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Two major functions, sound source localization and
sound source separation, provided by robot audi-
tion open source software HARK exploit the acous-
tic transfer functions of a microphone array to im-
prove the performance. The acoustic transfer func-
tions are calculated from the measured acoustic im-
pulse response. In the measurement, special signals
such as Time Stretched Pulse (TSP) are used to im-
prove the signal-to-noise ratio of the measurement sig-
nals. Recent studies have identified the importance of
selecting a measurement signal according to the appli-
cations. In this paper, we investigate how six measure-
ment signals – up-TSP, down-TSP, M-Series, Log-SS,
NW-SS, and MN-SS – influence the performance of
the MUSIC-based sound source localization provided
by HARK. Experiments with simulated sounds, up to
three simultaneous sound sources, demonstrate no sig-
nificant difference among the six measurement signals
in the MUSIC-based sound source localization.

Keywords: robot audition, impulse response measure-
ment techniques, acoustic transfer function, sound source
localization, multiple signal classification (MUSIC)

1. Introduction

“Robot Audition” recognizes a mixture of sounds cap-
tured by a set of synchronized microphones (hereinafter, a
microphone array) to understand auditory environments.
This capability is crucial for symbiosis between a service
robot and people [1, 2]. During interaction with people, a
robot hears his/her utterance in addition to environmental
sounds; at times, it encounters cases where people inter-
rupt the robot’s utterance. With microphones on a robot
rather than attached to each person, robot audition can en-
able more flexible interactions with people. In multiparty
interactions, robot audition enables the ability to listen to

several things simultaneously, whereas conventional sys-
tems frequently focus on a particular person, discarding
other utterances.

Nishimuta et al., for example, developed an interactive
quizmaster robot system called “HATTACK25” that can
manage a multiparty speech-based quiz game similar to
a Japanese TV program “ATTACK25” and an American
program called “Jeopardy!” [3]. HATTACK25 provides
two modes, school-class-type and auction-type. In the
former, participants first attempt to acquire the right to
answer by saying “yes.” In the latter, they can answer a
question directly. In either case, the quizemaster robot
with robot audition localizes the respondents and recog-
nizes who said what first.

Robots, like people, hear a mixture of sounds in their
daily lives. Therefore, robot audition should provide three
fundamental functions: sound source localization (SSL),
sound source separation (SSS), and automatic speech
recognition (ASR) [1, 3, 4]. Some open source robot audi-
tion software provides only SSL; other provides SSS [4].
However, only HARK (Honda Research Institute Japan
Audition for Robots with Kyoto University) [5] supports
all three functions. The SSL and SSS provided by HARK
exploit acoustic transfer functions (hereinafter, transfer
functions) to improve the performance [6]. In fact, HARK
SSL is made robust by implementing MUSIC (Multiple
Signal Classification) [7] with the transfer functions [8].

A transfer function specifies the spectral characteris-
tics for how a signal transfers from a sound source to a
microphone. It is calculated from an impulse response
measured using an impulse response measurement signal
(hereinafter, measurement signal) [9].

The impulse response is crucial in both analyz-
ing acoustic fields and synthesizing binaural sounds
and acoustic fields [10, 11]. In virtual reality, three-
dimensional (3D) acoustic field synthesis improves the re-
ality of 3D images. Because the quality of analysis and
synthesis depends on the impulse response, measurement
signals have recently received more attention. Kaneda
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stated [12]:

“Because the error that can be tolerated depends
on the applications of the impulse response,
guidelines for the selection of measurement sig-
nals for different applications should be estab-
lished.”

In this paper, we investigate the influence of measure-
ment signals on the performance of MUSIC-based SSL.
Nakamura et al. confirmed that transfer functions cal-
culated from coarsely measured impulse responses with
linear interpolation in temporal- and frequency-domains
with hierarchical SSL work effectively for SSL and SSS
in HARK [13]. However, the influence of measurement
signals has not been evaluated. The remainder of this pa-
per is organized as follows: Section 2 describes the back-
ground and related work; Section 3 presents the measure-
ment of impulse responses; Section 4 presents the experi-
mental evaluation; and Section 5 concludes the paper.

2. Background and Related Work

This section describes background knowledge includ-
ing impulse responses and the MUSIC-based SSL of
HARK.

2.1. Impulse Response Measurement Signals
A transfer function is obtained directly from an impulse

response. When an input x(t) is provided to the system,
it generates an output y(t) where its impulse response is
h(t).

y(t) =
∫ ∞

−∞
h(τ)x(t − τ)dτ. . . . . . . . . (1)

By transforming Eq. (1) to the frequency domain using
the Fourier transform, the following equation is obtained.

Y ( jω) = H( jω)X( jω), . . . . . . . . . (2)

where j is an imaginary unit, ω is the frequency, and
H( jω) and X( jω) are the Fourier transforms of h(τ) and
x(τ), respectively. Eq. (2) implies that if x(t) is a δ -
function, the transfer function is the impulse response it-
self.

Because it is difficult to generate an ideal impulse
signal, acoustic communities have studied how to im-
prove the quality of an impulse response, for example,
the signal-to-noise ratio (SNR) of the measured signals.
The two main approaches use either pseudo-random white
noise or time varying frequency signals [14]. Schroeder
proposed an M-Series signal based on pseudo-random
noise in 1979 [15] and then proposed a less computa-
tional technique [16]. To overcome the unrepeatability
of M-Series signals due to pseudo-random white noise,
Aoshima proposed a time-varying frequency signal called
“Time-Stretched Pulse” (TSP) to provide the repeatabil-
ity of measurements [17]. Then, Suzuki et al. extended
his idea to propose a TSP suitable for measuring in large

halls [18]. Another well-known variation based on time-
varying frequency signals is SineSweep [19].

Recently, Farina proposed logarithmic SineSweep
(Log-SS) to overcome the distortion artifacts of the other
techniques that appear in the deconvoluted impulse re-
sponses when linear and time-invariant assumptions do
not hold [20].

Stan et al. compared four different impulse response-
measuring techniques, Maximum Length Sequence, In-
verse Repeated Sequence, Time-Stretched Pulses, and
SineSweep [14]. The first two techniques are based on
pseudo-random white noise. They concluded that the first
two techniques appear to be more accurate in the pres-
ence of non-white noise and that the latter two seem most
appropriate in a quiet environment.

2.2. Six Impulse Response Measurement Signals
We choose the following six measurement signals

based on the previous discussion and Kaneda’s paper [12]:

• upward TSP (up-TSP),

• downward TSP (down-TSP),

• M Series signals (M-Series),

• Logarithmic SineSweep (Log-SS, or Pink-TSP),

• Noise Whitening SineSweep (NW-SS) [10], and

• Minimum Noise SineSweep (MN-SS) [21].

The spectrogram of each signal is presented in Fig. 1. Two
new variants of SineSweep, NW-SS and MN-SS, are in-
troduced to address non-stable noise at the time of mea-
surement by whitening ambient noise and by minimizing
ambient noise, respectively (see Figs. 3(a) and (b) in Sec-
tion 3.2). In general, up-TSP and down-TSP may have
harmonic distortion in the negative and positive time axis,
respectively. Log-SS improves a signal-to-noise ratio in
lower frequencies and may suppress harmonic distortion.
M-Series may have non-linear distortion.

2.3. HARK Sound Source Localization
HARK provides a MUSIC-based algorithm for SSL [7,

8]. The original MUSIC assumes the following: (1)
the number of sound sources and noise are fixed in ad-
vance, (2) the power of any sound source exceeds that
of the noise, and (3) the number of sound sources does
not exceed that of the microphones. Here, noise means
only directional noise and does not include ambient noise.
Because MUSIC-based SSL outperforms conventional
beamforming [22] if the above assumptions hold, HARK
recommends using the MUSIC-based SSL [23]. Further,
it does not assume (3) above. HARK provides precal-
culated transfer functions for various microphone arrays
measured by up-TSP.

First, eigenvalues and eigenvectors are calculated by
decomposing an input correlation matrix. It is represented
as [eeei(ω), . . . ,eeeM(ω)] with eigenvalues λ1, . . . ,λM, where
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(a) up-TSP (b) down-TSP (c) M-Series

(d) Log-SS (e) NW-SS (f) MN-SS

Fig. 1. Wave form and spectrogram of six measurement signals for first 1.65 s.

λ1 ≥ λ2 ≥ ·· · ≥ λM. Let M and L be the number of mi-
crophones and number of sound sources, respectively. Be-
cause the corresponding eigenvalue represents the power
of each eigenvector, the above assumptions specify that λi
for 1 ≤ i ≤ L represents the eigenvalue of the i-th sound
source and λi for L + 1 ≤ i ≤ M represents that of the
noise.

The spatial spectrum (hereinafter, MUSIC spectrum)
P(θ) of the direction θ is defined as follows:

P(θ) = ∑
ω

|HH(θ ,ω)H(θ ,ω)|
M

∑
i=L+1

|H(θ ,ω)Heeei(ω)|
. . . . . (3)

where H represents the conjugate transpose operator,
H(θ ,ω) is a transfer function of θ and ω , and eeei(ω) is
an eigenvector of the input correlation matrix. H(θ ,ω) is
also referred to as a steering vector towards the direction
θ at the frequency of ω . When the direction of the steer-
ing vector H(θ ,ω) matches that of a sound source, the
MUSIC spectrum P(θ) becomes infinity; this is an ideal
case. Typically, ambient noise is not white noise and thus
noise is cross-correlated with the sound sources. There-
fore, the denominator of Eq. (3) does not become zero.

HARK uses 32 points in a 16 kHz sampling of an im-
pulse response to obtain the transfer functions for SSL.
It uses 512 points of an impulse response for SSS. These
two kinds of transfer function are generated from impulse
responses using HARK tools [5].

HARK provides various parameters to facilitate
the control of MUSIC-based SSL [a]. Important
parameters of the module LocalizeMUSIC include
NUM SOURCE to specify the number of sound sources
(default: 2) and LOWER BOUND FREQUENCY and
UPPER BOUND FREQUENCY to specify the lower and
upper bound frequency in the signal processing (default:
500 Hz and 2800 Hz, respectively). Important parame-
ters of SouceTracker are THRESHOLD to indicate that
a sound source is ignored if its MUSIC spectrum is less

(a) Snapshot of measurement (b) Microphone config-
uration of HIRO

Fig. 2. Recording of impulse responses.

than this value, PAUSE LENGTH to specify the lifetime
of a sound source, and MIN SRC INTERVAL to specify
the threshold value of angular difference for determining
if the sound source is the same as another.

3. Measurement of Impulse Responses

This section explains the measurement of impulse re-
sponses by using an eight-element microphone array
mounted on the head of a Kawada HIRO upper-torso
robot.

3.1. Setting for Measurement
We used a large hall, approximately 800 m2, to mea-

sure the impulse responses (see Fig. 2(a)). The HIRO was
placed in the center of an approximately 5 m diameter
free space. A loudspeaker, Genelec 1029A, was placed
at the height of 1.5 m, 1.5 m away from the HIRO (see
in Fig. 2(a)). Fig. 2(b) depicts the configuration of eight
MEMS digital microphones. The eight microphones are
connected to a RASP-ZX1 that transferred eight-channel
24-bit data to a host computer by USB 2.0.

1. http://www.sifi.co.jp/system/modules/pico/index.php?content id=36
[Accessed October 3, 2016]
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(a) Measured up-TSP Signals (b) Measured down-TSP Signals (c) Measured Log-SS Signals

Fig. 3. Measured signals of three measurement signals for first 1.95 s. White lines in (a) and (b) indicate harmonic distortion.

(a) Impulse response by up-TSP (b) Impulse response by down-TSP (c) Impulse response by M-Series

(d) Impulse response by Log-SS (e) Impulse response by NW-SS (f) Impulse response by MN-SS

Fig. 4. Observed impulse responses for the six measurement signals for first 2.05 s.

3.2. Measurements of Impulse Response
Benchmark signals were composed by cyclically shift-

ing each measurement signal ten times with a 10 ms gap
of smoothed offset and onset. For adaptive measurement
signals, that is, NW-SS and MN-SS, ambient noise was
recorded for 2 s and its mean power spectrum was ob-
tained by averaging for 1 s [24].

Each benchmark signal was replayed from the loud-
speaker every 5◦ around the robot and captured by the
RASP-ZX as a 24-bit wave file of 16 kHz sampling. Then,
a wave file was sent to a PC via USB. A multi-channel
recording was made using the WIOS of HARK by play-
ing each measuring signal. A set of impulse responses
were obtained by HARKTool.2 HARKTool first deter-
mines the channel that receives the measuring signal the
earliest and thus can estimate the time of arrival at the mi-
crophone. Then, impulse responses are calculated mathe-
matically and truncated by the time of arrival.

Measured signals of three measuring signals are de-

2. For WIOS and HARKTool, see HARK manual and cookbook available
at http://www.hark.jp/ [Accessed October 3, 2016]

picted in Figs. 3(a)–(c), and observed impulse responses
are depicted for each measurement signal in Figs. 4(a)–
(f). Because obscure harmonic distortion is observed in
Figs. 3(a) and (b), white lines are added for legibility.
The measured impulse response of up-TSP has second
and third harmonic distortion from the beginning of the
signal, whereas third harmonic distortion converges to the
end of the signal. This kind of harmonic distortion may
influence the performance of SSL and SSS. Because the
MUSIC-based SSL of HARK uses only 32 points, that is,
data of 1.953 ms, the harmonic distortion can degrade the
performance of SSL.

3.3. Mixture of Sounds for Benchmark
In this subsection, the design of the benchmark sounds

is described. We used one to three sound sources; their
positions were as follows:

1. One sound source: one sound source moved from
0◦ to 355◦ by 5◦. The total number of positions was
72.

Journal of Robotics and Mechatronics Vol.29 No.1, 2017 75



Suzuki, T. et al.

(a) Main Loop

(b) Localization with LocalizeMUSIC and SourceTracker

Fig. 5. Network for SSL by HARK.

2. Two sound sources: the first sound source moved in
the same manner as above; the second moved from
the next 5◦ position to the 72nd position by 5◦. The
total number of combinations was 5,112 (= 72×71).

3. Three sound sources: In addition to the above case,
the third sound source moved from the 5◦ position
next to the second source to the 72nd position by 5◦.
The total number of combinations was 357,840 (=
72×71×70).

Speech signals were six phonetically balanced sen-
tences extracted from ASJ-JNAS [25], each of which was
spoken by three men and three women. The SNR of the
speech signals to white noise are none, −10 dB, −5 dB,
0 dB, +5 dB, and +10 dB from less noisy to more noisy.
Because six measurement signals and six noise ratios
were examined, the number of wave files for one sound
source, two sound sources, and three sound sources were
2,599, 184,032, and 12,882,240, respectively,

4. Evaluation

4.1. MUSIC Spectrums for Benchmark Sounds
Localization was conducted using the HARK network

illustrated in Fig. 5. It receives an audio signal from an
audio wave file and conducts LocalizeMUSIC with the
set of parameters discussed in Subsection 4.2.

Figures 6(a)–(c) depict the MUSIC spectra with trans-
fer functions obtained by up-TSP for one, two, and three
sound sources, respectively. The SNR includes six cases:
without noise (hereinafter, +∞) and with −10 dB, −5 dB,
0 dB, 5 dB, and 10 dB of white noise. For a single sound
source, the MUSIC spectra vary drastically owing to the
influence of the power of the white noise. Conversely,
they are rather stable for two and three sound sources, in-
different to the power of the white noise. This result by
up-TSP is common with other measurement signals. The
observation that the MUSIC spectra are stable for a mix-
ture of sounds suggests that MUSIC-based SSL is robust
against a mixture of sounds, even in noisy environments.

4.2. Criteria of Evaluation
The set of the above mixture of sounds for the bench-

mark were first localized by the MUSIC-based SSL of
HARK. The value of THRESHOLD was determined em-
pirically by verifying the localization results of all the data

used in this paper: although the best value depends on
each measurement signal, THRESHOLD was set to 28.5
for all the experiments. We used the default values for the
other parameters. For example, PAUSE LENGTH was
set to 800 in 10-frame and MIN SRC INTERVAL 10◦.

For all experiments, these values were fixed for each
measurement signal. The value of NUM SOURCE was
fixed to three. The results of the SSL were then analyzed
based on event, not frame-wise, by the following criteria
proposed by Takahashi [26]:

• N: Correct,
• E5: If an error was within ±5◦,
• E10: If an error was between |5◦| and |10◦|,
• E15: If an error was between |10◦| and |15◦|,
• E15-30: If an error was between |15◦| and |30◦|,
• I: Insertion, if an error was greater than |30◦|,
• D: Deletion,
• Suffix M: In case of missing leading part.

The onset of each utterance was detected using the corre-
sponding sound source separated by HARK. If the onset
was not the same as the original signal, the suffix M was
added. Note that N does not contain NM. In the above-
mentioned benchmarks, no I was reported.

The correctness of localization for one sound source
under six noise conditions was 100%, except for a small
number of cases with up-TSP, down-TSP, and MN-SS: E5
errors occurred at 235◦ in up-TSP, at 40◦ in down-TSP,
and at 335◦ in MN-SS.

4.3. Two Sound Sources
The results of localization of two sound sources under

six noise conditions are depicted in Fig. 7. Almost all
sound sources were localized correctly except for a small
number of cases with up-TSP, down-TSP, and MN-SS.

Most errors were E5 and E10 when their angles were
less than or equal to 15◦. Further, the missing leading
part frequently occurred for narrower angles of two sound
sources. Errors of E5 and E10 were approximately 2%–
4% and 1%–2%, respectively. Missing leading part M
was approximately 2% and the majority of the missing
occurred within 10◦ of the angle between the two sound
sources. Missing leading parts can be recovered by tuning
the value of THRESHOLD; however, such tuning could
cause other degradation.

For comparing the influence of the six measurement
signals, the rates of N and NM, the largest error, for dif-
ferent SNRs are summarized in Fig. 8. The influence on
localization by the six measurement signals is rather min-
imal. To exaggerate the difference, MN-SS and NW-SS
indicate slightly greater robustness for various combina-
tions of sound sources in noisy situations, although they
do not indicate higher performance in silent situations.

Figure 9 illustrates how the correctness, N and NM,
of localization of two sound sources changes when their
angle varies from 5◦ to 180◦ around the robot. It indicates
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(a) one sound source (b) two sound sources (c) three sound sources
Fig. 6. MUSIC spectrogram of one to three sound sources with different noise levels.

(a) up-TSP: two sources (b) down-TSP: two sources (c) M-Series: two sources

(d) Log-SS: two sources (e) MN-SS: two sources (f) NW-SS: two sources

Fig. 7. SSL results of two sound sources for each measurement signal. First sound source is fixed at 0◦; second moves from 5◦ to
355◦ by 5◦. For each SNR level for each measurement signal, the data size is 10,224.

(a) Correctness (N) (b) NM rate

Fig. 8. Rates of N (correctness) and NM (correct but missing leading part) in localizing two sound sources.

that HARK’s MUSIC-based SSL can localize two sound
sources effectively when their angle is more than 15◦. For
angles less than or equal to 15◦, only one sound source
is detected with impulse responses obtained by any of the
six measuring signals.

4.4. Three Sound Sources
The correctness of localization of three sound sources

under six noise conditions is depicted in Fig. 10. In
general, no significant difference is observed. N is ap-
proximately 80% and errors of E15 and E10 are both at
most 3%. NM is considerably smaller than in two sound
sources. Some common symptoms were observed as fol-
lows:

• Errors were prone to occur at the azimuth of the er-
rors in one sound source, for example, 235◦.

• If two sound sources were localized as one sound
source at their middle azimuth, for example, 45◦
for 40◦ and 50◦ sound sources, two E5 errors were
recorded.

• Error of D was rather rare, that is, at most 0.3% for
each case.

• The white noise level, even in ∞, did not influence
the correctness in any measurement signals.

For comparing the influence of the six measurement
signals, the rates of N and E5, the largest error, for dif-
ferent SNRs are summarized in Fig. 11. The influence on
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(a) up-TSP: two sources (b) down-TSP: two s-ources (c) M-Series: two sources

(d) Log-SS: two sources (e) MN-SS: two sources (f) NW-SS: two sources

Fig. 9. SSL correctness versus interval angle of two sound sources.

(a) up-TSP: three sources (b) down-TSP: three sources (c) M-Series: three sources

(d) Log-SS: three sources (e) MN-SS: three sources (f) NW-SS: three sources

Fig. 10. SSL results of three sound sources for each measurement signal. First sound sources is fixed at 0◦, second moves to 5◦ to
350◦ by 5◦, and third moves from the next 5◦ of the second to 355◦ by 5◦. For each SNR level for each measurement signal, the
data size is 1,073,520.

localization by the six measurement signals is minimal.
To exaggerate the difference, M-Series, MN-SS and NW-
SS indicate slightly greater robustness for various combi-
nations of sound sources in noisy situations. One reason
for this is that the benchmark sets of mixture of sounds
that contain white noise favor MN-SS based on a mini-
mum noise method and NW-SS based on a noise whiten-
ing method.

We focused on a particular pattern of positions of the
three sound sources. The three sound sources moved
around the robot by maintaining the same adjacent angle
that changed from 5◦ to 120◦. Fig. 12 illustrates how the
correctness of localization of three sound sources changed
when their adjacent angular difference changed. It in-
dicates that HARK’s MUSIC-based SSL localizes three
sound sources stably without being influenced by white
noise. The correctness of localization becomes stable

when their adjacent angular difference is more than or
equal to 30◦. Further, M or missing leading part is re-
duced drastically. This is important for SSS and ASR.

Based on the discussion on two sound sources, the per-
formance of the MUSIC-based SSL of HARK is stable
when their angular difference is more than 20◦.

4.5. Further Analysis of SSL with Three Sound
Sources

Suppose that the first and second sources are fixed at
0◦ and 20◦, respectively, and the third moves from 40◦
to 340◦ by 5◦. This pattern of positions reflects actual
cases of three-person-party interactions. The azimuth-
wise errors in the localization of the second and third
sound sources are depicted in Fig. 13 for each measure-
ment signal. The observation is summarized in Table 1.
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(a) Correctness (N) (b) E5 rate

Fig. 11. Rates of N (correctness) and E5 (errors within ±5◦) in localizing three sound sources.

(a) up-TSP: three sources (b) down-TSP: three sources (c) M-Series: three sources

(d) Log-SS: three sources (e) MN-SS: three sources (f) NW-SS: three sources

Fig. 12. SSL correctness versus the same interval angle of three sound sources. The interval angle varies from 5◦ to 120◦ by 5◦.

This observation suggests the superiority of down-TSP
and Log-SS, though the difference between them is min-
imal and some particular cases in Figs. 9 and 12 demon-
strate a tendency inconsistent with the suggested superi-
ority.

As the spectrogram of the measured impulse responses
of the six measurement signals presented in Figs. 4(a)–
(f) in Subsection 3.2 indicates, the measured up-TSP has
harmonic distortion from the beginning of the signal in
the spectrogram, whereas neither down-TSP nor Log-SS
indicates this. Because the transfer functions for MUSIC-
based SSL of HARK uses only 32 points for impulse
responses, harmonic distortion may degrade the perfor-
mance of SSL. This superiority, although minimal, should
be under scrutiny in the future.

4.6. Limitations of Evaluation
Because the benchmark sounds use only a small num-

ber of utterances, the observations may depend on them.
Although various kinds of techniques are applied to re-
duce the influence of noise, HARK tools do not adopt
them. The next step of this paper is to evaluate the in-
fluence of the six measurement signals on SSS with ASR.
Because SSS in HARK uses longer transfer functions, that
is, 512 points, the influence should be estimated.

One of the most important remaining problems is to
evaluate the influence of impulse measurement signals
quantitatively using an “ideal” impulse response. An
“ideal” impulse response can be obtained either by mathe-
matical simulation of an acoustic field with a precise robot
head model or by HARK’s impulse response calculation
with the coordinates of a microphone array configuration.
An evaluation with the latter method is in progress and its
results will be reported in a separate paper.

5. Conclusion

In response to Kaneda’s appeal that the influence of an
impulse measurement signal should be estimated from the
viewpoint of the applications, this paper evaluated the in-
fluence of six measurement signals in terms of localiza-
tion with the MUSIC-based sound source localization of
HARK. Experimental results confirm no significant dif-
ference among the six measurement signals. Based on
limited data of up to three simultaneous sound sources,
down-TSP and Log-SS demonstrated slight superiority in
the MUSIC-based localization. Because HARK provides
pre-calculated transfer functions for commercially avail-
able microphones using up-TSP, the HARK community
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(a) up-TSP: second source (b) up-TSP: third source

(c) down-TSP: second source (d) down-TSP: third source

(e) M-Series: second source (f) M-Series: third source

(g) Log-SS: second source (h) Log-SS: third source

(i) MN-SS: second source (j) MN-SS: third source

(k) NW-SS: second source (l) NW-SS: third source

Fig. 13. SSL results of three sound sources by six measurement signals in terms of criteria. First and second are fixed at 0◦ and
20◦, respectively, and third moves from 40◦ to 340◦ by 5◦.
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Table 1. Summary of localization errors with 6 measurement signals.

Signal Second Source Third Source
common No significant common observation. · Errors were observed between 40◦ and 100◦ and between 250◦

and 300◦. E10 were observed at around 40◦ and 340◦.
· White noise reduced errors.

up-TSP E15-30 errors were observed between 60◦ and
150◦ and between 280◦ and 340◦.

No E10 error was observed at around 40◦.

down-TSP Almost correct even at 20◦. No significant difference was observed among white noise levels.
M-Series E15-30 errors were observed between 60◦ and

150◦.
White noise reduced errors between 100◦ and 300◦. E15-30 er-
rors were observed at 340◦.

Log-SS E5 errors were observed without white noise,
whereas white noise reduced most errors.

No significant observation.

MN-SS E5 errors were observed without white noise,
whereas white noise caused E15-30 errors.

White noise influence was small.

NW-SS Without white noise, no error was observed,
whereas white noise caused many E15-30 errors.

No E10 errors were observed around 40◦.

should reexamine the use of other impulse response mea-
surement signals instead of up-TSP for improving the per-
formance of SSL. Their contribution to the improvement
of SSS is an interesting open problem.

Acknowledgements
The authors appreciate Professor Yutaka Kaneda for his valued
supports and Dr. Kazuhiro Nakadai for his valuable advice and
discussion. This research is supported primarily by JSPS Kak-
enhi (S) No.2420006, and partially supported by ImPACT Tough
Robotic Challenge and Waseda University Leading Graduate Pro-
gram for Embodiment Informatics.

References:
[1] K. Nakadai, T. Lourens, H. G. Okuno, and H. Kitano, “Active Au-

dition for Humanoid,” Proc. of the Seventeenth National Conf. on
Artificial Intelligence (AAAI-2000), pp. 832-839, 2000.

[2] K. Nakadai, H. G. Okuno, and H. Kitano, “Real-Time Auditory and
Visual Multiple-Speaker Tracking For Human-Robot Interaction,”
J. of Robotics and Mechatronics, Vol.14, No.5, pp. 479-489, 2002.

[3] I. Nishimuta, K. Yoshii, K. Itoyama, and H. G. Okuno, “Toward
a Quizmaster Robot for Speech-based Multiparty Interaction,” Ad-
vanced Robotics, Vol.29, Issue 18, pp. 1205-1219, Sep. 2015.

[4] H. G. Okuno and K. Nakadai, “Robot Audition: Its Rise and Per-
spectives,” Proc. of 2015 Int. Conf. on Acoustics, Speech and Signal
Processing (ICASSP 2015), pp. 5610-5614, 2015.

[5] K. Nakadai, T. Takahashi, H. G. Okuno, H. Nakajima, Y. Hasegawa,
and H. Tsujino, “Design and Implementation of Robot Audition
System “HARK” – Open Source Software for Listening to Three
Simulteaneous Speakers,” Advanced Robotics, Vol.24, Issue 5-6,
pp. 739-761, Jan. 2010.

[6] K. Nakamura, K. Nakadai, F. Asano, and G. Ince, “Intelligent
Sound Source Localization and Its Application to Multimodal Hu-
man Tracking,” Proc. of 2011 IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems (IROS 2011), pp. 143-148, 2011.

[7] R. O. Schmidt, “Multiple emitter location and signal parameter es-
timation,” IEEE Trans. on Antennas and Propagation, Vol.34, No.3,
pp. 276-280, 1986.

[8] F. Asano, M. Goto, and H. Aso, “Real-time Sound Source Local-
ization and Separation System and Its Application to Automatic
Speech Recognition,” Proc. of EUROSPEECH-2001, pp. 1013-
1016, 2001.

[9] S. Müller, “Measuring Transfer-Functions and Impulse Responses,”
Chapter 5, Springer Handbook of Acoustics, p. 1000, Springer,
2009.

[10] S. Weinzierl, A. Giese, and A. Lindau, “Generalized multiple sweep
measurement,” Proc. of 126th AES Convention, p. 7767, 2009.

[11] P. Majdak, P. Balazs, and B. Laback, “Multiple Exponential Sweep
Method for Fast Measurement of Head-Related Transfer Func-
tions,” J. of Audio Engineering Society, Vol.55, Issue 7/8, pp. 623-
637, 2007.

[12] Y. Kaneda, “Measurement signals for an acoustical impulse
response,” invited talk, IEICE Technical Report, EA2015-68,
SIP2015-117, SP2015-96, Mar. 2016 (in Japanese).

[13] K. Nakamura, K. Nakadai, and H. G. Okuno, “A real-tome super-
resolution robot audition system that improves the robustness of
simultaneous speech recognition,” Advanced Robotics, Vol.27, Is-
sue 12, pp. 933-945, 2013.

[14] G.-B. Stan, J.-J. Embrechts, and D. Archambeau, “Comparison of
different impulse response measurement techniques,” J. of Acoustic
Society of America, Vol.50, No.4, pp. 249-262, Apr. 2002.

[15] M. R. Schroeder, “Integrated-impulse method for measuring sound
decay without using impulses,” J. of Acoustic Society of America,
Vol.66, No.2, pp. 497-500, 1933.

[16] M. R. Schroeder, “Number Theory in Science and Communication,”
Spriger-Verlag, 1984.

[17] N. Aoshima, “Computer-generated pulse signal applied for sound
measurement,” J. of Acoustic Society of America, Vol.69, No.5,
pp. 1483-1488, 1981.

[18] Y. Suzuki, F. Asano, H.-Y. Kim, and T. Sone, “An optimum
computer-generated pulse signal suitable for the measurement of
very long impulse responses,” J. of Acoustic Society of America,
Vol.97, No.2, pp. 1119-1123, 1995.

[19] S. Müller and P. Massarani, “Transfer Function Measurement with
Sweeps,” J. of Audio Engineering Society, Vol.49, No.6, pp. 443-
471, 2011.

[20] A. Farina, “Simultaneous Measurement of Impulse Response and
Distortion with a Swept-Sine Techniques,” Proc. of 108th Conven-
tion of Audio Engineering Society, p. 5093, Paris, February 2000.

[21] N. Moriya and Y. Kaneda, “Optimum signal for impulse response
measurement that minimizes error caused by ambient noise,” J. of
Acoustic Society of Japan, Vol.64, No.12, pp. 695-701, 2008 (in
Japanese).

[22] H. Krim and M. Viberg, “Two decades of array signal processing
research: the parametric approach,” IEEE Signal Processing Maga-
zine, Vol.13, No.4, pp. 67-94, 1996.

[23] K. Nakamura, K. Nakadai, F. Asano, and H. Tsujino, “Intelligent
Sound Source Localization for Dynamic Environments,” Proc. of
2009 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS
2009), pp. 664-669, 2009.

[24] W. Akahori, T. Masuda, H. G. Okuno, and S. Morishima, “The
Evaluation of influence of Measurement Methods of the Trans-
fer Function on Sound Source Localization and Separation,” Proc.
of the 77th Annual Meeting of Information Processing Society of
Japan, 5P-03, pp. 119-120, Mar. 2015.

[25] K. Ito, M. Yamamoto, K. Takeda, T. Takezawa, T. Matsuoka, T.
Kobayashi, K. Shikano, and S. Itahashi, “JNAS: Japanese speech
corpus for large vocabulary continuous speech recognition,” J. of
Acoustic Society of Japan (E), Vol.20, No.3, pp. 199-206, 1999.

[26] T. Takahshi, K. Nakadai, C. T. Ishi, and H. G. Okuno, “Investigation
of Sound Source Localization and Separation under a Real Environ-
ment,” Proc. of 29th Annual Meeting of Robotics Society of Japan,
AC1EF3-3, 2011 (in Japanese).

Supporting Online Materials:
[a] HARK group, “6.2.1 LocalizeMUSIC,” HARK Document, Version

2.2.0 (Revision: 7981).
http://www.hark.jp/document/hark-document-en/
subsec-LocalizeMUSIC.html [Accessed July 20, 2016]

Journal of Robotics and Mechatronics Vol.29 No.1, 2017 81



Suzuki, T. et al.

Name:
Takuya Suzuki

Affiliation:
Waseda University

Address:
3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
Brief Biographical History:
2015- Part-time Research Assistant, Graduate Program for Embodiment
Informatics, Waseda University
2016- Junior of Department of Computer Science and Engineering,
Waseda University
Main Works:
• robot audition and robotic musicianship
Membership in Academic Societies:
• Information Processing Society of Japan (IPSJ)

Name:
Hiroaki Otsuka

Affiliation:
Waseda University

Address:
3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
Brief Biographical History:
2015- Part-time Research Assistant, Graduate Program for Embodiment
Informatics, Waseda University
2016- Junior of Department of Electrical Engineering and Bioscience,
Waseda University
Main Works:
• robot audition

Name:
Wataru Akahori

Affiliation:
Waseda University

Address:
55N406, 3-4-1 Okubo, Shinjuku-ku, Tokyo 161-8555, Japan
Brief Biographical History:
2015 Received Bachelor of Engineering (B.E) from Waseda University
2015- Master of Engineering (M.E.) Student, Waseda University
Main Works:
• user experience design
Membership in Academic Societies:
• Information Processing Society of Japan (IPSJ)
• Association for Computing Machinery (ACM)

Name:
Yoshiaki Bando

Affiliation:
Department of Intelligence Science and Tech-
nology, Graduate School of Informatics, Kyoto
University
Research Fellowship for Young Scientists
(DC1), Japan Society for the Promotion of
Science

Address:
Room 417, Research Bldg. No.7, Yoshida-honmachi, Sakyo-ku, Kyoto
606-8501, Japan
Brief Biographical History:
2014 Received M.Inf. degree from Graduate School of Informatics, Kyoto
University
2015- Ph.D. Candidate, Graduate School of Informatics, Kyoto University
Main Works:
• “Posture estimation of hose-shaped robot by using active microphone
array,” Advanced Robotics, Vol.29, No.1, pp. 35-49, 2015 (Advanced
Robotics Best Paper Award).
Membership in Academic Societies:
• The Institute of Electrical and Electronic Engineers (IEEE) Robot
Automation Society (RAS)
• The Robotics Society of Japan (RSJ)
• Information Processing Society of Japan (IPSJ)

Name:
Hiroshi G. Okuno

Affiliation:
Professor, Graduate School of Science and Engi-
neering, Waseda University
Professor Emeritus, Kyoto University

Address:
Lambdax Bldg 3F, 2-4-12 Okubo, Shinjuku, Tokyo 169-0072, Japan
Brief Biographical History:
1996 Received Ph.D. of Engineering from Graduate School of
Engineering, The University of Tokyo
2001-2014 Professor, Graduate School of Informatics, Kyoto University
2014- Professor, Graduate School of Science and Engineering, Waseda
University
Main Works:
• “Design and Implementation of Robot Audition System “HARK”,”
Advanced Robotics, Vol.24, No.5-6, pp. 739-761, 2010.
• “Computational Auditory Scene Analysis,” Lawrence Erlbaum
Associates, Mahmoh, NJ, 1998.
Membership in Academic Societies:
• The Institute of Electrical and Electronic Engineers (IEEE), Fellow
• The Japanese Society for Artificial Intelligence (JSAI), Fellow
• Information Processing Society Japan (IPSJ), Fellow
• The Robotics Society of Japan (RSJ), Fellow

82 Journal of Robotics and Mechatronics Vol.29 No.1, 2017

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

