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For the 2015 Tsukuba Challenge, we realized an im-
plementation of vision-based localization based on
ORB-SLAM. Our method combined mapping based
on ORB-SLAM and Velodyne LIDAR SLAM, and uti-
lized these maps in a localization process using only
a monocular camera. We also apply sensor fusion
method of odometer and ORB-SLAM from all maps.
The combined method delivered better accuracy than
the original ORB-SLAM, which suffered from scale
ambiguities and map distance distortion. This paper
reports on our experience when using ORB-SLAM for
visual localization, and describes the difficulties en-
countered.

Keywords: visual localization, autonomous vehicle, field
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1. Introduction

Recently, many manufacturers and institutions have
been developing autonomous driving systems and ad-
vanced driving assistance. Google has already tested au-
tonomous driving in urban environment over distances of
1.6 million km. Their current designs use high precision
and accurate 3D Light Detection and Ranging (LIDAR)
for localization and recognition. Such sensors are still ex-
pensive relative to other vehicle sensors such as camera
and millimeter wave range sensor. However, consumer-
level vehicles require low-cost but reliable localization
and recognition sensors. On the other hand, the cre-
ation of high-precision digital environment maps is an ac-
tive research areas within the field of autonomous driv-
ing systems. An example is the Mobile Mapping Sys-
tems (MMS), which is capable of creating accurate 3D
point cloud maps as a vehicle travels along urban road.
Such 3D maps constitute basic technology for recent au-
tonomous vehicles as they store important information for
autonomous functions, such as localization. Therefore,
the main idea here is to separate mapping and localiza-
tion as different processes. By employing high-precision
but expensive devices we could create good quality maps,
which can be outsourced to competent companies. Next,
these maps can be employed inside consumer vehicles

using low-cost sensors to deliver same level of accuracy
against more expensive sensors.

The Real-World Robot Challenge (RWRC) is a real-
world autonomous navigation challenge that is held in
City of Tsukuba, Japan. The robots are required to au-
tonomously navigate over a 1 km route. One important re-
quirement involved in the realization of autonomous navi-
gation is localization. The robots are required to maintain
their position accuracy over the course despite changes in
the environment such as dynamic obstacles, differences
in the illumination, changes in season and other factors.
Most teams in the Tsukuba Challenge use a sensor fu-
sion approach using LIDAR, gyroscopes, and an odome-
ter. Such sensor fusion techniques can compensate for
weaknesses in the characteristics of individual sensors.
On the other hand, vision-based approach is not actively
used in the RWRC. In short, objective of this research was
to identify and solve problems with localization based on
a monocular camera in a real-world setting. Within this
paper, the terms “RWRC” and “Tsukuba Challenge” will
be used interchangeably.

Despite inability of our team to complete the course, we
gathered much valuable experience as a result of attempt-
ing the Tsukuba Challenge. Most importantly, we were
able to implement monocular vision-based localization
based on ORB-SLAM [1]. In the process, we collected
datasets for evaluating vision-based localization methods
in a real world environment.

This paper proposes a positioning method based on
ORB-SLAM using monocular camera with LIDAR-aided
mapping. The ORB-SLAM is one of most recent monoc-
ular vision-based SLAM method with open-source imple-
mentation. This method estimates the position and map
from an image sequence in real-time. Originally, ORB-
SLAM was designed to solve SLAM problem. However,
the required level of performance for localization problem
is different from SLAM problem; therefore, the method
incurs several problems when it is adopted for localization
problems such as robustness and map consistency. Our
proposed method has two key points:

1. The estimation of metric position in localization by
using ORB-SLAM with LIDAR-aided mapping.

2. The solution of robustness problem using sensor fu-
sion between multiple maps and odometry data.
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In general, this paper discusses: 1) benchmark tests re-
lated to ORB-SLAM conducted in the Tsukuba Challenge
environment; 2) description of ORB-SLAM with LIDAR-
aided mapping to solve problems of consistency between
multiple maps; 3) experimental results and evaluation in
Tsukuba Challenge environment. Finally, this paper il-
lustrates the capability of sensor fusion method of vision-
based localization method with odometer to provide con-
tinuous localization over the course.

2. Related Works

2.1. Monocular Vision-Based SLAM
Most monocular vision-based SLAM methods rely on a

3D reconstruction based on multiple views of a scene [2],
which in turn is based on structure from motion (SfM).
The SfM technique refers to the process of estimating
3D structures from 2D image sequences while inferring
the motion of the camera. As stated in [3] and [4], all
monocular structures from motion methods inherit com-
mon scale ambiguities, i.e., the recovered 3D structures
and camera motion are defined up to an unknown scale
factor which cannot be determined from image streams
alone. This is because, if the scene and camera are scaled
together, this change will be indistinguishable in the cap-
tured images. This fact results in difficulties in providing
true position of the camera, which is very important for
autonomous vehicle navigation and control.

One solution to recover true position (in metric sense)
of the camera is by associating keyframes with external
references, such as GPS coordinates [5]. Most current re-
searches that we know of do not take this method; instead,
alternative methods of mapping such as stereo camera are
employed. It is also not clear how to recover the posi-
tion of camera during localization phase using those ref-
erences in keyframes.

In addition to ORB-SLAM, there have been a number
of monocular variations of SLAM with complete public
implementation. Of particular interests are PTAM by [6],
and LSD-SLAM by [7]. ORB-SLAM itself was described
in [1]. Of particular note, the ORB-SLAM uses ORB
(Oriented FAST, Rotated BRIEF) as its main feature de-
tector [8], and bag-of-words method as its place recog-
nition [9]. Contrary to previous methods that examined
entire scene and generated dense maps, ORB-SLAM ex-
tracts only feature points and generates relatively sparse
maps. This allows ORB-SLAM to produce potentially
smaller maps and thus reduce the processing time.

2.2. LIDAR-Based SLAM
3D LIDAR-based SLAM is explained in [10]. This

LIDAR-based SLAM method is popular for autonomous
vehicle applications, and is capable of providing accurate
maps and localization. The author, however, does not em-
phasize any special methods for the registration of scans
captured by the LIDAR devices. Scan registration is im-
portant for computing rigid transformation of these scans

(thus computing the mapping and localization). Of par-
ticular note, the LIDAR-based SLAM is used in Auto-
ware [11] as real-world application of autonomous vehi-
cle platform.

One commonly used method for 3D scan registration
is the normal distribution transforms (NDT) as described
in [12] and implemented in Point Cloud Library [13]. As
was shown in [14], it is possible to build a map and per-
form localization in real-time using NDT.

2.3. Localization for Tsukuba Challenge
For most of the course of the Tsukuba Chal-

lenge, almost all teams use LIDAR-based localization
method [15]. These methods use sensor fusion approach
with LIDAR and odometer. Essential to this approach is
the use of a good dead reckoning method such as a cali-
brated gyroscope.

There have been some attempts to apply monocular
vision-based localization to RWRC. One of the those ef-
forts is [16]. This method is basically a type of topolog-
ical localization by following an image sequence and es-
timating pose by using feature points. Comparing with
the above methods, our method sets out to attain metri-
cally correct positioning, similar to LIDAR-based navi-
gation but using monocular camera. This method is fre-
quently applied to other metric localization methods such
as LIDAR, GNSS, and dead reckoning methods.

3. Monocular Vision-Based Localization

To repeatedly attain localization, our implementation
of ORB-SLAM consists of two parts: mapping and
localization-only. The mapping process runs similar to
the original implementation, with addition of map stor-
age at the end of the mapping run. Meanwhile, the local-
ization process starts with map restoration using previous
data from mapping process. Next, localization proceeds
in much the same way as in the mapping stage. However,
map modification is disabled in the relocalization process.

3.1. Description of ORB-SLAM
The ORB-SLAM main process creates an environmen-

tal map which consists of keyframes and map points.
Each keyframe stores its position in ORB-SLAM coor-
dinates and a list of 2D feature points. The entire ORB-
SLAM process consists of three parallel threads: tracking,
local mapping and loop closing. The relationship between
these processes is illustrated in Fig. 1.

3.1.1. Feature Detection
The first step in all 3D reconstruction is to identify fea-

ture points in each frame. ORB-SLAM uses ORB, de-
scribed in [8]. This detector offers advantages such as
faster computation and lower storage requirement (each
descriptor needs 32 bytes), in addition to resistance to ro-
tation and noise.
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Fig. 1. ORB-SLAM system overview [1].

3.1.2. Map Initialization
The goal of the map initialization is to compute the rel-

ative pose between two frames to triangulate an initial set
of map points [1], which are then used for keyframe track-
ing. ORB-SLAM uses a combination of homography and
fundamental matrices inside a RANSAC scheme to build
motion and structure recovery as described in [17]. When
this stage is successful, the system will have an initial set
of keyframes and map points with which tracking may
proceed. However, tracking may fail shortly after initial
map is built; if this occurs the initial map is reset and
started over.

3.1.3. Tracking and Local Mapping
The tracking thread is responsible for providing local-

ization and map building. After ORB corners are de-
tected, the tracking thread develops a map incrementally
over the recovered 3D map points, while computing cam-
era poses.1 To speed up this process, the tracking oper-
ates in a smaller subset of the overall map, called the lo-
cal map, that covers current visible keyframes and some
connected ones. The tracking thread also performs map
“clean-up,” which involves culling bad map points and
keyframes.

To perform tracking, there are three modes that may be
used. First is relocalization by searching all keyframes by
bag-of-words; this is the slowest but indispensable when
recovering from lost tracking. The second choice involves
tracking the local map, as described above. Alternatively,
the third choice involves tracking using constant velocity
model. This choice is fastest and may be the most fre-
quently used mode. However, it may be inaccurate.

Occasionally, the tracking thread will perform local
bundle adjustment (BA) to optimize the current local map.
This action moves the keyframes in the local map, and po-
tentially marks some keyframes as outliers for removal.

3.1.4. Loop Closing
Loop-closure detection is crucial for enhancing the ac-

curacy of SLAM algorithms, both topological and metri-

1. Pose is defined as combination of position and orientation.

Fig. 2. ORB-SLAM map trajectories from different times
are plotted in (1) and (2). (3) is ground truth. (4) is zoomed
part of gray rectangle in (1). In (5), corrected ORB-SLAM
map from distance scale of NDT.

cal. This problem consists of detecting when the robot has
returned to a former location after having discovered new
terrain. Such detection makes it possible to increase the
precision of the actual pose estimation.

Essentially, loop closing in ORB-SLAM uses image-
to-map approach [18]. First, it takes the most re-
cently processed keyframe and searches for a loop can-
didate keyframe in the local map using the bag-of-words
method [9]. Next, the similarity transformation is com-
puted. Loop correction is performed by inserting new
edges into the covisibility graph and fixing connectiv-
ity between loop candidate and surrounding keyframes.
Next, ORB-SLAM performs pose graph optimization,
whereby loop closing errors are distributed by moving the
candidate and its connected keyframes.

3.2. Problems with ORB-SLAM
3.2.1. Scale Ambiguity

ORB-SLAM outputs localization results based on maps
in its own coordinate system (which is not metrically cor-
rect), that are not free from distortion due to scale am-
biguities. This problem is inherent to almost all vision-
based localization methods or even all 3D reconstruction
method [19]. In some cases, result maps may exhibit
heavy deformation, as illustrated in Fig. 2.

From Fig. 2, it is clear that ORB-SLAM generates very
deformed trajectory shapes compared to ground truth (tra-
jectory generated by NDT scan matching at correspond-
ing time). By zooming-in parts in square in (1), it is re-
vealed that most later keyframes clump in a small area of
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the ORB-SLAM map. By applying point distances ac-
quired from ground truth, we get a trajectory that is closer
to ground truth (5) but still has wrong shape.

3.2.2. Lack of Support for Lifelong Mapping
The original design of ORB-SLAM involved a single

run for both localization and mapping, so there are not
features for storing in-memory map to disk. However, it is
desirable for distinct mapping and localization processes
to be done multiple times with the same path, so map sav-
ing and restoration is essential. This feature is also useful
for improving the map robustness when faced with chang-
ing condition [20]. In practical application, this will en-
able an autonomous vehicle to localize positions despite
changes in weather, time of day, and other conditions.

3.2.3. Visual Disturbances
Any disturbances in the camera vision while tracking

feature points may lead to the failure of ORB-SLAM
tracking process. These disturbances include vision oc-
clusion on the part of camera and sudden rotation of the
robot. The default behaviour of ORB-SLAM is to reac-
quire the tracking after any such loss. This is achieved
by performing relocalization from the last keyframe (i.e.,
guess pose from last known position). However, this
prevents the system from reacquiring position, especially
when the robot never reverses motion, and contrary to the
description of the behaviour in the original paper of ORB-
SLAM. Our solution is to force relocalization by search-
ing all the keyframes in the database.

Another forms of visual disturbances are lens flares and
smears, which happen when the camera is faced to the
sun. The effects range from lost tracking to straying of
the positions, that may negatively affect the usability of
the ORB-SLAM.

4. ORB-SLAM with LIDAR-Aided Mapping

In this section we explain how to realize metrically
correct monocular visual localization for solving main
problems of ORB-SLAM explained in previous subsec-
tion. First, LIDAR-aided mapping is employed to solve
scale problem of keyframe distances and provide metri-
cally correct positioning. Next, we describe map storage
and restoration process to enable separate mapping and
localization process. Lastly, multiple observations from
distinct ORB-SLAM maps may be employed simultane-
ously with odometry data to derive accurate position and
orientation of the robot.

The main output of ORB-SLAM mapping is a set of
keyframes. As explained above, our main goal is to take
this map and compute the localization during robot runs
as guidance for navigation system, be it a robot or an au-
tonomous car. Therefore, it is necessary to get localiza-
tion results that are metrically accurate. However as illus-
trated in Fig. 2, it would be very difficult to accurately ob-
tain the position using deformed maps from ORB-SLAM.

Algorithm 1 Position correction from ORB-SLAM to
global coordinate.

1: Take the original ORB-SLAM position obtained from
localization as Po.

2: Search the nearest keyframe in the map from Po in the
octree as Pk. From here, we take the corresponding
external reference position Pn.

3: Find the previous offset keyframe Pk′ and its corre-
sponding external reference position Pn′ .

4: Compute the scale correction factor. This factor is
a ratio of magnitude of translation between external
reference Pn′ to Pn and translation between keyframe
Pk′ to Pk.

s =
‖tn′ − tn‖
‖tk′ − tk‖

5: Apply the distance scale:
Pr = P−1

k Po

Pr′ = (str,qr)
Pc = PnPr′

6: return Pc

To formalize the map and localization process, we use
the following notation. An ORB-SLAM map is a set of
poses2: M = {Pi|0 ≤ i < N −1}, where N is the number
of keyframes until the mapping process is stopped. Each
pose P consists of translation and rotation (in quaternion)
in 3D, such that P is a vector of seven elements: P =
(t,q) = (x,y,z,qx,qy,qz,qw).

4.1. Metric Transformation from ORB-SLAM
As stated in [5], the scale problem can be solved in

mapping phase by associating each keyframe to an ex-
ternal reference with true position (in metric sense). In
a longer run, this association must be done correctly so
that error accumulation in the scale correction is elimi-
nated. Therefore, the external reference must have a high
level of accuracy. In our case, we chose LIDAR-based
localization as the reference due to its immediate avail-
ability. Other positioning methods may also be used, such
as GPS or odometry, as long as their error corrections are
provided [21].

In the localization process, the system depends solely
on the ORB-SLAM method. Therefore, external methods
such as LIDAR-based localization are not required. To
compute the metric value of a pose, the system modifies
the position value to correct distance deformation accord-
ing to the following formula. All poses use poses’ matrix
representations. This transformation is described in Algo-
rithm 1 and illustrated in Fig. 3.

4.2. External Mapping Reference Using NDT Scan
Matching

This research used the 3D Normal Distribution Trans-
form (NDT) scan-matching method with 3D LIDAR to

2. There are other important data, but not our concern yet.
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Fig. 3. Metric transformation.

Fig. 4. 3D view of Tsukuba Challenge map generated by
NDT scan matching from Velodyne scans.

obtain accurate positions [14] as keyframes’ external ref-
erences. Fig. 4 is a visualization of 3D map of the
Tsukuba Challenge track. This map was built by applying
the 3D NDT scan-matching method using the Velodyne
HDL32 LIDAR. Fig. 5 shows the localization results of
each runs using 3D NDT scan-matching with the Velo-
dyne HDL32 and the 3D map. In the figures, the robot
positions were estimated for the entire route on the map.

4.3. Map Storage and Restoration
Map storage consists of three main parts: keyframes,

map points, and keyframe relationships. Each keyframe
stores the camera pose Pk in ORB-SLAM coordinates,
the camera intrinsic parameters, all of the ORB feature
points recorded at keyframe creation, and external refer-
ence pose Pn in its own coordinates, recorded at keyframe
creation.

During map restoration, the system reconstructs the fol-
lowing data structures:

1. List of keyframes and their relationship.

Fig. 5. Ground truth from NDT scan matching of 4 runs.
This map is metrically correct. The track covered by each
run is slightly different.

2. Map point list.

3. Octree of keyframe position in ORB-SLAM coordi-
nates. This tree will be used for fast searching of
the keyframes during localization using augmented
positioning.

By default, ORB-SLAM will try to find the position
against the last keyframe whenever it loses tracking.
However, for situations after map restoration, the last
keyframe will be unknown. Instead, we modify ORB-
SLAM to force it to search the most appropriate keyframe
using the bag-of-word method. Keyframe search is also
applied when the system loses tracking; this is done to
ensure that the system always gets the keyframe as the
basis for relocalization. The drawback is that keyframe
search using bag-of-words method is slower than tracking
using the last keyframe.

4.4. Using Multiple Maps
During our experiments, we found that maps of the

same location but created at different times will deliver
varying results. Therefore, it is logical to combine the re-
sults from two maps in order to: 1) alternately provide
localization whenever one of the maps fails; 2) reduce er-
rors from all the maps. In this regard, any method for
sensor fusion may be used. It must be stressed that, after
correction, all of the maps will provide consistent results
that are metrically correct and in the same coordinate sys-
tem.

In current version, the ORB-SLAM does not allow us-
ing multiple maps. However, we can run multiple process
of ORB-SLAM with the same input data; each one uti-
lized different maps built from different times. Hence, we
could produce multiple results simultaneously from sin-
gle input camera. Observations from these distinct maps
may be combined together with odometry as discussed in
next subsection.
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Algorithm 2 Particle filter localization [22].
Require: Xt−1,Ut ,Zt

1: X̄t = Xt = /0
2: for n = 1 to M do
3: x[n]

t = motion model(ut ,x
[n]
t−1)

4: w[n]
t = measurement model(zt ,x

[n]
t )

5: X̄t = X̄t + 〈x[n]
t ,w[n]

t 〉
6: end for
7: for n = 1 to M do
8: draw xt with probability p ∝ wt

9: add x[i]
t to Xt

10: end for
11: return Xi

4.5. Augmenting ORB-SLAM Localization with
Odometry

Observing that both maps were unable to provide suffi-
cient level of coverage, it is reasonable to utilize simul-
taneously both maps and combine measurements from
odometer to provide localization for the robot. This is en-
abled due to the fact that modified ORB-SLAM outputs
positions in metric coordinate system; thus highlights an
advantage of our method.

As an approach for sensor fusion, we provide a frame-
work derived from particle filter as described by [22].
This formula basically tries to calculate position and ori-
entation from velocity and rotation speed measured by
odometer, while correcting these values as ORB-SLAM
localization supply position and orientation updates.

To simplify formulation, we assume that the robot
moved in 2D plane; robot state at time t is represented by
position in 2D plane and its orientation as xt = (xt ,yt ,θt).
Control data from odometer arrive as linear velocity
and rotation speed and represented respectively, as ut =
(vt ,ωt). The particle filter takes a sample of M number
of “particles”; each particle represents a possible state of
the robot. As the motion proceeds, all particles are up-
dated by control variables ut and ORB-SLAM measure-
ments z from all maps where available. The particle filter
then selects particles proportional to their fitness against
z as weight w. The complete particle filter is described in
Algorithm 2, complemented with its motion model and
measurement model in Algorithms 3 and 4.

In order to account for errors in v and ω , we introduce
noises to v and ω . The noises are assumed to be Gaussian
with standard deviation α1 and α2, that are device-specific
and must be determined by experiment.

In measurement model, each particle’s weight is de-
termined from its distances to all ORB-SLAM measure-
ments. Here, each ORB-SLAM measurement is assumed
to be independent and may contain noises (for example,
see Fig. 13 in Subsection 5.4). Therefore we select the
nearest measurement to the particular particle, resulting
in largest weight from all measurement as described in
Algorithm 4. This measurement model is easily expand-
able to include more than two ORB-SLAM results.

Algorithm 3 Computing poses Xt = (x′,y′,θ ′) from a
pose Xt−1 = (x,y,θ) and control Ut = (v,ω).

1: motion model (Ut ,Xt−1) :
2: v̂ = v+ rand(α1)
3: ω̂ = ω + rand(α2)
4: x′ = x+ v̂cos(θ)Δt
5: y′ = y+ v̂sin(θ)Δt
6: θ ′ = θ + ω̂Δt
7: return Xt = (x′,y′,θ ′)

Algorithm 4 Particle weighting w of state Xt = (x′,y′,θ ′)
against ORB measurement Z1 = (x1,y1,θ1) and Z2 =
(x2,y2,θ2). Here, Σ is covariance matrix which represents
error measurements of ORB-SLAM in lateral, longitudi-
nal and yaw.

1: measurement model (Xt ,Z1,Z2) :

2: Σ =

⎡
⎣

σx 0
σy

0 ϑ

⎤
⎦

3: w1 = exp
{− 1

2(Xt −Z1)T Σ−1(Xt −Z1)
}

4: w2 = exp
{− 1

2(Xt −Z2)T Σ−1(Xt −Z2)
}

5: return w = max(w1,w2)

5. Evaluation in Tsukuba Challenge Environ-
ment

We performed four runs whereby the robot traversed
the trajectory mandated by the Tsukuba Challenge com-
mittee. In each run, we recorded camera images and
performed localization using Velodyne LIDAR. From
these runs, we created two maps for localization process.
The LIDAR-based localization results would be used as
ground truth for comparison. To reduce computation,
camera resolution was reduced to 800× 600 before pro-
cessing.

Two runs were chosen for mapping by considering that
those runs were the longest runs without any vision oc-
clusion. The weather conditions and lighting condition
varied slightly for all the runs. However, there were a few
instances of heavy flares when the camera faced to the
sun, with the tracks were covered by falling leaves. The
map and test run conditions are listed in Table 1. Due to
concern of equipment damage from rain, experiment on
final day (8th) did not proceeded.

The map trajectories that we use, created by ORB-
SLAM, are shown in Figs. 2(1) and (2). Note that those
maps are heavily deformed compared to ground truth
shown in Fig. 5. In the map trajectories, recordings were
stopped before robot could finish the runs; however the
robot successfully proceeded to finish point in every test-
ing run.

5.1. Experimental Settings
Our robot was derived from a Segway RMP-200 plat-

form, using a PointGrey Grasshopper3 camera and Velo-
dyne HDL-32 LIDAR. The robot ran through the man-
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Table 1. Time and condition for mapping and testing runs.

Run Date &
Time

(November
2015)

Weather
condition

Lighting
contrast

Human
presence

Map 1 6th, 13:44 Clear,
few low
clouds

High Low

Map 2 7th, 11:30 Cloudy Medium Low
Test 1 3rd, 14:55 Clear High High
Test 2 7th, 14:20 Cloudy Low Low

Fig. 6. Robot used for evaluation.

dated Tsukuba Challenge course at a speed less than
1 m/s. In the course of the run, robot would often en-
counter dynamic obstacles such as human or bicycle,
which necessitated action by the operator to either stop or
maneuver the robot. Our robot setup is shown in Fig. 6.

The track to be covered in the Tsukuba Challenge
was very different from that used for the original ORB-
SLAM paper evaluation, which primarily used New Col-
lege dataset [23]. To simplify discussion, we roughly di-
vided the track into five major areas; each had distinct
visual differences and its own challenges. These areas are
shown in Fig. 7, and can be described as follows.

1. Area 1 was public park area, with many trees as
main features and occasional building background
(Fig. 8).

2. Area 2 was checking stop in front of a large hall
building. When passed in afternoon, this area may
feature high contrast due to setting sun; most lens
flares were encountered here.

12

3 4

5

Fig. 7. Breakdown of Tsukuba Challenge track by visual
features.

3. Area 3 was a pedestrian footpath covered by paved
blocks and surrounded by trees and fallen leaves on
the ground. There might be some encounters with
curious pedestrian that approached the robot; these
people were registered on the map (Fig. 9).

4. Area 4 was an outdoor scene with many buildings as
background. This area featured quite strong contrast,
as shown in Fig. 10. Situation like this can confuse
automatic exposure system of cameras, and makes it
difficult to detect feature points.

5. Area 5 was mostly the same as area 3, but encounters
with pedestrian or bicycles were rare.

5.2. Map Saving and Restoration
The map data structures of ORB-SLAM can now be

saved and restored at any time. In our experience, map
saving and restoration do not affect ORB-SLAM perfor-
mance. In fact, the system gains useful capability, i.e.,
map building can now be done incrementally using the
same location but different times. This is useful for exam-
ple, for building lifelong map in different situations such
as in varying weather and during the day/night. An exam-
ple of the relocalization after map restoration is illustrated
in Fig. 11. Example of incremental map building is shown
in Fig. 12.

5.3. First Position Fix
To get an initial position fix for relocalization, ORB-

SLAM performs a keyframe search based on the appear-
ances of feature points. This search may returns more
than one candidate, which will be evaluated according to
the reprojection error. Only one candidate is accepted,
and it must have at least 15 map points that match the
feature points in the current frame. In the evaluation run,
however, the system was slow to obtain the initial fix due
to insufficient map point matches. One possible enhance-
ment that would enable quicker initial fix is to increase
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Fig. 8. Starting point.

Fig. 9. Typical situation in Tsukuba Challenge: pedestrian
tracks covered with fallen leaves.

Fig. 10. Lighting situation featured many areas with strong
contrasts due to shadow cast.

Fig. 11. Robot traversing previously created map.

the number of feature points from the ORB computation.
However, this approach greatly slows the search process,
and does not always correlate to a quicker fix.

Fig. 12. ORB-SLAM created a new map based on old map.

ORB-SLAM map initialization is another problem.
During the experiment, we found that initialization will
succeed (without getting false initialization) whenever the
robot is moved, both in rotation and translation. In our ex-
periences, false map initialization and slow position fix
can be solved by increasing number of extracted ORB
points (by default this is 1000) to 2500. The drawback
is higher computation times per frame. However, other
benefits from increasing this number are better resistance
to visual disturbances.

5.4. Relocalization and Tracking
During our experiment, we found that ORB-SLAM is

resistant to occasional and partial vision occlusion. Par-
tial occlusion includes lens flares and humans moving in
front of the background images. Total occlusion however,
may cause the system to fail in tracking, which is difficult
to recover. This lost tracking explains existence of blank
areas in Figs. 13 and 14 (part of trajectory that has no bold
parts).

Common situation and tracking of ORB-SLAM are de-
picted in Fig. 15. The figure illustrates a frame, taken in
the Oshimizu park area, with a background of buildings in
the distance and some trees in the foreground. There were
also some people in the scene. Most of the ORB points
(and map points, shown in green dots) fell in the trees and
ground, but very few of those were in background.

Figure 11 depicts visualization of the robot when it
travelled along previously created map. The map was cre-
ated on a different day. Note the slightly out-of-track po-
sition of the robot. In this situation, tracking was main-
tained.

Figure 16 depicts a situation in which the robot per-
formed a violent rotation such that it was on the verge of
losing tracking. Note the absence of ORB feature points
in the right portion of image frame. On the right, the axis
shows that the robot was on the right track, but robot was
oriented towards a place with very few map points. The
blue axis represents the front.

In both test runs, each map delivered a different level
of performance regarding the track coverage. In Fig. 13
for test run 1, both maps are essentially complementary to
cover tracking for the whole track. However, area 1 is par-
ticularly must be concerned where ORB-SLAM loses the
tracking even when using both maps. This area is deemed
critical because the robot had to perform many turns suc-

486 Journal of Robotics and Mechatronics Vol.28 No.4, 2016



Single-Camera Localization in Tsukuba Challenge

Fig. 13. Coverage for test run 1.

Fig. 14. Coverage for test run 2.

cessively. Also notable are some stray points in trajec-
tory from map 1; these points were traced to instances of
lens flares due to camera facing south west while the sun
was low. In test run 2 as depicted in Fig. 14, both maps
also provided complementary coverage. There were also
significant time delay from the start of the motion to the
initial position fix when using both maps.

In both test runs localization system was unable to
cover the whole ground truth; the reasons were technical
unrelated to ORB-SLAM capability. At all mapping runs
and test runs except test run 1, camera recording stops
prematurely before reaching finish line. Thus, maps 1
and 2 were unable to cover the whole Tsukuba Challenge
track (ORB-SLAM is unable to localize too far from last
keyframe). Also, camera stopped working too early in test
run 2, rendering ORB-SLAM stopped working. Percent-
age of track covered by all maps are listed in Table 2.

In general, there are two main reasons for the robot
losing tracking: visual disturbances (including, but not
limited to, lens smears and complete vision occlusion),
and rapid rotation in part of the robot due to the appear-
ance of dynamic obstacles. An example of a visual distur-

Fig. 15. ORB-SLAM performed tracking.

Fig. 16. ORB-SLAM about to lose tracking.

Table 2. Summary of ORB-SLAM performance compared
to ground truth.

Map
Errors [m]

% Coverage
Average Std. Dev Maximum

Test Run 1

Map 1 0.38 1.60 26.41 68.3

Map 2 0.19 0.53 5.62 70.1

Joint 95.1

Test Run 2

Map 1 0.08 0.11 1.21 68.4

Map 2 0.06 0.09 1.67 80.9

Joint 82.4

bances (in form of lens smear) causing a loss of tracking
and high number of errors in track run 1 using map 1 is
shown at Fig. 17, where spurious points from localization
are present.

In Tsukuba Challenge, average computation times of
each frame were around 58 ms. This number equals to
about 19 Hz, which is lower than original ORB-SLAM
that delivers around 25–30 Hz.
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Fig. 17. At right, a part of robot trajectory is shown. Cir-
cle A shows location where disturbance took place; B shows
localization results at that time. At left, camera image at
corresponding time.

Fig. 18. Visual comparison of modified ORB-SLAM trajec-
tory and ground truth.

5.5. Accuracy of Corrected Localization
Figure 18 depicts a situation in which the robot en-

ters and exits from a turnabout. In the turning, the mod-
ified ORB-SLAM exhibits large deviations compared to
ground truth, while straight path exhibits less deviation.
It is also clear that each map produces different results,
despite following exactly the same path and time.

Table 2 summarizes the performance of ORB-SLAM
when covering the Tsukuba Challenge track. On average,
the accuracy of ORB-SLAM is quite good when consid-
ering that errors in the order of 25 cm are within the range
of robot’s camera tracking. However, it is of some con-
cern when this errors greatly increases, especially during
test run 1. These errors may, however be regarded as de-
viation from the norms, as suggested in Fig. 17. In partic-
ular, this problem may be solved by using a more robust
camera.

5.6. Multiple Maps and Odometry
Despite attaining a good level accuracy across the test

run in Tsukuba Challenge, ORB-SLAM was unable to at-

Fig. 19. Error graphs from test run 1 (top) and test run 2
(bottom).

tain localization for the entire track. By recapitulating the
performance summary in Table 2, and Fig. 19, it is rea-
sonable to say that we can cover larger part of the track
using joint map. This subsection discusses results of sen-
sor fusion between ORB-SLAM and odometry as formu-
lated in Subsection 4.5. Algorithm 2 basically outputs a
distribution of possible robot pose; definitive pose for the
purpose of robot control is taken by averaging this distri-
bution.

Figure 20 depicts trajectory of robot as computed by
sensor fusion of odometer and ORB-SLAM of map 1 and
map 2 for test run 1. In this figure, we can see that the sen-
sor fusion method is capable to combine the measurement
from both maps and remove noise (that came from map 1
due to lens flare in area 3). The sensor fusion method
also succeed in covering areas where ORB-SLAM missed
tracking. Similar situation is also present in test run 2
whose trajectory is shown in Fig. 21. By relating the cov-
erage graph (Figs. 13 and 14) and error graphs (Fig. 19),
most of the spikes in sensor fusion errors can be attributed
to ORB-SLAM losing tracks in areas 1 and 2.
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Fig. 20. Trajectory of ORB and odometer for run 1.

Fig. 21. Trajectory of ORB and odometer for run 2.

6. Conclusions and Future Work

This work has reported on our approach for localiza-
tion solutions for application to the Tsukuba Challenge.
Within the limitations of our system, the experiments
confirmed that vision-based localization using augmented
maps obtained from vision and LIDAR-based methods
are capable of providing localization that is quite accu-
rate for controlling the robot. Unlike the original results,
ORB-SLAM was unable to produce acceptable results in
dynamic environment such as Tsukuba Challenge. We
suspect that, due to significant time lapse between map-
ping and localization, ORB-SLAM was unable to perform
place recognition using the bag-of-words method. This is
supported by observation that most ORB feature points
were on the ground that was covered with fallen leaves.

By using sensor fusion method between ORB-SLAM
and odometer, we can achieve continuous coverage of the
track. However, due to accuracy problem of the odome-
ter, the localization may give large errors when correction
from ORB-SLAM results are absent. In these results, we
show that navigation using odometer and ORB-SLAM lo-
calization is possible with good accuracy, as long as ORB-
SLAM tracking is maintained.

Despite these good results, there are still some rooms

for improvement that we should propose. Primarily, there
must be an effort to cover the entire spectrum of localiza-
tion, especially when the vision-based localization fails.
For the mapping, we suggest replacing the LIDAR with
other global localization methods, such as a GPS-based
one. Sensor fusion method between odometer and ORB-
SLAM can also use some improvements, especially by us-
ing better dead reckoning methods. Another crucial mat-
ter is the acceleration of the initial position fix after map
restoration. We also did not address visual localization
evaluation in adverse weather condition, which is impor-
tant should this method be implemented in consumer ve-
hicles.
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