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This study proposes the use of a deep neural net-
work to localize a sound source using an array of mi-
crophones in a reverberant environment. During the
last few years, applications based on deep neural net-
works have performed various tasks such as image
classification or speech recognition to levels that ex-
ceed even human capabilities. In our study, we employ
deep residual networks, which have recently shown
remarkable performance in image classification tasks
even when the training period is shorter than that of
other models. Deep residual networks are used to pro-
cess audio input similar to multiple signal classifica-
tion (MUSIC) methods. We show that with end-to-end
training and generic preprocessing, the performance
of deep residual networks not only surpasses the block
level accuracy of linear models on nearly clean en-
vironments but also shows robustness to challenging
conditions by exploiting the time delay on power in-
formation.

Keywords: sound source localization, deep learning,
deep residual networks

1. Introduction

Speech is one of the most important means of commu-
nication between humans. To participate in a conversa-
tion, humans usually require information about the source
of the speech. Regardless of the number of sources, hu-
mans look in the direction of the source(s) to continue in-
teracting. In audio processing, the search for the location
of the source (i.e., sound source localization (SSL)) is a
generic problem formulated as part of the cocktail party
effect, which humans can naturally solve by obtaining the
source location and then filtering the desired speech infor-
mation.

Machines and robots have become part of everyday
life. Thus, for natural interactions with humans, robots
should have auditory functions [1] that can be used for
SSL, whereby recognizing sound locations and detecting
sound events are necessary. Environmental factors such
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as background noise, sound sources in motion, and room
reverberations change dynamically in the real world [2].
In addition, the number of microphones and the acoustic
properties of a robot complicate SSL.

Conventional methods to implement and improve the
performance of SSL include subspace-based methods
such as multiple signal classification (MUSIC) [3]. In
these methods, the localization process employs represen-
tations of the energy of signals as well as the time differ-
ence of the arrival of those signals. These representations
are called steering vectors and can be obtained in the fre-
quency domain by means of measurements [4] or physi-
cal models [5]. While MUSIC uses only sound informa-
tion, other methods employ audio-visual data for track-
ing sound sources in real time [6]. One study revealed
that when using both visual data and the pitch extracted
from a binaural auditory system, a conversation between
multiple sources can be tracked [6]. However, a binaural
system can be used only for two-dimensional localization.
By contrast, a microphone array is used for an SSL task
in three dimensions [7]. In that study, the time delay of
arrival was used to estimate the source location, but the
system worked only when the source was located within
3 to 5 m of the array. The use of a pitch-cluster-map
for sound identification was introduced in [8], in which
the sound source localization was based on delay and
sum beam forming using a microphone array of 32 chan-
nels, and for multiple sources main-lobe fitting was em-
ployed. The system could obtain the location of not only
speech events but also non-voice sounds. MUSIC was
implemented in [4,9] based on standard eigenvalue de-
composition (SEVD-MUSIC) and generalized eigenvalue
decomposition (GEVD-MUSIC). These implementations
revealed that performing SSL was possible even in noisy
environments that incurred a relatively low computation
cost.

Recently, deep neural networks (DNN) and deep con-
volutional neural networks (DCNN) approaches have led
to major breakthroughs in different signal processing
fields such as speech recognition [10, 11], natural lan-
guage processing [12] and computer vision [13]. Many
improvements have occurred in the field of computer
vision using deep learning. Deep residual networks
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(DRNS5) [14] have shown the best performance on the Im-
ageNet Large Scale Visual Recognition Challenge 2015.

In this study, we refined a method for performing SSL
tasks by replacing the MUSIC method with deep learn-
ing (DL), which in some cases requires a pre-calculation
of the environment, and by maintaining a robust imple-
mentation in challenging environments without a major
increase in the learning cost (e.g., amount of memory us-
age and computational time for the optimization process).

The different implementations of MUSIC have per-
formed real-time SSL in noisy environments. However,
the performance of these methods depends on the num-
ber of microphones used for the task and diminishes with
increased signal-to-noise ratio (SNR). In addition, to im-
prove the performance of SSL using GEVD-MUSIC, the
correlation matrix for noise must be pre-calculated for
known noises. However, in case of unknown noises, the
performance of GEVD-MUSIC may drop to the same ac-
curacy level as that of SEVD-MUSIC, thus showing low
robustness at a low SNR.

A DNN-based model used in a flexible arrangement
of a microphone array was introduced in [15] to imple-
ment SSL tasks. In that study, the power and phase in-
formation of the audio was exploited to improve SSL.
The use of both power and phase information is more im-
portant for a multiple-channel audio source because the
location calculation is affected by noise and reflections.
However, implementing a model with greater input in-
formation requires a larger number of parameters to in-
crease the processing time and learning cost. Moreover,
DCNNs have performed better than DNNSs in speech sig-
nal processing tasks. In addition, because of the shared
weights, the number of parameters to be trained can be
reduced. Even with a lack of sound reflections and when
using only the delay information between channels, the
study in [16] showed that obtaining the direction of ar-
rival (DOA) is possible using a DCNN. However, using a
single frame increases the difficulty of finding the source
location because of the lack of phase information in envi-
ronments having a high noise level or a greater number of
reflections. Therefore, for a time-delay based model, us-
ing multiple frames is recommended to improve the per-
formance in noisy environments [17]. Furthermore, al-
though DCNN approaches perform well at classification
tasks [13, 18], the slow learning process, the long training
time because of possible fine-tuning requirements, and the
fact that the DCNN model may not be used in other tasks
means that DCNN approaches are unsuitable for perform-
ing a flexible task such as SSL.

In this study, we focus on the following three aspects of
DL implementation for SSL tasks:

1. Replacement: A subspace-based method such as
MUSIC, which is commonly used for SSL, requires
a steering vector from a multiple-channel signal to
process the localization. This method can be re-
placed with a DCNN model by using the power
information from frequency-domain frames of a
multiple-channel audio as input and by providing the
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location of the sound source as target. For this re-
placement, the model does not require information
about the environment or the input noise.

2. Robustness: Real-world environments change dy-
namically and their noises affect audio signals. Thus,
DCNNSs should perform accurate SSL at different
SNR levels.

3. Learning efficiency: The performance of a DL model
also depends on the training time. However, a larger
training set does not ensure a good performance
because of problems that arise in the training pro-
cess such as overfitting and accuracy training satura-
tion [14].

The remainder of this paper is organized as follows. We
first present our proposed methods for sound source sep-
aration and then explain residual learning and its use for
SSL. We next describe the implementation and training of
DRNs, and demonstrate the effectiveness of DRNs exper-
imentally. Finally, we present the conclusion of our study
and offer suggestions for future research.

2. Proposed Method

2.1. Deep Convolutional Neural Network

We implement DCNN to replace MUSIC using a real-
world impulse response and end-to-end training to per-
form the SSL task. Our DCNN uses only the power
information from several frequency-domain frames of a
multiple-channel audio stream to obtain the location of
a sound source, and adding environmental information
is not required to perform the task. During the last
decade, factors such as the commercialization of high-
performance low-cost graphics processing units (GPU),
development of improved optimization algorithms, and
availability of open-source libraries have enabled the em-
ployment of DL for classification or recognition prob-
lems. DL, which attempts to model high-level abstrac-
tions, uses artificial neural networks with multiple hid-
den layers of units between the input and output layers to
model complex nonlinear representations. This structure
is known as DNN. A principal characteristic of a DNN is
its ability to self-organize sensory features from extensive
training data.

Recently, convolutional layers, which employ a dif-
ferent layer configuration, were implemented in net-
works and were successful at several signal processing
tasks [10-13]. The configuration neurons of convolu-
tional layers, instead of being fully connected, are formed
by means of spatially arranged features maps. A con-
figuration that uses one or two convolutional layers in-
side a neural network is known as a convolutional neural
network (CNN). A DCNN, defined previously, uses sev-
eral convolutional layers. The CNN proposed in [19] em-
ployed a typical configuration consisting of:

a) convolutional layers, in which feature maps were ob-
tained by convolving the input x with a kernel filter W,
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Fig. 1. DCNN structure.

and then applying a nonlinear function 6 [20]. Note that
the k-th feature map is determined by:

hﬁj_(s((wk*x)iﬁbk), ()

where WX represents the weights and by is the bias at the
k-th feature map.

b) sub-sampling layers known as pooling layers, which in
most cases consist of a MaxPooling (max) layer, formu-
lated as:

k k k
yi»j:maxm,ne[o,p] (hi+m,j+n>7 B (2]

which, from a p X p pooling region, obtains the maximum
value for the i-th, j-th position on the k-th feature map.
c) fully connected layers.

These CNNs have been used in different tasks such as
image classification [13], in which they have performed
better than standard feedforward neural networks because
of their fewer connections and parameters as well as the
ability to make proper assumptions about the nature of
images. CNNs have also been tested on speech tasks such
as raw speech detection [21], acoustic models [11,22],
and speech recognition [23,24], in which the features of
CNN can correctly reduce the word error rate.

Stochastic gradient decent (SGD) optimization and its
variants such as momentum [25] and AdaGrad [26], have
been shown to perform effective training on deep net-
works. However, the deeper the network is, the more
difficult the training becomes because small changes to
network parameters amplify outputs and increase the cost
(i.e., loss) function error. Thus, to train deeper models,
a mechanism called batch normalization was introduced
in [27]. This mechanism not only accelerates the train-
ing process and allows training of deeper DNNs or DC-
NNs, but it also enables training with higher learning rates
without divergence risks. The development of new frame-
works has allowed an implemented flexible convolutional
layer to be divided into sublayers [28], in which adding
batch normalization and implementing different activa-
tions are possible, as shown in Fig. 1.

However, DCNN models such as those used in image
classification tasks [13] barely achieve an acceptable ac-
curacy level on SSL tasks because of background noise,
moving sources, and room reverberations. To obtain a ro-
bust implementation, in our study we add convolutional
layers trained with residual learning.
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Fig. 2. Residual learning. Left: a building block. Right: a
bottleneck.

2.2. Residual Learning

DCNN models trained with residual learning not only
perform better but also can speed up the learning process
and improve the loss convergence in the training. Recent
research has revealed that the network depth is critical
during challenging tasks. Deeper models are not only
useful in classification tasks such as ImageNet dataset
classification but also greatly benefit other non-trivial vi-
sion computing tasks. The deeper a network is, the eas-
ier the task becomes [14]. Vanishing or exploding gra-
dients presents an obstacle for implementing very deep
networks, but this problem has been addressed by nor-
malizing intermediate layers or normalizing initialization,
thus allowing training convergence with the use of SGD
optimization. With increasing network depth, accuracy
training saturates and then degrades rapidly, thus expos-
ing this as a degradation problem. Deep residual networks
(DRN) were introduced in [14] to address this degrada-
tion. Residual learning can be denoted as:

Fx):=Hx)—x, . . ... ... ... 3

where H (x) is the desired underlying mapping. Residual
learning allows the layers to fit a residual mapping F'(x)
instead of hoping that each few stacked layer directly fits
the desired underlying map. The original mapping is then
reformulated as:

Hx)=Fx)+x. . . . .. ... ... &

This formulation can be implemented by a feedforward
neural network using shortcut connections (Fig. 2). A
shortcut is presented as an identity mapping, which skips
one or more layers. In addition, because it neither com-
putationally complex nor requires additional parameters,
it can be trained end-to-end using a common library [28].

To decrease the learning cost, a deeper bottleneck was
also introduced in [14]. Here, a stack of three layers was
used for each residual function F’; therefore, to reduce and
restore the dimensions, 1 x 1, 3 x 3, and 1 x 1 kernel for
each of the three convolutional layers were used.

2.3. Nonlinear Activation Functions

Novel nonlinearity activation functions have been im-
plemented to improve the accuracy performance of DC-
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Fig. 3. Activation function output.

NNs. Even in challenging conditions with higher noise,
models implemented with the novel activation functions
perform better than conventional methods.

The introduction of novel nonlinear activation func-
tions has improved the accuracy and performance of DC-
NNs (Fig. 3) [18,29], thus allowing DCNNs to surpass
human classification performance. In contrast to conven-
tional sigmoid-like activations, rectifier neurons (e.g., rec-
tified linear unit (ReLU)) nonlinearities have been used
with considerable success for computer vision [13] and
sound tasks [30,31]. The ReLU activation function,
which is defined as:

ﬂﬂ—{g ifx>0

ifx<0

has led to better solutions. However, because the acti-
vation outputs are non-negative, the mean activation is
greater than zero. Thus, the function is not centered and
slows down learning [32]. Therefore, to speed up learn-
ing and improve performance, a generalization of ReLU
called parametric rectified linear unit (PRelLU) was in-
troduced in [18]. This study claimed that using PReLU
in a DCNN can surpass human performance. PReL.U is
defined as:

&)

Xi ifxi Z 0
f@g_{am N R ()

where a; is a coefficient that controls the slope of the neg-
ative part and can be a learnable parameter or fixed value.
PReLU can improve model accuracy by including nega-
tive values in the activation output, with minimal overfit-
ting risk at negligible additional computational cost. Nev-
ertheless, PReLU does not ensure a robust deactivation
state. Exponential linear unit (ELU) [29] was introduced
as a nonlinearity that can improve learning characteristics
compared with other linear activation functions. ELU is
defined as:

Ui { a(exp(x) — 1)

where exp represents the exponential function. A network
implemented with ELU activations considerably acceler-

ifx>0

ifx<0 ’ @)
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Fig. 4. Network architecture. Left: plain network. Right:
residual network. The dotted line shortcut represents a 1 x 1
convolutional layer.

ates learning and show more robust generalization perfor-
mance than ReLUs and PReLUs.

2.4. Model Architecture

DCNNs and convolutional layers trained for residual
learning can improve the performance and robustness of a
plain network without additional learning costs. There-
fore, we implement models (Fig. 4) with 1-4 residual
blocks, named ResNet 1-4, respectively (see Table 1),
and train them by means of supervised learning. After the
input, two 1 x 1 kernel convolutional layers with TanH
and ELU are stacked and then connected to the resid-
ual blocks. We also evaluate larger models using only
a convolutional layer after the input. According to [14], a
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Table 1. ResNet architecture for SSL.
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. ResNetl ResNet2 ResNet3 ResNet4
Layer Name | Output Size
19 Layers 28 Layers 36 Layers 45 Layers
1 x 1,32 TanH 1 x 1,32 TanH
convl_x 257 x 20 1 x 1, 32 TanH 1x 1,32 TanH
1x1,32 ELU 1x1,32 ELU
1x1,32 1x1,32 1x1,32 1x1,32
1 2 4
conv2.x 257 % 20 3x3,32 x3| X 3x3,32 x3| x 3x3,32 x3| X3 3x3,32 x3| X
1x1,32 1x1,32 1x1,32 1x1,32
ELU TanH/ELU ELU ELU
conv3 213 x 17 45 x 4, 32, stride 1
1x4 1, stride 1

convé 169 x 11 x4 max pool, stride

45 x 4, 64, stride 1
convs 125 x 8 45 x 4, 64, stride 1
convé 78 %5 4 x 1 max pool, stride 1

45 x 4, 128, stride 1
conv7 34 x2 45 x 4, 256, stride 1
conv8 8x1 27 x 2, 512, stride 1

1x1 2048-d fc, ELU
1x1 361-d fc, SoftMax

deeper bottleneck can accelerate up learning. Therefore,
we use three bottlenecks as a residual block, in which
each bottleneck contains a set of three layers (Fig. 2 right).
We then add a plain network with six convolutional lay-
ers having an empirical-sized kernel, which we evaluated
prior to conducting experiments. The empirical kernel
size is set to 45 x 4 dims for the first five layers and then
a 27 x 2 kernel convolution layer is stacked. With this
configuration, a ResNet with one residual block is imple-
mented with 19 layers.

Each convolutional layer is followed by a batch nor-
malization [27] layer, and an ELU [29] activation is used
for the rest of the network. A TanH activation is evaluated
on the first residual block of the ResNet with two residual
blocks. A max-pooling layer with a kernel size of 1 x 4 is
used after the first 45 x 4 kernel convolutional layer, and
another max-pooling layer with a kernel size of 4 x 1 is
used after the third 45 x 4 convolutional layer. To evalu-
ate the performance of residual learning, we also train a
plain network (PlainNet) with the same number of layers
and iterations as those in ResNet1.

3. Experiments

3.1. Data Preparation and Preprocessing

For training and evaluation, we used the Acoustic Soci-
ety of Japan-Japanese Newspaper Article Sentence (ASJ-
JNAS) corpora, which include Japanese utterances of dif-
ferent lengths from 216 speakers for training and those
from 42 speakers for evaluation. To prepare the train-
ing dataset, we used impulse responses from a HEARBO
robot (Fig. Sleft) equipped with a microphone array of
8 and 16 channels obtained from a 4 x 7 m room with
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200 ms of reverberation every 5°. A clean single-channel
utterance was convoluted with the multiple-channel im-
pulse response of a random angle and white noise was
added to each channel in a range between clean data and
—30 dB of SNR. The noise added to each channels was
different to simulate a real environmental noise. The in-
put data for the network was prepared using short-time
Fourier transform (STFT), and a label pointing to the an-
gle or silence was set as the target. The input was prepro-
cessed according the following steps:

e A normalized N-channel audio with a 16-kHz sam-
pling rate was transformed into STFT features, thus
extracting a frame with a length of 400 samples
(25 ms) and a hop of 160 samples (10 ms). The
length and hop values were based on previous re-
search on speech tasks [22].

o From the STFT, we used only the power information.
The power was normalized on the W frequency bin
axis, in a range between 0.1 and 0.9.

o Because one STFT frame from the audio contains
corrupt information due to noise, we stacked H
frames. Thus, the input of the network became a
N x W x H dimensional file.

Regarding the output, we prepared the angle label as
follows (Fig. 6):

e From the clean audio used to prepare the input
multiple-channel audio, an STFT file with the same
dimensions as those of the input but with only one
channel (1 x W x H) was obtained.

« From this file, we evaluated the root mean squared
(RMS) power of all frames.
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Fig. 6. Output preprocessing. Top: STFT clean audio. Bot-
tom: speech-angle activation label.

o If several frames F have a RMS value of —120, the
target label pointed to the silence label index. Oth-
erwise, the target label was set to the angle used to
prepare the input audio.

In addition, to evaluate the performance of residual learn-
ing, we trained a model using the impulse responses from
a microcone (Fig. Sright) in an environment with many
reflections (Fig. 7). The microcone is a microphone array
of seven channels and was manufactured by BIAMP.

3.2. Training Method

For our experiments, we used audio data employing
STFT to prepare multiple training files, the input for
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Fig. 7. Microcone impulse response room. Reverberation
time was approximately 500 ms.

which was an array having dimensions of 7/8/16 x257 x
20 (i.e., audio channels, frequency bins, frames); the cor-
responding label output had an integer value. From each
audio file, a random number of prepared files were se-
lected. To maintain a uniform distribution between the
angle targets, 33750 files were selected for each angle.
We thus prepared a dataset having 2430000 files. For the
distribution, we mixed the files with sound and no-sound
information. Simultaneously, a noise with a random SNR
level was added to each audio file. The SNR values of the
input audio were selected from Clean, 30, 10, 5, 0, —5,
—10, —20, and —30 dB.

We trained six end-to-end networks using ADAM
solver [33] and SoftMax with cross entropy as the loss
function. No finetune or previous training was used for
the experiments. The initial alpha for the solver was set
to 1074, and the target-label was set from 0 to 359°. The
output of the network was set to 361 dimensions, where
the 0 to 359 outputs were activated with their respective
angles labels, and the 360th output was activated when
the input data contained no-audio information. The value
of F for evaluating the input no-audio data was empiri-
cally set to 13 frames. As a result, the network not only
could locate the sound source angle, but it also ensured
that the network activated a correct output in the absence
of sound information. For the experiments, we did not use
the dropout function on the fully connected layers. We
trained shorter models for five epochs and larger models
for two epochs, using a mini batch of only 70 files. Each
epoch required approximately 24 h using a GPU NVIDIA
Titan X.

3.3. Evaluation Criteria

We evaluated the networks using two difference mea-
sures. First, we evaluated the accuracy of an audio file
despite the number of frames generated from it. In this
block accuracy evaluation, we forwarded the inputs file
that was preprocessed from an audio file, and then stacked
the outputs. From the outputs, we evaluated the median
angle with respect to the target angle of the file using a
confusion matrix, and then calculated the mean accuracy
of each network based on a corresponding SNR level. We
did not consider whether the input file contains sound or

Journal of Robotics and Mechatronics Vol.29 No.1, 2017



no-sound information. SEVD-MUSIC was implemented
on HARK [34] and its result was used as a reference.
Second, we evaluated on a point-to-point basis each file
obtained from an audio file. We not only evaluated the
accuracy of the angle output, but the correct activation of
the silence index at the absence of sound information in
the input. For the evaluation, we used the detection rate
as well as the accuracy rate formulation proposed in [35].
These were formulated and modified, respectively, as:

N—D-S
C—<7>><100%, N )
R
N—-D-S—-1
A_<+>><100%7 N )}

where C is the correct detection rate, A is the correct ac-
curacy rate, N is the correct source positions, which is
the number of sources located inside a fixed range of their
correct positions, and S is the source position replacement
or incorrect position, which is the number of sources lo-
cated further from fixed range of their correct position. /
is the number of incorrect insertions or ghost detections,
D is the number of incorrect speech deletions or misdetec-
tions, and R is the number of frames of reference for the
evaluation. In this evaluation, we compared the results
between models.

For both evaluations, 50 audio files (25 from females,
and 25 from males) were used and tested at intervals of
5° from 0° to 359°. The same white noise was added
to all channels in an SNR range from the clean data up
to —35 dB. Thus, the noise evaluated was different from
that used in the training process. We checked robust-
ness against the speaker, SNR, as well as the efficiency
of shorter/longer training on deeper networks.

4. Results

In this section, we present the result of using DL mod-
els for SSL tasks. The models showed robust performance
in challenging environments without additional learning
cost. Table 2 lists the configuration parameters for train-
ing and evaluation.

4.1. Training Process

Figure 8 presents the graphs from the training process
of the models. We observed that a training using resid-
ual networks not only had a fast convergence compared to
plain networks (Fig. 8 top), but also that the learning loss
was less. However, stacking additional residual blocks
did not affect the learning process, neither speeding up the
loss convergence (Fig. 8 center) nor improving the initial
accuracy of the training dataset (Fig. 8 bottom).

4.2. Block Level Accuracy

We evaluated the block level accuracy for all networks
at different SNR levels and compared it with SEVD-
MUSIC as a reference. The confusion matrix for the eval-
uation of our experiments is shown in Fig. 9. Note that the
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Table 2. Experimental configuration.

Parameters  Value

Number of sources: 0 or 1

Sampling frequency: 16 kHz
Frame length and shift: 25 ms & 10 ms
Frames per input file: 20 frames
SNR: 45dB ~ —35dB
Microcone reverberation time: @500 ms

Microcone source distance: 1.5 m
Number of Microphones: 7

HEARBO reverberation time: 200 ms
Number of Microphones: 8 & 16
HEARBO source distance@8mic: 1m & 1.5m

HEARBO source distance@16mic: 1.5 m
Training Noise Signal:

Multiple Channel white noise
216 (male & female)

Same white noise

46 (male & female)

Training Speakers:

Test Noise Signal:
Test Speakers:

block accuracy of the median angle was evaluated with a
tolerance of +2.5°.

Table 3 shows the results of the block accuracy rate of
all systems evaluated for HEARBO robot. The first three
columns show comparisons when using a 10-layer Plain-
Net at different distances and using 8 and 16 channels.
We observed that the accuracy improved when the num-
ber of channels increased. In addition, we could achieve
a better performance when the distance to the array was
closer. However, the accuracy was not better than that
of SEVD-MUSIC. We then observed that larger deep-
learning-based SSL performed better than did SEVD-
MUSIC. However, we also determined that not only does
residual learning perform better than do plain networks,
but that stack additional residual blocks is not required,
whereas a different activation function is needed to obtain
a good performance. ResNet] showed better performance
on SNR levels higher than 0, and an acceptable perfor-
mance remained until —10 dB. The performance then di-
minished quickly.

The last two columns of Table 3 show the results of the
block accuracy rate for models trained for two epochs.
The trained models performed better compared to SEVD-
MUSIC, and the best accuracy between models alternated
based on the SNR level. Until an SNR level of —5 dB
was reached, ResNet3 showed better results than that of
the ResNet4. On lower SNR levels, ResNet4d showed
a slightly better result. However, both of these models,
even when were deeper than others, did not perform bet-
ter compared to a model trained for additional epochs.

For a better observation of the network behavior, we
present the confusion matrices of ResNet4 in Fig. 9. We
observed that on clean environments, the model more ac-
curately predicted the angle (Fig. 9top). However, we
observed that at an SNR level of —35 dB, the model pre-
dicted nearly all the angles as silences. In this case, the
models showed that when determining whether the input
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Fig. 8. Training graphs. Top: PlainNet and ResNetl train-

ing loss. Center: ResNets training loss. Bottom: ResNets

training accuracy.

has sound or no-sound information was not possible be-
cause of the noise level, the model fixed the output to the
silence index, offering stability on silence or very noisy
environments.

Table 4 shows the comparison of SEVD-MUSIC and
a DCNN model that uses an array of microphones of
7 channels in an environment having greater reflections.
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True Label

Predicted Label

True Label

Predicted Label

Fig. 9. ResNet4 angle prediction confusion matrix. Top:
Clean. Bottom: —35 dB SNR.

The table indicates that SEVD-MUSIC performed better
than ResNetl. However, with a reduced number of chan-
nels and the use of power information, ResNet1 could cal-
culate the DOA as effectively as does the SEVD-MUSIC.

4.3. Point-to-Point Evaluation

We evaluated the detection and accuracy rate perfor-
mance of the models using the evaluation based on the
formulation presented in [35]. In this evaluation, we com-
pared the output of the models to the true angle prepared
in advance. Here, we considered not only the angle of
the source, but whether the models could detect sound or
silence information at the input. The fixed range for a
correct position was set to £20°.

Table 5 shows the detection rate of the models and
Table 6 shows their accuracy rates. We observed that
ResNetl had a better result than others and performed
well on the accuracy rate until —10 dB (i.e., it rose to
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Table 3. HEARBO block accuracy.

SNR (dB) PlainNet 8Ch PlainNet 8Ch PlainNet 16Ch SEVD-MUSIC PlainNet | ResNetl ResNet2 ResNet3 | ResNetd
10 Layers /1.0m | 10 Layers /1.5m | 10 Layers /1.5m 16 Channels TanH/ELU
—-35 0.00 0.00 0.08 1.39 0.03 2.45 1.94 1.39 1.47
—-30 0.00 0.00 0.08 1.39 0.17 3.50 2.67 1.47 1.92
—25 0.00 0.00 0.08 1.39 1.06 6.94 5.33 2.08 3.33
—20 0.06 0.00 0.08 1.39 4.86 17.19 13.86 4.81 7.78
—15 0.06 1.42 2.42 1.39 19.14 36.28 31.94 11.44 20.72
—10 0.06 1.94 5.58 3.64 35.78 60.31 53.03 31.75 31.78
-5 2.94 7.92 14.31 16.42 55.53 80.06 71.14 55.86 44.69
0 14.19 28.78 34.17 40.11 70.58 90.08 82.08 75.58 58.89
5 37.00 54.14 68.89 66.75 80.17 95.25 88.97 86.89 74.92
10 63.89 80.89 87.89 84.67 88.33 97.53 93.11 93.22 88.17
15 91.00 91.04 93.61 90.69 94.28 98.83 96.44 97.42 96.03
30 98.56 98.77 98.92 96.61 99.58 99.61 99.61 99.69 99.72
45 98.28 98.67 98.89 98.51 99.58 99.53 99.58 99.58 99.78
Clean 98.53 98.61 98.72 98.53 99.14 99.14 99.36 99.25 98.89
Table 4. Microcone (array of 7 microphones) block accuracy. Table 5. HEARBO detection rate.
SNR (dB) | SEVD-MUSIC | ResNetl SNR (dB) | Plain Network | ResNetl ResNet2 ResNet3 | ResNet4
TanH/ELU
—35 1.39 1.39 —35 —86.13 13.16 —8.26 —10.59 —47.06
-30 1.39 1.39 -30 —80.72 15.92 —3.43 -8.92 | —19.47
-25 1.39 1.39 —25 —71.65 21.11 8.75 —1.08 0.72
20 1.42 1.39 —-20 —48.6 32.64 28.64 —4.02 14.29
—15 0.18 53.23 49.37 7.18 27.59
—15 2.64 2.06 ~10 3445 68.95 59.53 3674 | 27.65
—10 9.10 6.42 -5 51.93 74.93 64.16 55.00 25.23
_5 21.16 16.94 0 61.73 76.26 66.8 63.04 | 32.04
5 67.6 76.1 70.02 68.93 46.94
36.12 33.61 o 2
10 71.99 76.75 72.66 73.58 61.84
50.99 49.69 15 75.55 78.74 75.08 7698 | 72.17
10 66.75 64.61 30 81.21 82.82 82.44 83.26 83.03
15 81.26 7811 45 84.22 8494 | 8554 | 8524 | 85.33
Cl 84.14 84.75 85.23 85.11 84.66
30 97.42 95.36 “
45 98.01 97.39
Clean 98.17 97.50 model can be expressed as follows [9]:
x(w) =D(0)s(®) +n(®). . (10)

greater than 50% and then fell). These results are very
similar to those of the block accuracy evaluation, which
can be used as a reference for future works.

Most of the models showed high value negative accu-
racy at lower SNR levels. Thus, the networks generated
replacement of the location or the detected ghost sources.

5. Discussion

5.1. Reverberation Rooms

When distant microphones were used to capture an
audio stream, the signals were affected by environmen-
tal noise and the room’s reverberation. This observation
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where x(®) is an observed microphone signal vec-
tor with M observations at frequency ® denoted
[x1(@)x2(®) - -xp(®)]7; D(w) is a transfer function ma-
trix between the array of microphones and a sound source;
s(w) is a clean speech signal vector with N sources at fre-
quency @ denoted as [s;(®)s2(®)---sy(®)]”, where T
represents a transpose operator; and n(®) is a noise vec-
tor with diffuse and dynamically changing colored noise.
Note that n(®) is statistically independent of s(®).

Table 3 suggests that the DL model also uses the re-
verberation of the room or that having an input with a
similar or higher time dimension could improve the SSL.
We compared HEARBO arrays with eight microphones at
different distance using the same reverberation time (Ta-
ble 3). In this case, the accuracy of the performance was
reduced when the source was closer. However, Fig. 10
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Table 6. HEARBO accuracy rate.

SNR (dB) | PlainNet | ResNetl | N2 | RecNet3 | ResNetd
TanH/ELU
—35 —99.40 | —0.05 | -—21.47 | —17.24 | —60.15
—30 9391 | 2.83 ~16.69 | —16.03 | —32.75
—25 —8483 | 797 435 | —12.15 | —12.46
20 —61.85 | 19.46 15.38 430 | 1.08
~15 —13.04 | 40.05 36.14 —2.69 14.3
~10 2118 | 55.81 46.15 23.60 | 14.58
-5 3868 | 61.73 50.88 4170 | 1198
4843 | 6296 53.53 4975 | 18.81
5 5451 | 63.07 56.80 5580 | 33.72
10 5874 | 6351 59.45 6042 | 48.63
15 6240 | 6550 61.94 6377 | 59.06
30 68.06 | 69.60 69.24 7008 | 69.82
45 71.04 | 7170 72.30 7204 | 72.11
Clean 7089 | 71.53 72.01 7190 | 71.46
o INFUT i mFIRST LAYER OUTPUT . RESIDUAL LAYER OUTPl:|T
CHO1 :; : { : CHO1.
1
CHO09 f‘;, CHO9.
STFT.Frame STFT .Frame
i i
CH15 ;f,m ’ !

STFT Frame STFT Frame STFT Frame

Fig. 10. ResNetl output features. Left: input data. Center:
convl output. Right: conv2 output.

shows that DL models used most power from the direct
sound and compared the level of that sound between the
channels rather than measuring the power of reverbera-
tions at each channel. Fig. 10 presents the features from
the convl and the residual block conv2 of ResNetl and
shows that after training, the model boosted the power
from the direct sound. In addition, after conv2, the addi-
tional information (i.e., reverberation or noise) was nearly
reduced to zero.

After comparing the model with the others given in
Table 4, where the reverberation time of the former is
greater (approximately 500 ms), we observed that the per-
formance of the model also decreased. In this case, it is
possible that the model required a longer window or more
stacked frames at the input to obtain a similar length to
match the reverberation time. However, increasing the
hyperparameters of the DL models becomes necessary,
thereby increasing both the learning process the real-time
processing.
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5.2. Processing Time

Processing time is a major parameter to consider if
we want to implement a DCNN-based SSL system in
real-time. However, using a GPU for evaluation reduces
the processing time at levels that is possible to employ
DCNN-based systems in real-time applications. During
our evaluation, the processing time increased with the
number of files used in the forwarding stage. We eval-
uated the time from the moment the data was transferred
from the central processing unit (CPU) to the GPU up to
the moment that the model returned the result to the CPU.
The average time for all models did not exceed 10 ms per
file batch.

We also evaluated the processing time on a CPU Intel
Core i7@3.2 GHz. From the moment that we inputted the
data up to the moment we obtained the result, the process-
ing time did not exceed 350 ms for a real-time evaluation
using the 19-layered ResNet model.

5.3. Untrained Conditions

We showed that the DCNN can adapt to different levels
of SNR and localize the target. The localization accuracy
was not affected when the noise was different from that
used in the training. However, we observed that during
the test, for unknown conditions such as higher or lower
SNR used in the training, the model’s accuracy dimin-
ished. Thus, using different (i.e., a wide range of) levels
of SNR during the training phase is required to maintain
good accuracy performance.

6. Conclusion

In this study, we proposed an SSL method that use a
DRN to exploit the time delay between channels to pre-
dict the DOA. Substituting MUSIC for a DRN model us-
ing ELU activations for SSL not only reduced the learn-
ing cost but made the performance more robust with un-
trained noises at lower SNR. We showed that not only can
a DCNN generate better block accuracy than can SEVD-
MUSIC in noisy environments, but that a DRN with ELU
performs better than a DCNN plain network that has the
same number of layers. The performance of the net-
works did not diminish even when a different noise was
used (i.e., from that used by the networks during train-
ing). However, stacking additional residual layers did not
improve either the convergence of the loss nor the accu-
racy rate on deeper models during a short training period.
DRN models can have an acceptable performance during
a shorter training period, even when models are very deep.
However, to obtain a robust performance in challenging
environments, the models require additional learning cost.

We plan to study residual learning in the application
of multiple sources for SSL and improve the accuracy on
environments with greater reflections and fewer micro-
phones. In addition, we plan to implement sound source
separation tasks using the employed models for SSL as
future works.
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