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In this study, we present a novel framework to address
the problem of teaching manipulation tasks performed
by a single human to a set of multiple small robots in
a short period. First, we focused on classifying the
manipulation style used during a human-performed
task. An allocator process is proposed to determine
the type and number of robots to be taught based
on the capabilities of available robots. Then, accord-
ing to the detected task requirements, robot behav-
iors are generated to create robot programs by split-
ting human demonstration data. Small robots were
used to evaluate our approach in four defined tasks
that were taught by a single human. Experiments
demonstrated the efficiency of the method to classify
and judge whether the division of a task is necessary
or not. Moreover, robot programs were generated for
manipulating selected objects either individually or in
a cooperative manner.

Keywords: teaching multiple robots, human-robot inter-
action, cooperative manipulation

1. Introduction

1.1. Background

Over the past 20 years, many researchers have made
efforts to solve problems by making use of multiple
robots [1].

There is a wide variety of studied topics in this field
demonstrating the benefits of using a multi-robot system.
Examples of these studies include the cooperation be-
tween robots to transport objects by pushing [2, 3], carry-
ing [4, 5], or even using tools such as ropes [6] or carts [7],
to move objects. Reducing the time to complete tasks by
increasing the area of coverage and the range of opera-
tion (e.g., motion planning [8, 9]) and overcoming the gap
between the capabilities of humans and robots are some
of the benefits evaluated and discussed in studies where a
multi-robot system has been used.
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To execute any task, robots need to get information on
how to perform the task [10, 11], which may be achieved
through computer algorithms. In cases where robots are
required to perform a fixed number of tasks repeatedly,
programming the tasks in advance is the approach to fol-
low, as in the case of the studies mentioned previously.

Transferring information to robots through a human
example is an effective method, as human experience is
used. However, teaching robots is difficult, particularly
when multiple small robots are involved.

The following are some of the challenges faced by the
robotics community in multi-robot teaching:

e The traditional method of teaching multiple robots
one by one is time consuming.

o How to teach multiple robots quickly and effi-
ciently?

« One small robot may not be able to replicate a task
taught by a human.

o When to divide and how to decide the type and the
number of robots to be used to perform a task?

Teaching robots has been a sought-after research field
in recent years. An important approach in this field, which
forms the focus of this study, is one that uses humans to
perform the teaching, which is also called learning from
demonstration [12].

This approach began to be implemented with satisfac-
tory results in systems involving a single robot learner.
There are methods that allow full-body imitation for
robots [13, 14], teaching through gestures [15, 16], stud-
ies that focus on tasks to assist humans in homes or of-
fices [17, 18], etc.

It is indispensable to take advantage of multiple robots
in tasks that require cooperation and a combination of
abilities (e.g., [19]). Exploring approaches that allow
a single human to teach/transmit information quickly to
multiple small robots by example is a field in which it is
necessary to place more effort.

A multi-robot system using information obtained dur-
ing the demonstration of a task by a human was proposed
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in the study of Maeda, Ishido, Kikuchi, and Arai [20].
In their study, a view-based system received information
during the transportation of an object by a human from
point A to point B. The data was then analyzed, and in the
case when the range of operation of one robot could not
complete the transportation, a second robot with the same
characteristics was responsible for continuing the trans-
portation of the object to point B. However, they did not
consider the simultaneous manipulation of the object or
parameters such as force limitations or decisions on the
type of robot to use.

Chernova and Veloso [21] proposed a study in which
a single human taught individual rules to multiple robots
through a GUI, at the same time. Each robot performed
the specific assignment based on policies transmitted by
a human; their teaching process consisted of several task
demonstrations, including variations thereof. As a result,
robots could properly decide which action to take during
the execution of a common task. However, the robots used
were selected in advance, and teaching tasks involving
the simultaneous physical manipulation of objects from
robots was not considered.

In this study, we focused on fixed tasks rather than tasks
with variations. The reason is that we focused on how to
categorize tasks taught by a human, such that it would be
possible to determine the type and the number of robots
required to be taught to perform manipulation tasks.

To our knowledge, previous studies have not yet pre-
sented a system that considers human example data to
teach multiple small robots how to perform manipulation
tasks. In particular, this study proposes an approach that
considers both the content of the task and the capabilities
of the available robots to decide how to divide the task
into multiple robots.

1.2. Objective of this Study

The research question to address in this study is how
a single human can quickly teach single tasks to multiple
robots. The present study was conducted with the objec-
tive to allow a single human teach multiple robots how to
perform fixed manipulation tasks.

The challenges addressed in this study pertain to
whether a task taught by a human can be categorized in
order to decide on the type and the number of robots
to be used, and how we can transfer human actions into
robotic actions while coordinating the cooperation of mul-
tiple robots.

To provide a solution to the above challenges, the fol-
lowing approaches were adopted:

« Allocator: Based on the task characteristics and ca-
pabilities of the available robots, we first classified
the task according to the manipulation style used.
Then, we used heuristic rules to decide on the num-
ber and the type of robots to be taught.

« Mapping: This involves teaching robots how to per-
form human actions. Robot programs will be made
up of a sequence of basic robot behaviors controlled
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by events, while considering the timing for the co-
operation between robots. The basic behaviors are
obtained through splitting the procedure of human
task demonstration.

The design of the allocator with the task classification
and that of the mapping with the splitting procedures are
the main contributions of this study. The proposed system
was verified with tasks involving the handling of objects
that can be handled by a human, such as briefcases, scales,
and folding chairs.

2. Problem Statement

A human can perform complex movements to execute
manipulation tasks; owing to its physical limitations, one
small robot may not be able to perform the same task. The
use of multiple robots may help overcome the existing gap
between the physical limitations of a single human and
those of small robots.

By teaching, humans should be able to use their expe-
rience to transmit information on how to perform tasks to
multiple robots. The arising problem is that it is very diffi-
cult to transmit human actions to multiple robots [22], par-
ticularly if we wish to quickly transmit our experience to
robots that have lower capabilities compared to humans.

During the teaching process, a manipulation task may
be divided among multiple robots, which should then co-
operate with each other efficiently to execute a task per-
formed by a single human.

Addressing this problem is important because the time
and effort to transmit task information to multiple robots
would be reduced; this would allow humans to use the
same set of robots for a diversity of tasks.

In this study, we propose an approach in which a hu-
man can teach simultaneous manipulation tasks to mul-
tiple robots by using a novel approach involving human-
robot interaction (HRI [23]).

« Our goal is to quickly generate programs for multiple
robots, using as input data the motions and the force
generated through a teaching tool used by a human
during the task demonstration.

In the proposed study, we considered the following as-
sumptions:

o There are no obstacles between the objects and the
robots.

o The position of the robots with reference to the ob-
ject is known.

« Robots have lower capabilities compared to humans,
and they have at least one manipulation tool.

o The objects used have no separable parts.
o The capabilities of the robots to be used are intro-

duced to the system in advance.
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Table 1. Task classification: manipulation styles considered.

Numberiol One One One Two Two Two
Hands
Manipulation | Lift/ | Flipand | Flipand | Lift/ | Flipand | Flip and
Style Pull non-slip slip Pull non-slip slip

To generate programs for multiple small robots to per-
form a particular manipulation task, we propose to first
classify the type of task that is intended to be taught; based
on this, the type and the number of robots to be taught can
be determined.

Classification of tasks: We started from the assumption
that the tasks performed by humans involve the manip-
ulation of objects using the hands. In this study, we in-
vestigated the manipulation style as a key factor for clas-
sifying the task. In particular, we focused on manipula-
tions involving lifting, pulling, and flipping objects be-
cause many object-manipulation tasks include these basic
actions; most of the tools used by the robots to manipulate
objects can perform these actions as well.

In addition to considering whether the task was per-
formed by a human using one or two hands, we also con-
sidered the possibility of the object slipping owing to floor
conditions during a flipping manipulation. The style of
manipulation will be categorized into one of the six types
listed in Table 1.

Type and number of robots: Considering the manipula-
tion style detected, information related to the physical re-
lationship between the object and the environment was
obtained. Thus, the minimum requirements to determine
the type of robots could be determined. Among the avail-
able robots, a single robot may not be able to replicate cer-
tain physical requirements, such as force or motion trajec-
tory. In such cases, the division of the task and its distri-
bution to multiple robots are essential for the completion
of the manipulation task.

3. Proposed Method

3.1. System Overview

The proposed teaching method is composed of two
main steps: the allocation process and the transferring
of human actions to robotic actions. Fig. 1 shows an
overview of the system.

In the allocation step, we aim to classify the type of
task to be taught, and based on that, to decide the type
and number of robots to be used.

First, we extracted information during the demonstra-
tion of the task by a human. We have chosen to design and
use a tool from which we can obtain data directly from the
hands.

Therefore, we opted for electronic gloves, also known
as data gloves [24].

Using the data collected, the teaching process is guided
through a set of graphical user interfaces (GUIs). The
GUISs allow establishing a human-robot interaction, which
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Fig. 1. Overview of the system: steps in the process of teaching.

enabled the system to obtain additional information from
a human to classify the task. Finally, by using the col-
lected data and a set of heuristic rules, the type and num-
ber of robots to be used was decided.

In next step, the actions performed by a human and as-
signed to selected robots will be mapped to commands for
robots. The process of performing human actions through
robot behaviors is carried out using a GUI; once this pro-
cess is completed, the robot program is generated.

3.2. Teaching Process
3.2.1. Allocation

The data we used for our analysis are based on the ap-
plied force as well as on the orientation and motion of
the hands during the manipulation of objects. The sub-
processes developed are described below.

Data Extraction During the Human Example

The developed prototype data gloves were integrated
with force sensors [a], an inertial measurement unit (IMU)
sensor [b], a Bluetooth sensor [c], and a microcon-
troller [d]. The sensor data were handled by the micro-
controller and were then sent to the system via Bluetooth.
Along with the sensor data, a video of the human perform-
ing the task was recorded as the teaching data.

The stored data contained several force points, global
and local acceleration data of hand motions, as well as the
orientation of the hands with respect to the world. The
algorithm used for the data extraction is shown in Fig. 2.

In the first step of the algorithm, a human wears the
data gloves and the sensors to start generating informa-
tion, which is then processed and sent to the framework.

Using the data from the IMU sensor, the orientation and
motion trajectory of the hands are calculated [25].

To start or stop the extraction of the teaching data,
namely the video and sensor data, as well as to visually
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Start data extraction
during human example

Initialize glove data transmission
and video recording
f

¥

New frame arrived?

l, Yes

Store the current sensor data
coming from the glove

Human example
finished?

Yes

Save and Stop glove data
transmission and video recording

End data extraction
during human example

Fig. 2. Data extraction during a human example: flowchart
of the teaching-data storage process.

Right Hand Right Hand ]
orientation current sensor data Video

v v

Left Hand

Left Hand current
sensor data

Left Hand
orientation

Fig. 3. GUI to support the human during data extraction:
displays the orientation of the hands, and the data generated
by each sensor.

support the human, we included a GUI (based on [e]),
which is shown in Fig. 3.

In step two, the human example demonstration as well
as the storage of the received sensor data occur. To match
the stored sensor data with the video, the recording fre-
quency and the data generated by the gloves must be syn-
chronized. Each time the system has a new frame, the
latest sensor data corresponding to that time are stored
as part of the teaching data, together with the timestamp

422

Start Primitive
Motion Analysis
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Add a State
(motion with triggers)

I Generate the sequence of motion ‘

End Primitive
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Fig. 4. Flowchart of the sub-process primitive motion analysis.

of the video frame. This process is looped until the task
demonstration is completed.

Primitive Motion Analysis

To start using the data generated and stored throughout
the human example demonstration, we developed a GUI
that guides the human to identify and define the sequence
of primitive motions for each hand. The logic used is pre-
sented in the flowchart in Fig. 4.

The number of motions generated during the demon-
stration of the human example may be large, and many of
these motions may not be essential to perform the task;
this assumption is of significance to small robots, which
do not have the same capabilities as humans.

Our intention is to allow humans to identify the impor-
tant motions generated by the hands within the teaching
data.

In the first step, the user information is fed as input, and
the teaching data is loaded.

In the second step, the user begins teaching by playing
back the video included in the teaching data, while at the
same time, the matched sensor data are displayed to the
user next to the video as illustrated in Fig. 3.

The moment the user visually identifies an action
he/she deems important for the execution of the task; the
user can pause the video and assign a name to store that
particular primitive motion as a state. The information
to be stored into a state is the data pertaining to sensor
values: the applied force, a range of values pertaining to
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Processed data to

Row data To investigate . . Results
help investigate
What type of force P/NP The task
Human example Robots? E> grasp. orient.  V/H C> requires these
(data extracted) How many motion P/NP robots:
0
Robots? num. hands = 1/2 HitHi
*P = possible

*NP = not possible

*V = vertical

*H = horizontal
Fig. 5. Logic to decide the type and number of robots: ex-
tracted data is processed and used to decide on the robots to
be taught.

hand orientation, and the global and local acceleration of
the selected hand.

For a state to be valid, it is assumed that it contains in-
formation indicating that a force has been applied, mean-
ing that the hand was either manipulating the object or
making contact with the environment. A state may con-
tain information on both hands or it can be assigned sep-
arately for each hand.

The user continues adding states (primitive motions
with their triggers) until the human example included in
the teaching data is completely analyzed.

Finally, in step three, a state list, which contains a se-
quence of the right-hand and the left-hand primitive mo-
tions detected during the human example demonstration,
is generated as the output of the sub-process.

Decision on the Type and Number of Robots

The last sub-process in the allocator step helps decide
the type and number of robots to be used. To accomplish
this, a logic (Fig. 5) that uses the data extracted during a
human example demonstration is described in this section.

A process involving task categorization and the use of
heuristic rules is carried out. In our approach, we consid-
ered that the task fitted into one of the six styles of object
manipulation, as described in Section 2.1.

To classify the manipulation style, additional informa-
tion is obtained through user interaction with the system
using the GUI. No more than two questions are asked to
the human, and the answers are combined with the states
detected in the primitive motion analysis; thus, the manip-
ulation style is categorized.

The logic to decide the type and the number of robots
is shown in Fig. 6. In step one, the state list previously
created is loaded and displayed to the user via the GUI.

In step two, the manipulation style is determined. First,
information is collected via the following questions to the
user:

1) Did you flip the object?

2) Did the object slip?
Thus, the system will know if the object was either
lifted/pulled (M. Style A), flipped and slipped (M. Style
B), or flipped and not slipped (M. Style C).

We designed our algorithm with such a logic that in or-
der to answer the questions, the human has to involve the

states detected in the previous step, which contains the
sensor data. Thus, based on the manipulation style de-
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Start Deciding the type
and number of robots

Load and display the state
sequence.

Did you flip
the object?

| M.StyleA | [M.StyleB] [ M.StyleC|

Linking states involved during the
manipulation

l

Rules process ‘ }

¥
Save final sequence assigned to
each robot

End Deciding the type
and number of robots

Fig. 6. Flowchart of process to decide the type and the num-
ber of robots.

tected and the information regarding the number of hands
used as extracted from the states, the task is categorized.

In step three, a set of heuristic rules is applied by the
system to decide on the robots to be used. The data ob-
tained in the previous steps and the information regarding
the hardware capabilities of the available robots is used
by the framework to apply the rules, as shown in Fig. 7.

In our algorithm, the logic of the rules changes slightly
depending on whether the task was categorized within the
group where one hand was used for manipulating the ob-
ject or within the group where two hands were used.

From the set of available robots, the system holds the
information regarding the characteristics of the hardware
mounted on the robots, particularly of the tools that robots
use to manipulate objects. Such information includes the
gripper type, the lift dimensions, the maximum grasping
force, the maximum weight to lift, the degrees of freedom,
and the mobility of the robot base.

From the sensor data stored in the teaching data, the
system holds the information regarding the applied force,
orientation of the hands, and motion trajectory of the
hands.

From the categorization process, the system knows the
manipulation style; in the case of the flip-and-slip manip-
ulation, support will be required. During the categoriza-
tion process, a relationship between the states involved
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Start Rules process

Load M. Style and robot
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/ At less one robot \_
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detected during task
execution?
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Both hands have same
motion direction?

Another robot
with a gripper grasping
__ orientation available? _

Yes 1
‘ Add robot and divide task ‘

No

Motion(s) direction

Force(s) necessary
possible?
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robot of the
same type?

| Robot(s) required (...) (...) (n) ‘

Generate final sequence states
assigned to each robot

End Rules process

Fig. 7. Flowchart of the process to apply the heuristic rules.
Sensor data information, robot hardware information and
manipulation style are considered.

directly in the manipulation of the object was also estab-
lished; thus, it was possible for the system to analyze the
sensor data from a particular timestamp according to the
rule requirements. Thus, the system was able to decide
whether the task could be executed or not, and addition-
ally, to decide if it could be performed by one robot or if
it would be necessary to divide the task among multiple
robots.

In the rules process, the system first loads the informa-
tion corresponding to the detected manipulation style and
the hardware capabilities of the robots. Then, the system
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starts applying the rules.

In the case when one hand is detected, the system
checks if among the available robots there is one with the
gripper type detected (rule one). Then, it checks if the
candidate robot can replicate the motion direction (rule
five). The system verifies if the force can be applied by
the robot (rule six). If not, the system tries adding an-
other robot with the same characteristics (rule seven). If
the system could not find the ideal robots after the search,
then the system announces to the user that the task cannot
be executed.

In the case when two hands are detected, the rules are
similar to the previous case, with the difference being that
the system seeks to determine whether a robot can repli-
cate what was performed with both hands (rule three). If
it is not possible, the system tries to divide the task by
finding another robot (rule four). If this is not possible,
the task is declared not executable.

Finally, the system checks if the assistance of a robot is
necessary owing to the slipping of the object reported by
the human during the classification process (rule eight).
The type and the number of robots are determined, and
the states are assigned to each robot. The sequence of the
states with a proper timing (based on the timestamp linked
to the states) is generated, and the rules process ends.

The final output from the allocator step is a file contain-
ing the sequence of the states assigned to each robot.

3.2.2. Transfer of Human Actions into Robotic
Actions

To teach the robots how to perform primitive motions,
using the output from previous step, the system knows
the robots and the states (primitive motions) they need to
perform by splitting the teaching data into several units
that correspond to the states. To finally create the program
for the robots, it is necessary to teach the robots how to
perform the current states by employing behaviors they
can execute.

Mapping Commands to the Robot

In this step, primitive motions detected during the hu-
man example demonstration are mapped into robotics
commands. Therefore, a GUI was created, and the ap-
plied logic is shown in Fig. 8.

In step one, the user selects a robot among those ap-
pointed for the task; consequently, the GUI displays the
states assigned to that robot, along with the basic behav-
iors that the robot can perform (e.g., close/open gripper,
move forward, etc.).

In step two, the mapping process is carried out. A
state is selected, and the user begins adding behaviors
with their respective events, which are used to indicate
when to stop the behavior. The events are linked to the
sensors mounted on the robot; this enables monitoring
aspects such as distances, contact points, force measure-
ments, etc. Added behaviors are expected to be executed
in the order they were introduced; thus, priorities among
the behaviors that constitute a state are included.
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to teach?
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Store interpretation for the
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End teaching
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End teaching
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(state machine representation)

End transfer human actions
into robotics actions

Fig. 8. Flowchart for the transfer of human actions into
a robotics action process: mapping human actions into
robotics actions.

The user keeps repeating this procedure for all the
states assigned to each of the robots.

Finally, in step three, the robot programs are created.
The generated programs are represented by using state
machines.

Robot Programs

The generated programs for robots already contain the
timing in which the robotic actions have to be imple-
mented to perform the taught task. For enabling robots
to use the programs in a proper manner, the final step in
our method is the implementation of a reliable communi-
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master node

robot 3

robot 2

Environment /
Object

Fig. 9. Centralized system: reporting of the perception from
environment and execution of robotic behaviors.

cation protocol.

To maintain synchronization among robots, as well as a
constant communication regarding the status while basic
behaviors are being executed, a centralized system was
created: a master node is used to manage the information
coming from each robot assigned to the task via a wireless
network.

The master node is responsible for authorizing the start
of the execution for each of the states that make up the
robot programs. To execute each of the behaviors that
compose a state, the robot is constantly monitoring and
reporting the status of its hardware via the response of its
sensors. More specifically, checking values are assigned
to the events.

Thus, we can describe each robot to be a primary node
that is interconnected through the master node to all other
primary nodes. To each of these primary nodes, several
basic nodes are connected. Basic nodes represent the
robot sensors and motor controllers, which consistently
report their hardware changes and the current condition
according to the contact with either the environment or
the object, as shown in Fig. 9.

4. Experiments

In this section, we present the experiments and results
to demonstrate the validity and applicability of the pro-
posed framework. Three small robots were used for the
evaluation of our approach in four defined tasks that were
demonstrated by a single human.

We evaluated the time to generate the robot programs,
the performance of the steps that integrate the teaching
process, and the playback performance when the robots
used the generated programs. At the end of the section,
the discussion of the results is presented, followed by the
conclusions of this study.
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Table 2. Robots used: gripper characteristics.
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flat position
up to
PRarEIITI 2 2kg kg Horizontal
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4.1. Experimental Setup
4.1.1. Hardware Implementation

We used the Pioneer 3 mobile robot [f]; three small
robots were available, and their hardware capabilities
were used as input to our framework in advance. Each
robot was fitted with a manipulation tool; we used two
types of tools, which allowed the robots to have differ-
ent capabilities. To monitor and control the status of the
hardware in each robot, various sensors, such as force sen-
sors [a] and IMU sensors [b], were utilized on the robots.
Fig. 10 shows the robots alongside their characteristics.

To differentiate the robots in this section, we will re-
fer to them hereafter as the lift robot (there are two robots
carrying this tool, Fig. 10(a)) and the parallel robot (there
is one robot carrying this tool, Fig. 10(b)). Their charac-
teristics are presented in Table 2.

During the experiment, the tasks performed by a human
were recorded with a webcam at a frequency of 30 fps,
while sensor data from the prototype data glove were sent
through the Bluetooth device every 35 ms. Fig. 11 shows
the prototype data gloves created and used for the experi-
ments.

The data gloves were designed such that the movement
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Force sensors

Microcontroller
Bluetooth
IMU sensor

Fig. 11. Prototype data glove, sensor integration: 7 force
sensors to detect contact with environment and measure
grasping force, an IMU sensor to track hand orientation and
motion direction, a microcontroller to process data, a Blue-
tooth to send the data.

of the fingers was restricted to force the human to under-
stand the limitations of small robots slightly better and
thus generate data that are more appropriate for teaching
robots. The measurement error of the glove is approx-
imately 30% at the most. Because the glove is utilized
only to detect the hand movement to the left, the right, up,
and down, this error is affordable.

4.1.2. Evaluated Tasks

Four fixed tasks were performed by a single human; we
selected three real-world objects to manipulate, namely a
folding chair, a plastic briefcase, and a weighing scale.

The characteristics of the objects and the goal for each
task are shown in Fig. 12.

4.1.3. Experimental Details

In the experiments, we placed the object on the floor
for tasks one, two, and four, whereas for task three, the
object was placed on a table. This setting applies to both
the human example and the small robots during the task
execution. Object detection or path planning is not con-
sidered in our study, therefore, robots were placed in an
initial position.

The tasks were selected with the intention of showing
the different alternatives in which our approach behaves
when generating programs for robots.

4.2. Experimental Results

For each of the tasks, a single human performed the
demonstration, and the data generated through the sensors
were used to complete the process of teaching.

For each of the four tasks, the total time to complete
the teaching was recorded; the obtained results are shown
in Fig. 13. The time taken to complete the tasks by the
robots during the execution process is shown in Fig. 14.

The time required to generate robot programs was con-
tinuously recorded, except for the human example pro-
cess. The time required to complete the allocation pro-
cess, which involved the categorization of the task and the
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Fig. 12. Description of assessment task for each object. (a)
Task 1: flip the briefcase lying on the floor, (b) Task 2: flip
the scale lying on the floor, (c) Task 3: lift the scale lying on
a table, and (d) open the folding chair lying on the floor.

decision on the type and the number of robots, was mostly
allotted to the primitive motion analysis (states detection
from human example). On the other hand, the data gen-
eration through the human example and the application of
rules to make the decisions makes up for less of the total
time.

The time required teaching how to perform human ac-
tions as robotic actions is related to the complexity of the
task; in other words, it is related to the number of states to
teach, rather than to the number of robots to be used.

The teaching process results are shown below; we se-
lected task four (the most complex task evaluated) to de-
scribe the results systematically in detail, whereas the re-
sults from the other three tasks are discussed in the next
section.

First, the data extraction for the task was conducted
during the human example (sensor and video data). While
using the data gloves, the user manipulated a folding chair
that was lying on the floor. To open it, the user grabbed
the chair, flipped it, and pulled it.

Using the extracted data, the primitive motion analy-
sis was performed. By using the stored video, the states
containing sensor data information for both hands were
detected and generated; the names for the sensor data in-
formation are listed in Table 3.

By using the generated states list, the type and number
of robots were decided. First, the classification of the task

Journal of Robotics and Mechatronics Vol.29 No.2, 2017

Teaching Tasks to Multiple Small Robots

I = Transfer human actions into robotics actions
2 =Decision on the type and number of robots
3 = Primitive motion analysis
4 = Data extraction during human example
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Fig. 13. Total time required during task execution by robots.
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Fig. 14. IMU sensor data related to the orientation of hands
during the execution of the tasks. This information is used to
detect the type of gripper the robot should be mounted with.

was obtained. The user responses to the questions asked
by the system using the GUI allowed us to detect that the
style of manipulation for task four includes the flip and
the non-slip with pull, using two hands.

Then, the system was ready to decide on the robots to
be taught by applying the heuristic rules. The information
used by the system was that generated by the sensors dur-
ing the human example demonstration; more specifically,
it is the sensor information that was linked to the states
(motion primitives) during the classification task. Thus,
the system focused on reviewing data at precise moments
in the stored data time sequence.

For this evaluation, the force required to complete each
of the defined tasks, together with the limits of the two
types of robots, is shown in Fig. 15. Moreover, to detect
the type of gripper required for the manipulation of the
object, the data related to the orientation of the hands were
determined from the IMU sensor data shown in Fig. 16.

Finally, the acceleration data from the IMU sensor were
used along with orientation data to determine if the robots
could replicate the motion trajectory; the data used are
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Table 3. Primitive motion analysis using the data extracted
during the human example demonstration: states generated
for both hands.
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Fig. 15. Generated force data used during the human ex-
ample for each of the four tasks along with the limits of the
robots we are using.

shown in Fig. 17.

Below, the judging process of how the type and the
number of robots were decided for task number four is
explained, and it is followed by the robot program cre-
ated through the process of mapping human actions into
robotic actions.
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Fig. 16. IMU sensor data related to the orientation of hands
during the execution of the tasks. This information is used to
detect the type of gripper the robot should be mounted with.

For task four, the decision was made as follows: the
task involved the use of two hands; the states that were
indicated during the task classification process and those
used while the object was manipulated were conducted
during the timeframe of 5 ~ 20 s for the right hand and
13 ~ 20 s for the left hand. Our framework determined
that the grasping orientation was in the vertical direction
for both hands (Figs. 16(d) and (e)). Moreover, the re-
quired force was no greater than 5 kg for the right hand
and close to 7 kg for the left hand.

By checking the generated data regarding the orienta-
tion and the acceleration, it was found that the gripper
type remains vertical for both hands; however, the motion
of the hands when the “pull out” state occurred (15 ~ 17 s)
was in opposite directions (Figs. 17(d) and (e)). There-
fore, it was decided to divide the task and use two lift-type
robots.

In the state sequence generated for task four, one lift
robot was assigned to execute the states generated by the
right hand, and the other lift robot was assigned to execute
the states generated by the left hand. The sequence to
maintain synchronization was also generated.

As the last step of the evaluation, the mapping process
for robotic commands using basic robotic behaviors for
each state, which was stored in the sequence generated
during the allocator process, was performed. Thus, the
program for the robots to complete the task was generated
and presented as a state machine, as shown in Fig. 18(a).

During the mapping process, the robots were taught
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Fig. 17. IMU sensor data related to the acceleration of hands during the execution of the tasks. This information is used to detect
if the motion trajectory is achievable by candidate robots.
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Fig. 18. Robot programs for Task 4: (a) State machine with the states, the state behaviors assigned to each robot, as well as the
timing to maintain cooperation. (b) Robots performing task four by using the generated program. (b-1), (b-2), (b-3) and (b-4)
correspond to time of 47, 166, 223 and 260 s.
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Fig. 19. Generated trajectories of two robots that conduct
Task 4: (a) horizontal direction (b) vertical direction.

basic behaviors along with their events, which indicate
to robots until when to continue with a particular behav-
ior. For the experiments, we included two events: contact
(the robot gripper made contact even with the environ-
ment or with the object) and value (the gripper reaches
certain value).

The event can be used for a single robotic behavior or
a set of them; both cases were used in the experiments
presented in this section.

The last part of the evaluation was to perform the tasks
by using the generated programs; the selected robots per-
forming task four are shown in Fig. 18(b). The experi-
ments were conducted 10 times for each task. The posi-
tions of the two robots for a certain experiment are shown
in Fig. 19. Here, the positions are expressed in a cer-
tain coordinate, and the positions of the robots are defined
as those of specific points in the robots (representative
points). Fig. 19(a) is the graph occurring from the hor-
izontal direction and Fig. 19(b) is that occurring from the
vertical direction. From these results, we can observe that
the robots moved safely by using the generated program.
Here, the success ratio of task realization for Tasks 1, 2,
and 3 is 80%, and that for Task 4 is 40%. Most failures
are due to hardware problems, such as problems with the
stock of the gripper.

4.3. Discussion

This section discusses the results of the above-
described evaluation. Using the multiple-robot proposed
framework to teach the four described tasks, we were able
to evaluate the six manipulation styles considered in this
study, as listed in Table 4.

The total time spent since the human performed the
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Table 4. Manipulation styles considered within the evalu-

ated tasks.
Number of One One One Two Two Two
Hands
o Flip Flip Flip )
Man(lspullztlon Lift and and Lift and thh.and
ty non-slip |  slip non-slip p
Almost Involving
Evaluation | Task3 | Task1 | Task2 | S2M® | Task4 | 125K2
with and Task
Task 3 4
Table 5. Allocator process results: type and number of

robots decided.

Info ti
mormation |- pagk 1 Task 2 Task 3 Task 4
Accessed
hands used one hand one hand one hand two hands
type 0 i vertical vertical vertical vertical (both hands)
grasping
- no greater than
force required tgl:an no greater than | greater than | 5Kg-force (right hand)
5Kg-force 5Kg-force greater than
5Kg-force
5Kg-force (left hand)
motion . - o not possible
trajectory possible possible possible (divided into two robots)
supported yes
required 1o (object slipped) o2 1o
one lift robot two lift 5
decision one parallel bot: (o I s
one lift robot b s (each hand assigned to
results robot (force not
X one robot)
(support required) enough)

demonstration of each task until the robot programs were
generated is shown in Fig. 13. We can observe that by in-
cluding the human in the loop during the process of teach-
ing, the transmission of information to multiple robots
was performed in less than 570 s.

Different information was used to determine the num-
ber and type of robots to be used for each task, such
as questions to the human for identifying the type and
characteristics of the manipulation, sensor data linked to
states generated during the primitive motion analysis pro-
cess, and information regarding the hardware of the used
robots.

For each task, the above-mentioned information was
analyzed via heuristic rules, and thus, the type and the
number of robots were selected. From the information,
we sought to detect the grasping force, the orientation of
the hand when grasping the object (vertical or horizontal),
and the direction of motion while the object was being
manipulated.

Similar to task four, the details obtained after applying
the rules to judge and decide on the type and the num-
ber of robots to be used in each task are summarized in
Table 5.

The states sequence generated for task one did not re-
quire the cooperation of multiple robots. Thus, one lift
robot was chosen for the execution of one state at a time,
until it completed all the states assigned to the task.

The states sequence generated for task two required co-
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Fig. 20. Tasks executed by robots: (a) task one, flip a brief-
case, (b) task two, flip a weighing scale with support, (c) task
three, cooperating to lift a weighing scale.

operation between the two robots assigned; the main robot
(lift robot) had to rest at the beginning of the task until the
parallel robot came to provide support for prevent slip-
page of the object. After that, the lift robot continuing the
remaining states until it completed the task.

The state sequence for task three was generated such
that the robots had to cooperate in parallel; both robots
performed the same states at the same time and thus were
able to apply the required force.

In the case of task four, which was previously dis-
cussed, we can add that as the two assigned robots were
commanded to perform the action (state: pull out) simul-
taneously, it was considered by the system that an average
force had to be applied by each robot.

After the type and number of robots had been decided
upon, the sequence for the execution of the task was gen-
erated; this included the timing for cooperation, if more
than one robot was used. Similar to task four, for the
first three tasks, the robots were taught to perform the
states detected during the human example demonstration
through basic robotic behaviors. They were assigned to
each state, the events thereof, and the timing in programs
for each task was used by the robots to successfully exe-
cute the taught tasks, as shown in Fig. 20.

Based on the results, we can say that through adequate
classification of tasks and the combination of several ba-
sic behaviors controlled by events with the splitting of hu-
man demonstration data, the proposed framework allows
a human to easily teach tasks to multiple robots.

Here, the aim of the experiments was to verify the ef-
fectiveness of the proposed system, and we assumed the
process was built by skilled human operators who can ac-
complish programming without making mistakes. Con-
sideration of uncertainties or errors in the programming
process by human operators is one of the future issues to
be clarified.
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5. Conclusion and Future Work

We have proposed a novel teaching approach for mul-
tiple robots. The framework of the system allows a single
human to transmit information related to teaching robots
of lower capabilities how to perform object manipula-
tion tasks. Rough assumptions were considered in this
study; however, it was demonstrated in the experiments
that the proposed study successfully transferred informa-
tion to multiple robots with two main contributions in
comparison to existing methods.

The first contribution lies in the proposal to classify the
tasks and determine the number and the type of robots to
teach. The second contribution is that the method allows
a human to teach multiple robots by adequately splitting
the human demonstration data into several units.

The approach was evaluated by teaching four different
defined tasks by a single human to a set of small robots.
Based on the task result requirements, generation of robot
programs was carried out either individually or simulta-
neously, within an average time of 390 s.

Our future work will involve the use of learning algo-
rithms, which make use of taught tasks; thus, the system
becomes smarter to the point where it can suggest actions,
criteria to follow, behaviors to use, etc. Furthermore, we
plan to conduct experiments on more complicated tasks,
where force control or certain types of manipulation skills
are necessary.
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