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This paper addresses Acoustic Event Identification
(AEI) of acoustic signals observed with a microphone
array embedded in a quadrotor that is flying in a noisy
outdoor environment. In such an environment, noise
generated by rotors, wind, and other sound sources is
a big problem. To solve this, we propose the use of
a combination of two approaches that have recently
been introduced: Sound Source Separation (SSS) and
Sound Source Identification (SSI). SSS improves the
Signal-to-Noise Ratio (SNR) of the input sound, and
SSI is then performed on the SNR-improved sound.
Two SSS methods are investigated. One is a single
channel algorithm, Robust Principal Component Anal-
ysis (RPCA), and the other is Geometric High-order
Decorrelation-based Source Separation (GHDSS-AS),
known as a multichannel method. For SSI, we investi-
gate two types of deep neural networks namely Stacked
denoising Autoencoder (SdA) and Convolutional Neural
Network (CNN), which have been extensively studied
as highly-performant approaches in the fields of au-
tomatic speech recognition and visual object recogni-
tion. Preliminary experiments have showed the effec-
tiveness of the proposed approaches, a combination of
GHDSS-AS and CNN in particular. This combination
correctly identified over 80% of sounds in an 8-class
sound classification recorded by a hovering quadrotor.
In addition, the CNN identifier that was implemented
could be handled even with a low-end CPU by measur-
ing the prediction time.

Keywords: robot audition, sound source localization,
sound source separation, sound source identification, un-
manned aerial vehicle

1. Introduction

Outdoor scene analysis is an essential research topic in
robotics. In vision, a large number of outdoor scene anal-
ysis studies have been done, because high-performance,
robust sensors such as a camera LIght Detection And
Ranging (LIDAR), and the Global Positioning System
(GPS) have become available. The technologies for visual
scene analysis have had many applications, such as au-
tonomous cars [1]. In auditory processing, robot audition
has been studied for more than a decade. It focuses mainly
on an indoor environment for human-robot interaction,
and only a few studies have been conducted on Out-
door Computational Auditory Scene Analysis (OCASA).
In such a situation, OCASA with an Unmanned Aerial
Vehicle (UAV) has begun to receive much attention in the
past few years, since it assists the location of people in a
disastrous situation. OCASA is made up of two technolo-
gies, Acoustic Event Detection (AED) and Acoustic Event
Identification (AEI).

AED can extract “where” and “when” information, per-
forming sound source localization and sound activity de-
tection. Okutani et al. reported on AED using a Parrot
AR.Drone by installing an 8 ch microphone array that
consisted of a small and lightweight microphone and a
multichannel A/D converter [2]. They proposed MUl-
tiple SIgnal Classification based on incremental Gener-
alized EigenValue Decomposition (iGEVD-MUSIC) [3].
The iGEVD-MUSIC achieved noise-robust AED by in-
crementally whitening high-power noise generated by the
rotation of propellers and wind. Furukawa et al. extended
their method, in particular, the performance of noise cor-
relation matrix estimation using motion information ob-
tained from Inertial Measurement Unit (IMU) [4]. Ohata
et al. focused on the computational cost of their method,
achieving real-time processing by proposing MUltiple
SIgnal Classification based on incremental Generalized
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Singular Value Decomposition with Correlation Matrix
Scaling (iGSVD-MUSIC-CMS) [5].

Although iGSVD-MUSIC-CMS is able to detect a
sound source 10–20 m away from a UAV in real time, they
did not deal with the issue of ascertaining the type of the
sound source detected. To find people in a disastrous sit-
uation, the system has to distinguish speech sources from
the other sound sources detected, which can be solved by
AEI. Unlike AED, AEI has not been studied, including in
an outdoor environment. Since a sound signal captured
with a UAV-embedded microphone array is heavily con-
taminated with noise, we take two approaches for AEI:
Sound Source Separation (SSS) and Sound Source Identi-
fication (SSI). SSS extracts the target sound source from
the mixture of sound sources, which has a low Signal-
to-Noise Ratio (SNR). Although there are many algo-
rithms, for SSS, we investigate two methods. One is a
single channel algorithm called Robust Principal Compo-
nent Analysis (RPCA), and the other is Geometric High-
order Decorrelation-based Source Separation with Adap-
tive Stepsize control (GHDSS-AS) known as a multichan-
nel method. Since SSS improves the SNR of the input
sound, the performance of SSI is expected to improve. It
is inevitable that the separated sound contains distortions
to some extent because SSS is an ill-posed problem. This
means that we have to select an SSI method with high per-
formance. For SSI, we investigate two types of Deep Neu-
ral Networks (DNNs), namely Stacked denoising Autoen-
coder (SdA) and Convolutional Neural Network (CNN),
which have been extensively studied as highly-performing
approaches in the fields of automatic speech recognition
and visual object recognition, and recently also in acous-
tic event detection [6–9]. We construct a prototype sys-
tem for OCASA by integrating AEI by combining SSS
and SSI, and AED based on iGSVD-MUSIC-CMS. The
combinations of two SSS methods and two SSI methods
are evaluated using real acoustic signals recorded with a
UAV that has a 16 ch circular microphone array.

The rest of this paper is organized as follows: Section 2
introduces two techniques for AEI, namely SSS and SSI.
Section 3 illustrates AEI system architecture using SSS
and SSI. Section 4 evaluates the system, and the last sec-
tion presents our conclusions.

2. Acoustic Event Identification

The proposed AEI, which consists of SSS and SSI, will
now be explained.

For SSS, GHDSS-AS and RPCA are selected.
GHDSS-AS is selected as high-performance multichan-
nel noise robust sound source separation method [10]. On
the other hand, RPCA is selected as high-performance
blind noise robust sound source separation method [11].
For SSI, SdA and CNN which are well-known methods in
DNN are introduced. SdA is selected for training the feed-
forward neural network with a limited data set; CNN is se-
lected as a high-performance image classification method
by regarding a spectrogram of audio signal as an image

feature.

2.1. Geometric High-Order Decorrelation-Based
Source Separation with Adaptive Stepsize
Control (GHDSS-AS)

GHDSS-AS [10] is an SSS algorithm based on micro-
phone array processing. Thus, noise sources are not dif-
fused; instead, directional noise sources are effectively
suppressed. Two major approaches to sound source sep-
aration based on microphone array processing are beam-
forming and blind source separation. Beamforming uses
a transfer function between a sound source and a mi-
crophone array, and a large number of microphones are
necessary to obtain high performance. On the contrary,
blind source separation does not need a transfer function
for separation, and better performance can be achieved
with a smaller number of microphones. However, the
separated signals are difficult to track. That is, it is
difficult to know which separated signal should be con-
nected to which sound stream. This is called a permu-
tation problem. In GHDSS-AS, to solve this problem,
both blind separation and beamforming techniques are
used in a hybrid way, meaning that a separation matrix
is estimated using two cost functions of beamforming and
blind source separation. Furthermore, GHDSS-AS sup-
ports online processing by introducing a step-size param-
eter. The step-size parameter has a fixed value in normal
online SSS algorithms, but GHDSS-AS always controls
this parameter, optimizing it so that SSS can work prop-
erly, even in a dynamic environment. Therefore, GHDSS-
AS is high-performant and robust for both real and simu-
lated data. Actually, open source robot audition software
HARK (HRI-JP Audition for Robots with Kyoto Univer-
sity) [12] provides eleven SSS algorithms, and, in most
cases, GHDSS-AS has the best performance among them.

2.2. Robust Principle Component Analysis (RPCA)
RPCA was proposed to reduce the brittleness of prin-

cipal component analysis (PCA) in terms of grossly cor-
rupted observations [13]. RPCA can be applied to a single
channel noise suppression even when the observations are
highly noise-contaminated [14]. RPCA is defined as a so-
lution for a convex optimization problem as follows:

minimize ||L||∗ +λ ||S||1
subject to L+S = M . . . . . . . . . . (1)

where M ∈ ℜn1×n2 , L ∈ ℜn1×n2 and S ∈ ℜn1×n2 show ob-
servation, noise, and target signals, respectively. || · ||∗
and || · ||1 denote the nuclear norm (sum of singular val-
ues) and the L1-norm (sum of absolute values of matrix
entries), respectively. λ > 0 is a trade-off parameter be-
tween the rank of L and the sparsity of S.

RPCA assumes that S is sparse enough, and L should
have a low-rank. These assumptions can be maintained
in our application, AEI. For example, utterances such as
asking for help, and other acoustic events are sparse and
dynamic (high-rank) signals, while noise sources such as
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propellers and wind are continuous and stationary (low-
rank) signals.

2.3. Stacked Denoising Autoencoder (SdA)

Since it is difficult to collect a large number of labeled
training data with a UAV embedded microphone array,
we trained the DNN classifier with SdA, with which we
can train the classifier with unsupervised learning. The
training of SdA has two stages, that is, unsupervised and
supervised learning. The unsupervised learning stage is
called “pre-training,” and it adjusts the weights and biases
of a neural network. After pre-training, the supervised
learning stage is performed to adjust the parameters of the
whole network precisely. This adjustment is called “fine-
tuning.” In particular, pre-training plays an essential role,
training DNNs to avoid getting stuck into a local mini-
mum. In this configuration, we used Stacked denoising
Autoencoder (SdA) for pre-training, and Logistic Regres-
sion (LR) for fine-tuning.

SdA is built by stacking denoising Autoencoders (dA)
in a nested way. It is said that SdA can represent highly
a non-linear model by increasing the number of layers.
Since dA is based on autoencoder, we start with autoen-
coder.

Autoencoder is a unsupervised learning method for a
neural network. Fig. 1 depicts a three-tiered network, con-
sisting of input, hidden, and output layers. It looks like a
normal neural network, the only difference being in the
learning criteria of autoencoder, as the values of output
nodes should be equal to those of the input nodes.

When an N-dimensional vector xxx = {x1, . . . ,xN} is
given to the input layer, an M-dimensional vector
yyy = {y1, . . . ,xM} and an N-dimensional vector zzz =
{z1, . . . ,zN} can be calculated by Eqs. (2), and (3) in the

hidden and output layers, respectively.

yyy = relu(WWWxxx+bbb), . . . . . . . . . . . (2)
zzz = relu(WWW ′yyy+bbb′), . . . . . . . . . . . (3)

L(xxx,zzz) =
1
N

N

∑
i=1

(xi − zi)2 . . . . . . . . . (4)

where relu applies a rectified linear unit function,
relu(x) = max(0,x), for each element of an input vector.
WWW and WWW ′ are N ×M and M ×N weight matrices, and
bbb and bbb′ are bias vectors for yyy and zzz. L(xxx,zzz) is a mean
squared error function to make the difference between xxx
and zzz as small as possible. In autoencoder, the transposed
matrix of WWW is used for WWW ′ to improve learning efficiency.
A set of three parameters [WWW; bbb; bbb′] is updated by Adam,
an algorithm for first-order gradient-based optimization
of stochastic objective functions, based on adaptive es-
timates of lower-order moments [15].

The dA is just an extension of autoencoder. In the case
of dA, in the unsupervised learning stage, noise is added
to each node in the hidden layer to make the neural net-
work more noise-robust.

SdA is built by replacing the hidden layer of the learned
dA with another autoencoder shown in Fig. 2. Every
time this nesting process is performed, the number of lay-
ers is increased and the nested neural network should be
learned. This step-by-step learning process achieves deep
learning to avoid converging to local solutions [16].

After pre-training with SdA, LR is performed for fine-
tuning in a supervised way. Usually, an LR layer is con-
nected to the output layer or the middle of the hidden lay-
ers, which is also called the bottleneck layer. Fig. 2 is
an illustration of the LR layer with the bottleneck layer
when they are connected. Since multi-class SSI should be
considered, softmax-based LR is used and it is defined as
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follows,

p̂ = argmax
c

fc . . . . . . . . . . . . . (5)

fc =
eWWW ′′

c hhh+bbb′′c

B

∑
i=1

eWWW ′′
i hhh+bbb′′i

, . . . . . . . . . . . (6)

where hhh is a B-dimensional vector of the bottleneck layer,
bbb′′ is a bias vector in the LR layer, WWW ′′ is a weight matrix
between the bottleneck and the LR layers, and p is the
class for an input signal given as a teacher label.

2.4. Convolutional Neural Network (CNN)
CNN is a multi-layer neural network consisting of in-

put, convolution, hidden layers, and output layers shown
in Fig. 3 [17]. CNN is well-known for its high perfor-
mance in image identification. In our study, we regarded
a sound spectrogram as an image feature and tried to clas-
sify the spectrograms with CNN. The sample images of
the sound spectrograms are shown in Fig. 4. As shown
in Fig. 4, the spectrograms are spatially and temporarily
different among the sound events; these differences be-

come the cues for finding the targets. In this study, we set
the segment length of spectrogram features to 20 frames,
which we consider to enough for capturing the temporal
transition of the sound spectrum.

A unique feature of CNN is the convolution layer, in
which response maps are computed with two operations;
convolution and pooling. The convolution operation cal-
culates convolution from the input maps with multiple fil-
ters.

Let x be a spectral-temporal 2D map input, which is
given to the convolution layer, and the k-th feature map hk

can be defined as follows:

hk
i j = relu

(
(W k ∗ x)i j +bk

)
, . . . . . . . (7)

where i and j are indices of the feature map, and “∗” is the
convolution operator. We selected relu (Rectified Linear
Unit function) as an activation function to minimize the
computational cost.

For the pooling operation, “max pooling,” which down-
samples the convoluted map with a max filter is intro-
duced. When hk is split into a set of L×L non-overlapping
regions, G(hk)i j, where i and j are indices specifying the
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(i, j) region of the feature map, a responsive map h̃k can
be computed by applying a max operation to each region.

h̃k+1
i j = max

h́k
ı́j́∈G(hk)i j

h́k
ı́j́. . . . . . . . . . . (8)

On top of the feature maps finally generated, an LR net-
work with hidden and output layers is connected to form
an SSI classifier. The learning algorithm of these layers is
the same as that of the LR layer in SdA. That is, the pa-
rameters of weight matrices and biases are updated with
mini-batch-iterated in Adam. To prevent overfitting prob-
lem [18], we also applied dropout, a mechanism to ran-
domly dropping out units (along with their connections)
from the neural network during training.

3. System Architecture

Figure 5 shows the software architecture for OCASA
created by integrating the proposed AEI with the
previously-reported AED [5]. The input to the system is
multichannel audio signals captured with a quadrotor that
is fitted with a 16 ch microphone array (Fig. 6).

The quadrotor is based on AscTech Pelican, the maxi-
mum payload of which is 650 g. The microphone array
system was installed on the top of Pelican. It consists
of a multi-channel A/D converter RASP developed by
System-in-Frontier Inc., and 16 MEMS microphones at-

Fig. 6. Quadrotor with microphone array.

tached to the surface at the positions of black hair seen in
Fig. 6. The layout of the microphone array was designed
to be large in diameter. This is because it is known that the
main lobe of a larger microphone is sharper, meaning that
it has better resolution in sound source localization and
separation. Although SSS is introduced in this paper, the
wind noise is still a big problem. To deal with this prob-
lem, at the position of each microphone, we added wind
protection in the form of a material that resembles hair.
It is known to be one of the most effective materials for
wind protection because the wind power is absorbed by
waving of the hair, yet this waving produces no acoustical
noise.

AED estimates the direction and the activity of each
sound event, i.e., where and when information with
iGSVD-MUSIC-CMS [5]. AEI, which is focused on in
this paper, includes two modules; SSS and SSI. As men-
tioned in Section 2, GHDSS-AS and RPCA can be used
for SSS, and SdA and CNN can be used for SSI. SSS
receives the multichannel audio signal with the direction
and activity of the detected sound event, and SSS is then
performed.

After that, a 20-dimensional Mel-Scale Log Spectrum
(MSLS) acoustic feature is extracted from each 32 ms
frame of the separated sound event every 10 ms, which
is known to be one of the best acoustic features for mi-
crophone array processing [19]. An input xxx for SdA is a
400 dimensional vector consisting of 20-frame MSLS fea-
tures, and CNN uses a 20× 20 matrix, the axes of which
are the frame and MSLS dimension, for xxx. Both SdA and
CNN classify the input acoustic feature into one of the
pre-defined classes, i.e., what information. Finally, the
OCASA system outputs a sound event with where, when
and what information.

For implementation, we used the open source software
robot audition software HARK [12]. HARK provides on-
line and real-time algorithms for robot audition includ-
ing multichannel recording, frequency analysis, iGSVD-
MUSIC-CMS, GHDSS-AS, acoustic feature extraction
among others. RPCA was newly implemented with MAT-
LAB, and SdA and CNN were implemented with Python.
This means that the whole system works off-line, al-
though a part of the system implemented with HARK
works in real time.
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Table 1. Parameters to be trained with SdA and CNN.

SdA CNN

Parameters {Wl ,W ′
l ,bl ,b′l}l∈Lh {W k

l }k∈K,NK=10,30,50
l∈Lconv

to be trained {Wl ,bl}l=Lmlp

Layers NLh = 1,2,3 NLconv = 2,
NLmlp = 1

∗NK represents a number of feature maps in the convolution layer.
∗NLh , NLconv , NLmlp represent a number of hidden layers in SdA,
convolution layers in CNN and multi-layer perceptron layers in
CNN, respectively.
∗A Total of 19,138 data are used. 15,310 features are used for
training, and another 3,828 are used for testing.
∗Both SdA and CNN were trained 200 epochs with batch size 50.

4. Evaluation

We evaluated the OCASA system mainly in terms of
AEI. Since our AEI consists of SSS and SSI, combi-
nations of the SSS and SSI methods described in Sec-
tion 2 were compared. For SSS methods, either GHDSS-
AS or RPCA was selected as a multichannel or blind
noise robust sound source separation method, respec-
tively. GHDSS-AS was evaluated as a multichannel
sound source separation method robust to noise by com-
paring its results in speech recognition task with those of
other methods proposed in previous studies [20]. RPCA
was also reported to be effective as a blind-noise-robust
sound source separation method for a rescue robot [11].
GHDSS-AS is based on microphone array processing,
multichannel audio singals captured with the microphone
array embedded in quadrotor. Another input for GHDSS-
AS is sound directions sent from AED. Using the mul-
tichannel signals and the sound directions, SSS can be
performed using a transfer function between each sound
source and the microphone array. The transfer function
was obtained in advance by measuring impulse responses.
In this paper, the measurements were performed on the
level plane of the quadrotor at the 5◦ intervals. Since
RPCA is a single channel noise suppression method, a
single channel from multichannel, which is closest to the
target sound source in place of the multichannel audio,
was used. The single channel sound signal was segmented
based on the sound source localization result with iGSVD-
MUSIC-CMS.

For SSI methods, SdA and CNN were used. Ev-
ery method used 20-dimensional MSLS features for
20 frames as an input acoustic feature, as mentioned in
Section 3. The structure of CNN used in the evaluation is
shown in Fig. 3. The parameters for the learning of SdA
and CNN are shown in Table 1. In order to compare deep
and shallow identification methodologies, we also used
GMM (Gaussian Mixture Model), which is widely used
to classify sound sources.

Additionally, in order to compare the performance dif-
ferences with DNN parameters, we set up three conditions

3.0 [m]

1.0 [m]

ground

drone sound
source

Fig. 7. Environmental settings.

for both SdA and CNN. In the SdA conditions, we set up
dA with three layers (400, 100 and 400 dimensions, re-
spectively), SdA with five layers (400, 200, 100, 200 and
400 dimensions each) and SdA with seven layers (400,
300, 200, 100, 200, 300 and 400 dimensions each), re-
spectively. While in CNN conditions, we changed the
kernel size (see Fig. 3, convolution layer) of the convo-
lution layers from 10 to 50, since it is not easy to change
a layer size due to the image size of the feature vector.

Eight sound sources were selected from RWCP Sound
Scene Database in Real Acoustical Environments and
JEIDA Noise Database, including a request to ask for
help, the ring of an alarm clock, hand claps, a car horn,
cymbal crash, crow’s call, a mobile phone’s ringtone, and
an ambulance’s siren. These sound sources were recorded
at a 16 kHz sampling rate while the quadrotor was hover-
ing outdoors.

The multichannel audio signals in the experiment were
captured in the environment shown in Fig. 7, where sound
sources were output with the portable speaker 3.0 m away
from the quadrotor. The quadrotor was fixed at a point
1.0 m point from the ground, its rotors rotating to keep
it aloft. Though the sound sources in the experimental
setup were not so far from the quadrotor as they were in
the iGSVD-MUSIC-CMS evaluation [5], still the S/N rate
of the recorded multichannel audio signals were approxi-
mately −20.0 dB. That is, we evaluated the proposed sys-
tem in a low S/N rate acoustic environment. The length
of each sound event was 3–4 seconds, and each event was
recorded 15 times. In total, approximately 7-minutes of
data were collected. Since the frame shift length for fea-
ture extraction was 10 ms, the total number of features
was 19,138. The main noise sources were the propeller
and wind in the recording.

In the evaluation, eight-class identification was con-
ducted using five-fold cross validation. The eight sound
sources directly correspond to the eight classes.

A frame-by-frame basis metric called SSI Correct Rate
(SSR) was measured. SSR is denoted as follows:

SSR =
1
C

C

∑
i=1

Ei

∑
j=1

Fc(i, j)

Ei

∑
j=1

Fa(i, j)

, . . . . . . . . . (9)

where C is the number of classes, i is the class index.
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Table 2. SSR for real data, 8-class SSI.

SSS/SSI GHDSS-AS RPCA

GMM (20 comp.) 0.662 0.504

dA (400-100) 0.742 0.482
SdA (400-200-100) 0.765 0.477
SdA (400-300-200-100) 0.695 0.464

CNN (10 kernel) 0.774 0.507
CNN (30 kernel) 0.803 0.588
CNN (50 kernel) 0.842 0.645

Each value in Table 2 was an average of SSR in 5-fold cross
validation. SdA (400-200-100) means the stacked denois-
ing autoencoder, which consists of 400-200-100-200-400
dim. input, hidden and output layers respectively. CNN (50
kernel) means a convolutional neural network consisting of
two convolutional and pooling layers with 50 kernels and
one hidden layer.

Ei is the number of sound events for the i-th class, and
j is the index for the sound events included in the i-th
class. Fa(i, j) is the total number of frames and Fc(i, j) is
the number of successfully-identified frames for the j-th
sound event of the i-th class.

4.1. Results
Table 2 shows the AEI results. GHDSS-AS had better

performance than RPCA under SSS conditions. Since the
propeller and wind noise also has the sparse noise compo-
nents, the target sound signal was not properly separated
by the RPCA. The target sound signal was relatively well
separated by the GHDSS-AS.

On the other hand, CNN obviously performed better
than did SdA. There would be two reasons for this. One
is that SdA does not consider temporal information well,
while CNN uses a convolution operation, which consid-
ers temporal information. The other is that we used a bot-
tleneck layer for classification. In ASR based on DNN,
it is known that the use of an output layer for classifica-
tion has better performance, and this would also be true
of SSI. The CNN had also better performance than did
GMM (CNN > SDA > GMM), and these comparisons
also indicate the importance of considering temporal in-
formation in the sound source classification.

As for the comparison under SdA conditions with
GHDSS-AS, the performance of SdA with five layers had
a higher performance than that of SdA with seven layers.

One of the reasons why the performance of SdA with
seven layers was lower than that with five layers was the
lack of a training data set since we evaluated the perfor-
mance with a limited number of training and test data (Ta-
ble 1). With a larger training data set, the performance of
SdA with seven layers could exceed that with five layers.

Table 3 shows a confusion matrix of the audio
event identification per each frame based on CNN with
GHDSS-AS. Each event was properly identified, while
the detection number of the events was biased. The longer

Table 3. Confusion matrix of CNN with GHDSS-AS.

L0 L1 L2 L3 L4 L5 L6 L7

416 0 12 37 26 2 0 1
0 951 21 1 1 1 0 0

10 38 705 19 55 9 15 2
18 1 24 248 17 8 1 0
15 14 71 8 728 12 4 2
8 0 12 11 18 85 8 2
0 0 11 1 4 9 37 5
1 0 5 0 10 7 5 19

L0, L1, L2, L3, L4, L5, L6, L7 are telephone ringtone, am-
bulance siren, crow call, human voice, car horn, hand clap,
cymbal crash and clock alarm respectively, in 3828 frames
in the test datasets.

and characteristic audio events such as phone, ambulance,
and human voice, could be better detected and identified
than the shorter audio events such as the clap, clock and
cymbals. These characteristic audio events are also con-
sidered to be helpful in finding a target to be rescued in a
disaster scenario.

4.2. Prediction Time of Acoustic Event Identifica-
tion with GHDSS-AS-CNN for Real-Time Pro-
cessing

We also examined the prediction time of the CNN iden-
tifier (50 kernels) with the combination of GHDSS-AS,
the combination that had the best performance in the pre-
vious section. Since the components in the OCASA sys-
tem other than the CNN identifier have the ability to
work in real-time, the bottleneck for achieving the real
time processing is the prediction time of CNN, which is
widely known as a weak point of the deep neural net-
work. The comparison was done with the GPU (Tesla
K20c), a high-end CPU (3.2 GHz Xeon CPU), and low-
end CPU (1.1 GHz Intel Core M). The first two are for
high-performance computing, and the last one is to be em-
bedded on the quadrotor.

Figure 8 shows the prediction time of each core for SSI
with 68-frame datasets, which is the average frame num-
ber for the human voices in the test datasets. As shown in
Fig. 8, the prediction time of the CNN identifier with the
GPU was better than those of CPUs. From the perspec-
tive of comparing the CPUs, the performance of CPUs
seemed to be linear with the CPU base frequency. As a
consequence, the prediction time of SSI with GPU was
around 67 times shorter than that of the low-end CPU.
However, even the prediction time with the low-end CPU
is around 94.8 msec, which is around 1/10 of the length
of the human voice. With the assumption that the fre-
quency of acoustic events is sparse and the SSI process is
not always required, we can handle the incremental SSI
processing with the additional implementation of the pro-
cessing queue of SSI, which stores the acoustic event fea-
tures and processes the SSI one by one.
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Fig. 8. Comparison of Tesla K20c, Xeon 3.2 GHz, and
Core M 1.1 GHz prediction times.
Note: Each prediction time is an average of scores over five
trials.

5. Conclusion

This paper presents Acoustic Event Identification (AEI)
for acoustic signals observed with a quadrotor-embedded
microphone array in a noisy outdoor environment in
which a quadrotor is flying. Since the contamination
of noise generated by the propellers and wind is a pri-
mary problem, we proposed the use of a combination of
sound source separation and sound source identification.
For sound source separation, we selected GHDSS-AS and
RPCA as the most advanced multichannel and single-
channel methods, respectively. For sound source identi-
fication, two deep learning techniques – SdA and CNN
– were used, since SdA and CNN are known as powerful
methods for audio and image processing, respectively. We
assessed the proposed AEI methods by testing combina-
tions of sound source separation and identification meth-
ods to validate the proposed method. Using audio signals
recorded in an outdoor environment in which a quadrotor
is operating, a sound source identification success of over
80% was achieved by using combinations of GHDSS-
AS and CNN. We also measured the prediction time of
a trained CNN identifier with GHDSS-AS, which showed
that the CNN identifier could work even with a low-end
CPU (Core M 1.1 GHz). Future work will include further
exploration of the optimal parameter settings, and the im-
plementation of an online and real-time system with the
contributions of this paper.
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