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This paper presents an autonomous navigation sys-
tem. Our system is based on an accurate 3D map,
which includes “geometric information” (e.g., curb,
wall, street tree) and “semantic information” (e.g.,
sidewalk, roadway, crosswalk) extracted by environ-
mental recognition. By using the semantic map, we
can obtain the suitable area to keep away from un-
desired places. Furthermore, by comparing the map
with real-time 3D geometric information from LI-
DAR, we obtain the robot position. To show the effec-
tiveness of our system, we conduct a 3D semantic map
construction experiment and driving test. The exper-
iment results show that the proposed system enables
accurate and highly reproducible localization and sta-
ble autonomous mobility.

Keywords: autonomous navigation robot, 3D semantic
map, localization

1. Introduction

In recent years, as robots have attracted focus, the de-
velopment of robots that can substitute for human work,
such as delivery and security, has been active. Situations
such as crossing and running along narrow roads are ex-
pected in the city environments where these robots will
work. For a robot to safely run in such an environment,
an autonomous navigation system that integrates elements
such as environmental recognition, localization, and path
plan, is essential.

In general, conventional navigation systems create a
geometric map with obstacle information, such as build-
ings and trees, within the driving environment from the
geometric information obtained by LIDAR to generate a
stable localization. With such a navigation system, Bur-
gard et al. succeeded in long-distance autonomous travel
of 3.2 km, within an urban environment where people
live [1]. However, that is not sufficient for coexistence
with humans. A navigation system that follows the rules
of human society using visual information such as cross
walks and signs is desired.

With the recent rise of deep learning, there has been

remarkable development in recognition technology based
on visual information; it is now possible to know not only
what object is in an image [2], but also what kind of envi-
ronment it is in [3].

We suggest an autonomous navigation system that uses
a 3D map, which is created in advance. The map is created
by “geometric information” from the point cloud, which is
acquired from LIDAR, and “semantic information” from
deep learning based on visual information.

This system implements a travel ability suitable for an
environment by localization, comparing the geometric in-
formation obtained from real-time data and from the pre-
liminary map. At the same time, it generates a path plan
from the runnable field at its point.

2. System Architecture

2.1. Autonomous Mobile Robot INFANT
In this section, we will describe the structure of the In-

tegrated Foundations for Advanced Navigation Technol-
ogy (Fig. 1) (INFANT), which we are developing. IN-
FANT has differential two-wheel drive and a locker bo-
gie structure, with a size of 0.60 m (W) × 0.85 m (D) ×
1.45 m (H). We use USB to connect the PC to control the
motors.

The sensors equipped are LIDAR (HDL-32e), a stereo
camera (ZED), an AMU (Silicon Sensing Systems AMU-
1802BR), and a wheel encoder. We use two laptop
computers (Intel Core i7-3630 QM 2.40 GHz, 15.6 GB
of RAM) to process the sensors and calculate the au-
tonomous navigation.

2.2. Autonomous Navigation System
The schematic diagram of the autonomous navigation

system is shown in Fig. 2. In this system, the 3D map
with geometric and semantic information is constructed
from sensor information acquired before hand. With this,
the robot not only avoids obstacles but also follows the
human rules such as crossing the road. The “geometric
information” here shows obstacles that are physically un-
able to travel, and “semantic information” shows the in-
formation needed to follow the human rules. By com-
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Fig. 1. INFANT.

Fig. 2. System architecture.

bining a 3D map that includes such information and the
information acquired by the sensors in real-time, it esti-
mates its position and calculates its path plans to make a
stable travel that fits the environment.

3. 3 Dimensional Map Construction

In this section, we will describe the construction of a
3D map, which includes the geometric and semantic in-
formation. For the construction of the geometric map, we
used our own 3D geometric map construction method [4].
In this method, we construct a map based on graph theory.
For the construction of the graph, we used Iterative Clos-
est Point (ICP) [5], and for the optimization of this graph
we used GraphSLAM [6, 7]. In addition, we constructed a
highly precise 3D geometric map using pedestrian detec-
tion [8], which used the LIDAR point cloud; we removed
any point clouds that were detected as a pedestrian.

In our system, by attaching semantic information based
on environment recognition, as described later, a 3D map

Fig. 3. LIDAR points and gauss sphere with depth information.

that includes geometric and semantic information is con-
structed.

4. Localization

This section describes the localization of this system.
Generally, error accumulates in localization with gyro
sensors and odometry via the slips of a gap and the wheel
of the azimuth. Therefore, in this system, we estimated
the azimuth and pose in the map coordinated by the Depth
Gauss Sphere (D-Gauss Sphere) matching and Normal
Distribution Transform (NDT) matching to minimize ac-
cumulation error. We generated stable localization by in-
tegrating the estimated results using the Extended Kalman
Filter (EKF) [9].

4.1. Depth-Gauss Sphere Matching
The D-Gauss Sphere, which is provided by the Gaus-

sian representation on the point cloud with normal infor-
mation, can treat one face (e.g., wall surface) as a set
of one point. Therefore, we could reduce the number
of point clouds being processed and generate an align-
ment of a point cloud without impairing real-time perfor-
mance. In addition, comparing the D-Gauss Sphere gen-
erated from real-time LIDAR data and the model of the
D-Gauss Sphere placed on the 3D map, which is men-
tioned above, will create an azimuth and pose estimate in
the map coordinates. Fig. 3 shows the 3D point cloud
from the LIDAR and the D-Gauss Sphere. In the fol-
lowing sections, we will describe the principal component
extraction [10], azimuth estimation, and pose estimation
with the D-Gauss Sphere.

4.1.1. Extraction of Principal Component
Shimizu et al. [10] carried out clustering in the D-Gauss

Sphere and determined it as principal components. How-
ever, this method has problems that are susceptible to the
number of point clouds: for the plane that is near the sen-
sor, it is easy to take a principal component, and for the
far-off plane, it is difficult to take a principal component.
It is desirable to constitute principal components by a far-
off plane because the plane that is near the sensor easily
detects noises by dynamic objects such as pedestrians and
easily influences the result of the localization. Therefore,
in this paper, we will calculate the cost based on Eq. (1)
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for each point cloud constituting a D-Gauss Sphere.

cost = �d� = max{n ∈ Z|n ≤ d} . . . . . . (1)

where d expresses the distance to each point. Z and n are
natural namers. In Eq. (1), the higher the cost, the farther
apart the plane and sensor is. Afterward, we reprinted
each point to obtain the value of cost and performed a
clustering based on Euclidian distance. When the number
of the point cloud constituting each cluster exceeds an es-
tablished value, we assume it as one principal component.

4.1.2. Azimuth Estimation

In this section, we will describe the azimuth estimation.
First, we apply the extraction process described in the pre-
vious section to the D-Gauss Sphere of a model located on
a 3D map and a query that we generated in real-time.

Next, we will compare the principal components of the
model and the query and then calculate the relative az-
imuths for them one by one. Fig. 4 is a conceptual dia-
gram. The resemblance degree calculation uses the fol-
lowing Eq. (2).

si j =
�mi ·�q j

|�mi||�q j| . . . . . . . . . . . . . (2)

when �mi, �q j express the vectors from the sensor origin of
the model and the query to the principal components, re-
spectively, and si j expresses the degree of similarity. We
calculate the degree of similarity for the principal compo-
nent vector in the model and the query according to this
expression and perform a correspondence charge account
for the pair with the highest similarity. After all of the
associations, we calculate the angle between the two vec-
tors, the model and the query. We then obtain the relative
angle for the model by taking their average. In addition,
we do not associate them when the similarity is less than
the established value.

4.1.3. Position Estimation

The position estimation is calculated by the principal
components for the D-Gauss Sphere of the model and a
query similar to that described in the previous section.
We obtain the robot’s position with the principal compo-
nents. In other words, in the relative position calculation
of the model and the query, we can only use certain prin-
cipal components in positioning to the normal direction
of the principal components. Therefore, the position esti-
mation of the D-Gauss Sphere is executed to the axis of
the normal direction for the principal components from
the sensor origin. We used the ICP algorithm to align the
principal components of the model and the query on the
axis and calculate each axis’ position movement vector of
the model and the query �εx, �εy. When the number of prin-
cipal components on the axis is less than three points, we
will calculate the position movement vector using Nearest
Neighbor Search (NNS). Fig. 4 shows the conception di-
agram of the position estimation. The position movement

vector when using NNS is calculated by Eq. (3).

�εx =
Σ�εxi

Nx
,�εy =

Σ�εy j

Ny
. . . . . . . . . . (3)

where, Nx, Ny is the number of principal components in
each axis. �εxi and �εy j represent the displacement vector
associated using NNS in each axis. Finally, we can obtain
the relative movement vector�ε (�εx,�εy) for the placement
position of the model by adding each vector.

4.2. Normal Distributions Transform Matching
The D-Gauss Sphere matching estimates the robot’s

pose by the normal vector of the location (e.g., wall sur-
face). Thus, it does not work efficiently in an environment
with no planes. Therefore, we used NDT [11] matching
for localization using the prior 3D geometric map and
real-time data. As shown in Fig. 5, NDT is a kind of
scan matching method that uses voxel grids. The voxel
grid describes the point cloud as normal distributions and
associates two different point clouds using normal distri-
butions.

To lower the computational cost when driving, we re-
stricted the points for matching to fences, walls, curbs,
etc., and limited the scanning range to 20 m2. At this
time, with the real-time data, we cut out the point cloud to
a range of approximately 20 m2 from a 3D map in com-
pliance with the position and orientation estimated by the
EKF.

4.3. Extended Kalman Filter
EKF [9] is used to integrate the localization results and

the gyro odometry. In EKF, the state s is represented by
the probability distribution, and the estimation result is
obtained by repeating the two-step process of prediction
and observation update. This system predicts the position
and the orientation.

4.3.1. Prediction Step
In the prediction step, as following Eq. (4), the state s̄t

is predicted based on the nonlinear function g(ut ,st−1).

s̄t = g(ut ,st−1)+ εt . . . . . . . . . . . (4)

where, ut is the motion model representing the linear
speed by the wheel encoder and the swing speed by the
AMU at time (t − 1, t], st−1 is the state at time t − 1, and
εt is the observation noise of the sensor.

4.3.2. Measurement Updating Step
In the observation updating step, the estimated value

using the D-Gauss Sphere or the NDT is compared with
the estimated value in the prediction step, and state st is
updated based on Eq. (5).

st = s̄t +Kt(zt − s̄t) . . . . . . . . . . . (5)

where s̄t is the predicted state, Kt is the Kalman gain,
and zt is the observation model estimated by the D-Gauss
Sphere and NDT.
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Fig. 4. Estimating relative position by matching principal
components.

5. Environment Recognition

This section describes the environmental recognition
method. For a robot to safely travel autonomously, ob-
stacles that cannot be passed through (e.g., walls, curbs)
must be avoided. However, that is not sufficient in human
living environments. A robot must be able to act accord-
ing to human rules such as lawns and pedestrian cross-
walks. Therefore, the former is recognized with LIDAR,
which has high ranging accuracy, and the latter is recog-
nized from the images acquired by the stereo camera. By
performing a 3D restoration from these sources, the po-
sition of the object is recognizable. In addition, to delete
unnecessary dynamic objects (e.g., pedestrians, animals)
while constructing 3D maps, recognition is performed us-
ing geometric information acquired from LIDAR.

5.1. Obstacle Recognition
For obstacles with a large height change (e.g., walls,

fences), we use the conventional method of obstacle de-
tection named Min-Max [12]. However, in outdoor con-
ditions, it is difficult to recognize obstacles with a small
height change, such as curbs, owing to noises generated
by the vehicle’s body vibration from the waves of the
road surface. We then estimate the curvature σ based on
the variance-covariance matrix obtained by applying prin-
cipal component analysis [13] to a neighborhood point
cloud around a certain point, thereby detects a small
height change.

Fig. 5. Example of normal distribution transform.

Fig. 6. Environment recognition. (a) RGB image, (b) clas-
sification result, (c) depth image, (d) point cloud with label.

5.2. Environmental Recognition
When using only information obtained from LIDAR, it

is difficult to divide it into a travelable area and an impas-
sible area by areas with different material such as lawns
and pedestrian crosswalks. Therefore, we recognized a
driving environment by the obtained visual information
from the stereo camera to place semantic information in
the point cloud. We applied the method proposed by
Badrinarayanan et al. [14] for image classifications. This
method is an improved version of the Convolutional Neu-
ral Network (CNN), which can perform multi-class clas-
sification on a pixel basis. To classify the input images by
the softmax function, we execute up-samplings to the fea-
ture map obtained by performing convolution and pooling
on the input images until the size becomes the same as the
input image. For our system, as shown in Fig. 6, we clas-
sified 11 classes for example, “Road,” “Road Marking,”
and “Tree” related to the outdoor driving environment.

For the learning of CNN, the CamVid dataset [15] pro-
vided by Cambridge University was used.

Furthermore, to grasp the position of each pixel in 3D
space, an image segmented based on the depth image was
three-dimensionally restored. The conversion of points
(u,v) on the image to points (X ,Y,Z) on the space is per-
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Fig. 7. Associating semantic information with 3D point
cloud from LIDAR (left: raw data right: 3D point cloud with
semantic information).

formed based on Eq. (6).
⎡
⎣

u
v
1

⎤
⎦ =

⎡
⎣

f 0 cx
0 f cy
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⎤
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⎡
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R21 R22 R23 Ty
R31 R32 R33 Tz

⎤
⎦

⎡
⎢⎣

X
Y
Z
1

⎤
⎥⎦ (6)

where f is the focal length, cx and cy are the optical cen-
ters, Ri j is the rotation matrix, and Ti is the pose vector.
An application example of this method is shown in Fig. 6.

However, it is difficult for the stereo camera to re-
main focused on grasping the position with high stability.
Therefore, we will associate the point cloud obtained by
the above method with the point cloud acquired by LI-
DAR.

First, in the point cloud of the stereo camera, a point
corresponding to an arbitrary point of LIDAR is searched
by the k-Nearest Neighbor Method. At that time, as
Eq. (7), we calculate the score sum of each color by
weight, according to the Euclidean distance from the point
of LIDAR. We then give the highest score color to each
point of LIDAR.

score =
1√

(Sx −Lx)2 +(Sy −Ly)2 +(Sz −Lz)2
(7)

where S represents the 3D point of the stereo camera, and
L represents the 3D point of LIDAR. Fig. 7 shows the
result of giving semantic information of the stereo camera
to the point cloud of LIDAR at 1 scan.

5.3. Local Obstacle Map Construction
We used a two-dimensional grid map as an obstacle

map that showed the travelable area to be used for path
plans. Integrating the 3D map and real-time sensor infor-
mation identifies the travelable area and compresses the
space into two dimensions. Regarding the real-time data,
the travelable area is estimated by the obstacle detection
mentioned above. On the other hand, for the 3D map, we
set the travelable area based on obstacle detections and
the “road” according to semantic information. From this,
the map supplements the dead angle of the sensor. In ad-
dition, the robot detects small steps and curbstones, which
are difficult to detect as obstacles if we use only the real-
time sensor data. Furthermore, by using the semantic in-
formation contained in the 3D map, it is also possible to
act according to human rules such as crossing at a cross-
walk like a human being.

Fig. 8. Local path planning.

6. Path Planning

In this section, we will describe global path planning
and local path planning, which are the guidelines by
which the robot will travel. A waypoint is arranged as
a global path in advance along the travel route on the 3D
map. By generating a local path according to the route
based on the obstacle map mentioned above, efficient and
stable operation is enabled.

In the local path planning, the trajectory generation is
performed using the methods from [16], [17], and [18],
proposed by Feruguson, Haward, et al., which consider
the motion model of the robot. At each point on the orbit,
route planning is performed such that the robot follows
the state shown in Eq. (8). The motion model parame-
ters considered in the process of calculating the trajectory
are the maximum acceleration, maximum curvature of the
trackable trajectory, and maximum curvature change.

xt = [ xt yt θt κt vt ] . . . . . . . . . . . (8)

where xt represents the state of the robot at the time, and
xt , yt , and θt are the position and posture of the robot, re-
spectively. κt is the orbital curvature, and vt is the forward
speed.

By minimizing the costs calculated in Eqs. (9), (10),
and (11), the optimal trajectory is selected from the tra-
jectory candidates, which are generated considering the
motion model.

P =
√

δ x2 +δ y2 . . . . . . . . . . . . (9)

H = |Δθ | . . . . . . . . . . . . . . . (10)

Cost = aP+bH . . . . . . . . . . . . (11)

where P and H are the variation between the current pose
and the terminal attitude. a and b are arbitrary constants.
The outline is shown in Fig. 8.
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Fig. 9. Driving test routes.

7. Experimental Result

To show the usefulness of our system, we conducted
experiments at Meiji University’s Ikuta Campus, in-
cluding 3D map construction, localization, environment
recognition, and path planning. In addition, the au-
tonomous travel experiment, as shown in Fig. 9, which
was performed on a course 1282 m long, including both
indoor and outdoor environments. The outdoor operating
speed was set to 0.7 m/s; indoors, as a consideration to
pedestrians, we set the speed to 0.4 m/s.

7.1. 3D Semantic Map Construction
Figure 10 shows the result of the 3D map construction

for the entire Ikuta Campus from the proposed method.
We can see that this is constructed from the semantic in-
formation, such as roads (purple), buildings (red), road
markers (orange), and lawns (green), which are imparted
for the point cloud in Fig. 6. In addition, Fig. 10 shows
a diagram comparing the proposed method (A) and the
actual environment (B). From this, we can see that the se-
mantic information is correctly assigned.

7.2. Localization
In this section, we evaluated the difference in the lo-

calization with pose and position. The comparison results
are the results from both the NDT and D-Gauss Shpere
matching.

The experiment environment is shown in Fig. 11; an
indoor environment (A) with walls in various directions,
an outdoor environment (B) surrounded by trees and flow-
ers, and another outdoor environment (C) made of parallel
buildings. In terms of azimuth estimation, we evaluated
the difference in direction estimation when turning 360◦
at a speed of 0.2 rad/s. In terms of position estimation,
we evaluated the difference between the traveled distance
and the actual distance when traveling 10 m forward at
a speed of 0.5 m/s. In each environment, we performed
5 trials and calculated each mean error and standard devi-
ation. The results of the azimuth estimation and position
estimation experiment are shown in Tables 1 and 2. From
these results, we know that in all environments (A), (B),
and (C), by using the proposed method, the azimuth es-
timation had approximately 1◦ of error, and the position
estimation had approximately 0.2 m of error.

This is because in each environment, the weight of the
odometry in EKF, D-Gauss, and NDT is appropriately cal-
culated. This occurs when a low trustable estimation was
made because a valid feature could not be obtained.

7.3. Environmental Recognition and Path Planning
Figure 12 shows an example of obstacle recognition.

The red points mark the obstacles detected by the Min-
Max method, which uses the objects’ height information,
and the blue points mark the obstacles detected by cur-
vature methods, which uses the results from the principal
component analysis to a neighborhood point cloud around
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Fig. 10. Details of 3D semantic map.

Fig. 11. Experiment environment of localization.

Table 1. Azimuth estimate experimental result.
Unit : [deg]

Experiment
Proposed Method D-Gauss NDTEnvironment

A 0.559 (SD=0.622) 1.083 (SD=5.423) 1.812 (SD=7.816)

B 1.369 (SD=0.036) 2.238 (SD=0.754) 3.018 (SD=1.265)

C 0.487 (SD=0.346) 0.499 (SD=0.388) 11.31 (SD=12.24)

Table 2. Position estimate experimental result.
Unit : [deg]

Experiment
Proposed Method D-Gauss NDTEnvironment

A 0.230 (SD=0.087) 0.292 (SD=0.091) 0.171 (SD=0.062)

B 0.197 (SD=0.062) 0.427 (SD=0.219) 0.151 (SD=0.128)

C 0.156 (SD=0.115) 0.337 (SD=0.048) 0.153 (SD=0.067)

a certain point. The green points mark the detected obsta-
cles with prior semantic information. Fig. 13 shows an
example of the path plan avoiding obstacles. We found
that an optimal path was generated even if there were ob-
stacles on a route that was set in advance. This path fol-
lows the prior path but generates another path around the
obstacle so that the robot will avoid it.

7.4. Driving Test
In this experiment, we ran the course shown in Fig. 9

five times.
Figure 14 shows the robot’s motion path for five laps.

In addition, Table 3 shows the distance of the start and
end points in all five running experiments, and Fig. 15
shows the robot’s state at it’s end point. From Fig. 14, we
could verify that the robot could run stably on the same
course on every lap. As shown in Table 3, even if the
robot traveled autonomously over 1 km, with our system,
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Fig. 12. Example of the obstacle recognition. Fig. 13. An example of path planning to avoid obstacles.

Fig. 14. Trajectory by our navigation system.

Table 3. The distance between the start and the goal.

Unit : [deg]

1st 2nd 3rd 4th 5th Average
0.422 0.336 0.355 0.358 0.325 0.359

the robot could return to the starting point within an aver-
age of 0.359 m.

8. Conclusion and Future Work

In this paper, we proposed a navigation system using
a 3D map, which includes geometric information and se-

Fig. 15. An example of the robot goal position.
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mantic information, to enable stable autonomous driving
for a robot under urban environments. The experimental
results show that our system is capable of repeatable lo-
calization and autonomous navigation by utilizing infor-
mation such as lawns and crosswalks, which are difficult
to grasp with geometric information.

However, because our system relies on a 3D map,
which must be created beforehand, it is difficult to au-
tonomously travel in places where the robot first visits.
Therefore, localization and the environment recognition
based on real-time sensor data will be a future problem.
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