before the improvement of the
CNN. In particular, the precision was improved consider-
ably, by 34.8%, and the false positives, cause for incor-
rect recognition, significantly decreased. It was therefore
found that not the number but the diversity of the images
in the train set could affect the performance of the CNN.

If we compare pattern 1 with pattern 2, or pattern 3
with pattern 4, the increase in the number of the training
images increased the recall but decreased the precision.
This could occur because data augmentation only for the
search targets made the characteristics of the search tar-
gets more general for learning, and thus, made it easier to
identify various objects as search targets. From the above,
one can conclude that, to some extent, recall and precision
are in a trade-off relation, and data augmentation does not
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Table 3. Description of improved train set.

Date
Number of Number of

Weather Precipitation [mm] Sunlight [MJm−2]target images non-target images
2015/09/26 71 9070 Fine – 1.42
2015/11/03 544 1134 Fine – 1.90
2015/11/06 58 14237 Fine – 1.92
2015/11/07 5 3091 Fine – 0.84
2015/11/08 31 5348 Rain 2.0 0.09
2016/09/22 111 5195 Rain 0.5 0.33
2016/10/17 4 8379 Rain 0.0 0.24
2016/11/04 13 19271 Fine – 2.07
2016/11/05 30 28 Fine – 2.07

Total 867 88385 – – –

Table 4. Classification result after improvements.

Classifier
Data augmentation Data augmentation Number of

Accuracy precision Recall(not target) (target) training images
2016 model – – 173752 99.61 58.3 78.3

Pattern 1 – – 89,252 99.84 93.1 74.1
Pattern 2 – 102 times 176,819 99.85 86.5 82.1
Pattern 3 5 times 5 times 446,260 99.85 98.4 71.7
Pattern 4 5 times 510 times 884,095 99.86 98.0 74.0

Fig. 10. Ratio that CNN classified objects as search targets
(after improvement). Gray shows data of the search targets
and white shows data of other objects. The difference be-
tween the search targets and objects other than the search
targets is large and a threshold in between 0.1 and 0.6 can be
designated.

always contribute to the improvement in recognition ac-
curacy; thus, an appropriate pattern of the train set data
augmentation has to be chosen.

However, the increase rate in recall was smaller than
the increase rate in precision for every pattern. This could
happen because the given data comprised only eight days

Fig. 11. Examples of objects that CNN wrongly recognized
as search targets even after the improvement.

and the number of the search targets was only 32. The
recall could be increased by using more search target im-
ages.

Lastly, samples of the images that the CNN erroneously
recognized as search targets in pattern 4, which had the
highest recognition accuracy, are shown in Fig. 11. Ob-
jects in 12 out of 13 false positive images were passers-
by, and of those 7 out of the 12 wore clothes of similar
color to those the search targets wore (two central im-
ages in Fig. 11). Those in the remaining 5 of the 12 wore
clothes of apparently different color from those the search
targets wore, but were incorrectly recognized (right side
in Fig. 11).

Incorrect recognition of objects that had no similarity
to the search targets indicates vulnerability of the CNN
against unknown data. The disadvantage of the CNN that
it tends to erroneously recognize images not included in
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the train set, and geometrical patterns for high confidence
has been reported [15–17]. Because, if extracted on a dif-
ferent day or time, the images of passers-by are not the
same as those in the train set, they are likely to be incor-
rectly recognized.

A CNN extracts and learns characteristics from the
train set. However, in the search target recognition of this
experiment, the classes other than the search targets are
diverse and there are no characteristics typical to objects,
other than those of the search targets. Therefore, a CNN
learning of the characteristics is practically impossible. In
this case, the learning operation is easily made with the
training images but not with unknown data. Therefore,
the CNN, even that improved in this study, may still in-
correctly recognize objects in a completely different situ-
ation, for example if a different path is used in Tsukuba
Challenge of next year.

It was already confirmed that, if objects categorized as
false positives were added in the train set, the occurrence
of incorrect recognition of the objects became less fre-
quent, increasing the overall accuracy of the recognition.
Therefore, the reliability of the system could be enhanced
by adding more training images to the train set. How-
ever, it is obvious that a larger train set results in a higher
achievement, and hence, we cannot conclude that more
robust characteristics can now be captured. The accuracy
improved by adding false positive images may reach a
plateau if the addition is repeated. A detailed investiga-
tion should be done in the future.

6. Conclusion

This study was intended at achieving high-speed,
highly accurate object recognition. In this paper, we ex-
plained the autonomous navigation of the developed robot
and CNN-based object recognition method, and presented
the obtained results at Tsukuba Challenge 2016, in which
we participated for verification of the applicability of the
developed system.

Real-time recognition was realized without using a
GPU, by making the size of the input images smaller and
limiting the recognition frequency of the same object.

The followings conclusions were drawn from the
recognition improvement:

• A higher degree of accuracy is achieved by improv-
ing the train set quality than by improving the CNN
model.

• A higher degree of accuracy is achieved by providing
a large number of similar images to the train set than
by providing it with different images.

During the period from FY2015 to FY2016, we
changed the CNN model and increased the train set,
but the changes were not sufficient to remove incor-
rect recognition. The analysis of the result of the final
run showed that the CNN recognition accuracy increased
from 99.61% to 99.86% by increasing the types of im-
ages in the train set and by data augmentation. It was also

confirmed that all the search targets could be successfully
identified, without incorrect recognition, by using, in ad-
dition, the tracking information. The recognition capabil-
ity of the CNN largely depends on the quality of the train
set, and objects not included in train set may be wrongly
recognized. In the future, we will investigate the versa-
tility of our developed identifier at next year’s Tsukuba
Challenge.
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