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This paper discusses 2-dimensional (2-D) pedestrian
motion prediction and autonomous braking control
for enhancing the collision avoidance performance of
an active safety system. The paper targets a typi-
cal scenario involving a pedestrian walking toward
a parked vehicle on a crowded urban road. The
pedestrian is not expected to continue walking in a
straight line. Conventional first-order motion predic-
tion accuracy alone is not enough to predict the pedes-
trian motion because prediction is based on the pedes-
trian’s current position and velocity within a finite
time. We formulated a 2-D pedestrian motion model
of the parked vehicle based on learning the measured
trajectory of pedestrians in the same scenario. We
then designed an autonomous braking control system
based on whether the vehicle will overtake a pedes-
trian. We evaluated the validity of the proposed au-
tonomous braking control system in simulation exper-
iments.

Keywords: active safety, driver assistance systems, col-
lision avoidance, autonomous braking

1. Introduction

Japanese national traffic accident statistics have shown
that pedestrian have the highest number of accidents –
1,634, or 37.0% – among road fatalities. This rate is de-
creasing more slowly than on-board vehicle accidents, as
shown in Fig. 1 [a]. Most pedestrians – 1,310, or 83.3% –
are killed when vehicles are going straight on. The main
causes for drivers to trigger fatal accidents are careless
driving at 35%, inattentive driving at 35% and insufficient
attention to safety confirmation at 19% [1].

A number of active safety devices on the current mar-
ket activate autonomous braking to avoid collisions with
objects in front of them [2, 3]. In near future, it will be
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Fig. 1. Road accident statistics.

important to evaluate the collision avoidance performance
of such systems in real-world use [4]. If pedestrians sud-
denly dash out into the road, current active safety systems
cannot stop in time to avoid such pedestrians. Developing
collision avoidance systems thus requires that pedestrian
movement be made a key in achieving collision avoid-
ance without hard braking [5–7]. Conventional pedestrian
movement prediction uses first-order prediction based on
the current position, direction of movement and vehicle
velocity [8]. The direction in which a pedestrian is going
is detected using camera images, but this does not have
high resolution [9], so the detailed direction must be esti-
mated by considering the preceding trajectory. First-order
prediction is shown in Fig. 2, where the current direction
is calculated by using Eq. (1) assuming that a pedestrian
will continue going in the same direction:

θ = tan−1 yped (t)− yped (t −TP)
xped (t)− xped (t −TP)

. . . . . (1)

Future pedestrian movement at time (t + TP) is predicted
as shown in Eq. (2):{

xped (t +TP) = xped (t)+TP ·Vped · cosθ
yped (t +TP) = yped (t)+TP ·Vped · sinθ

. (2)

Based on real-world urban drive data analysis, two-
dimensional (2-D) pedestrian movement prediction be-
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Fig. 3. Autonomous braking control system.

comes necessary in a number of situations in crowded
urban areas. First-order prediction cannot, however, esti-
mate the possibility of change in the pedestrian’s direction
of movement in advance.

We focused on a typical scenario in which a driver
overtakes a pedestrian who walks toward a parked vehi-
cle. In this situation, it can be predicted that the pedes-
trian would walk in front of a moving vehicle to avoid a
parked vehicle. We discuss autonomous braking control
for avoiding collisions by 2-D pedestrian movement pre-
diction around a parked vehicle. The system is schemati-
cally diagrammed in Fig. 3. Section 2 shows the formula-
tion of the pedestrian movement model at a parked vehicle
based on the measured trajectory. Section 3 details the de-
sign of a reference velocity model based on the pedestrian
movement model. Section 4 verifies the feasibility of the
proposed system in experiments. Section 5 summarizes
major conclusions obtained from our research.

2. 2-D Pedestrian Movement Model Formula-
tion

2.1. Acquisition of Pedestrian Movement Trajec-
tory

To clarify the characteristics of a pedestrian trajectory,
we conducted experiment in data collection. Participants
were instructed to walk past a parked vehicle as they
usually would. As shown in Fig. 4, pedestrian trajecto-
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Fig. 4. Pedestrian path measurement experiments.
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ries were measured every 0.2 seconds by using a verti-
cal LIDAR on another vehicle. Participants numbering
17 took part in experiments. Experiments used two sce-
narios – 2 trials walking at a normal pace and 2 walking
at a quick pace.

2.2. Measured-Trajectory Analysis
Measured trajectories are shown in Fig. 5. The X-axis

shows displacement in the x-direction and the Y -axis that
in the y-direction. LIDAR scans pedestrian positions as a
group of dots. Because dots are influenced by arm and leg
movement, it is difficult to detect the center of the pedes-
trian’s body. To reduce the effect of movement, we cal-
culated the pedestrian position by using the mean value
of the displacement of the dots. An example of mea-
sured data and the approximated trajectory is shown in
Fig. 6. Here, to predict pedestrian movement and avoid
collisions, we must be able to predict when a pedestrian
will enter the vehicle drive corridor and when a pedestrian
will change direction of movement. We therefore focus on
pedestrian movement until the pedestrian starts walking
past the parked vehicle. As shown in Fig. 6, the measured
trajectory is approximated by connecting straight lines.
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Fig. 7. Scatter plot of the lateral crossing start point.
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When the pedestrian is walking in the X-axis direction,
the trajectory is approximated by averaging measured dis-
placement Y . When the pedestrian walking diagonally to
the X-axis, the measured trajectory is approximated by
using the least squares method. Here, measured pedes-
trian position data is influenced by the relative position of
the pedestrian’s arms and legs, so the start and end points
of pedestrian avoidance are judged and recorded by data
analysis and start and end points are registered.

The start and end points are distributed as shown in
Figs. 7 and 8. Note that pedestrians start avoidance before
reaching position X of −3 m. Also note that pedestrians
walk straight toward the right back area of the parked ve-
hicle. Here, longitudinal and lateral start positions and
longitudinal and lateral end positions of avoidance are de-
fined as Xstart , Ystart , Xend and Yend . The distribution of
Xstart , Ystart , Xend and Yend are shown in Figs. 9–12. The
broken line in Fig. 9 indicates a beta probability density
(BPD) function. BPD function f (x) is shown in Eq. (3),

f (x) =
xα−1 (1− x)β−1

B(α,β )
. . . . . . . . . (3)

α = m
[

m(1−m)
σ2 −1

]
,

β = (1−m)
[

m(1−m)
σ2 −1

]
where m indicates the sample average and σ the sample’s
standard deviation. Variable x is limited to 0 ≤ x ≤ 1
and the probability density function is calculated after the
sample is normalized.

Based on data analysis, the characteristics of the mea-
sured trajectory passing the parked vehicle are as follows:

• The pedestrian walks straight toward the parked ve-
hicle.
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• To avoid having the parked vehicle block the pedes-
trian’s way, the pedestrian changes the direction of
movement based on the BPD function.

• When starting to change the direction of walking,
the pedestrian walks straight toward right rear of the
parked vehicle.

• Upon reaching the above area, the pedestrian
changes the direction of movement again and walks
beside the vehicle.
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2.3. Formulation of Pedestrian Movement Predic-
tion

The pedestrian movement prediction is formulated
based on the analysis in Section 2.2.

The measured trajectory is predicted by considering
current pedestrian position (Xped,Yped) and the parked ve-
hicle position shown in Fig. 13. The pedestrian can be
predicted to walk straight toward start point (Xstart ,Yped)
and then move to end point (Xend ,Yend). After arriving at
the end point, the pedestrian walks beside the vehicle. Ex-
pected value Xstart is calculated by beta distribution based
on measured data.

Second, distance Dmove [m] that the pedestrian walks
in a limited time is calculated by multiplying pedestrian
moving speed Vped [m/s] and prediction horizon time
TP [s].

The pedestrian position is finally sequentially predicted
by comparing the predicted pedestrian position and Dmove.

2.4. Pedestrian Movement Prediction Simulation

We confirmed the validity of the proposed pedestrian
movement prediction by comparing it to conventional
first-order prediction. By using measured data in Sec-
tion 2.1 as current position (Xped(t),Yped(t)), predicted
pedestrian position (Xpre(t),Ypre(t)) at certain prediction
horizon TP was calculated.

Our research defines conventional prediction as consid-
ering only the current pedestrian moving velocity vector.
The vector is calculated by considering the trajectory for
a predicted horizon of 1 second, meaning that this method
cannot predict whether a pedestrian will change the direc-
tion of movement.

Simulation results are shown in Fig. 14. The square in-
dicates the actual position of the pedestrian directly mea-
sured. The circle indicates the pedestrian position pre-
dicted by the proposed method. The plot indicates the
pedestrian position predicted by the conventional method.
As shown in Fig. 14, the conventional method cannot pre-
dict the pedestrian position in advance. The proposed
method predicts the pedestrian position beforehand by
considering the parked vehicle position.

To confirm the accuracy of the proposed method, we
compared actual position (Xped(t +TP), Yped(t +TP)) and
predicted position (Xpre(t),Ypre(t)). The distance be-
tween these two points is defined as Derror as shown in
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Fig. 14. Comparison of prediction of pedestrian position.

Eq. (4):

Derror (t) =√(
Xpre (t)−Xped (t +TP)

)2 +
(
Ypre (t)−Yped (t +TP)

)2

. . . . . . . . . . . . . . . . . . . (4)

Here, Derror is evaluated from when the pedestrian begins
to be detected to when the pedestrian reaches position X
of +1 m. When all 68 data items have been calculated, the
average of Derror of proposed 2-D prediction was 0.28 m,
the maximum value was 1.2 m and the standard deviation
was 0.18. The average of Derror in conventional first-order
prediction was 0.44 m, the maximum value was 1.8 m and
the standard deviation was 0.31 m. If the pedestrian po-
sition is predicted by using proposed 2-D prediction at a
2 second prediction horizon under the situation assumed
above, 95% of error is within 0.28±0.53 m. If the pedes-
trian position is predicted by first-order prediction under
the same condition, 95% of error is within 0.44±0.61 m,
so the proposed 2-D prediction is superior to the conven-
tional first-order method in this situation.

3. Autonomous Braking Control System
Design

Based on the pedestrian movement prediction in the
previous section, the autonomous drive system determines
whether the overtake maneuver is safe. If the overtake
maneuver has a certain level of risk, the ego vehicle de-
celerates automatically so that it follows the pedestrian.

3.1. Overtake Determination
When the vehicle approaches a pedestrian, it must re-

main a safe distance from the pedestrian as required by
Japan’s road traffic law. Here we define a lateral distance
of 1.5 m as the limit. (Japan’s road traffic law does not
specifically define this lateral distance, but driving school
instructors teach students to keep 1.5 m away.) We cal-
culated the pedestrian position when the ego vehicle – in
other words, one’s own vehicle – overtakes a pedestrian
as detailed below.

In the positional relation shown in Fig. 15, the time be-
fore the pedestrian reaches Xstart is defined as Tstart and
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Fig. 15. Definition of the drive scenario.

the time that the ego vehicle overtakes the pedestrian is
defined as Tto, as shown in Eqs. (5) and (6),

Tstart (t) =
Xstart (t)−Xped (t)

Vped (t)
. . . . . . . . (5)

Tto (t) =

Tstart (t)+
xped (t)− (

V (t)−Vped (t)
) ·Tstart (t)+ l

V (t)−Vped (t) · cos(θpre (t))
(6)

where l indicates the length of the ego vehicle, xped in-
dicates the longitudinal distance to the pedestrian from
the ego vehicle, θpre(t) indicates the predictive angle on
changes of direction from parallel to the X-axis to the end-
point. The cosine of this angle is shown in Eq. (7).

cos(θpre (t)) =
Xend −Xstart√

(Xend −Xstart )
2 +(Ypre (t)−Yend)

2

. . . . . . . . . . . . . . . . . . . . (7)

The ego vehicle overtakes the pedestrian as the pedestrian
walks diagonally toward the X-axis. The predictive lat-
eral distance to the pedestrian when the vehicle overtakes
ypre(t) is shown in Eq. (8),

ypre (t) = Ypre (t)−Ycar − d
2

= Yped (t)− (Tto −Tstart ) ·Vped · sin (θpre (t))

−Ycar − d
2

. . . . . . . . . . (8)

where d indicates the width of the ego vehicle.

3.2. Reference Acceleration Command Calculation
We assume in this research that the pedestrian will

change direction and enter the vehicle drive corridor. If
a safe overtake maneuver is not possible, the autonomous
braking control system produces two different decelera-
tions based on the time before collision with the pedes-
trian Ttc. The time to collision with the pedestrian Ttc is
shown in Eq. (9).

Ttc (t) =
xped (t)
V (t)

. . . . . . . . . . . . (9)

If 1.4 < Ttc < 5, this algorithm does not avoid collision by
stopping but instead decelerates to the same speed as the
pedestrian and waits for the pedestrian to pass the parked
vehicle to realize natural driving behavior. Reference ac-
celeration a∗x is derived as shown in Eq. (10) by consider-

ing the time to terminal state Tdec and the distance that the
pedestrian will move during Tdec,

a∗x (t) = − V (t)2 −Vped (t)2

2 ·(xped (t)+Vped (t) ·Tdec (t)−α
) (10)

where α indicates the longitudinal distance margin that
the ego vehicle maintains when the ego vehicle follows
the pedestrian. Under the condition that the ego vehicle
velocity is V (t), acceleration is ax(t), pedestrian velocity
Vped(t) and the longitudinal distance to the pedestrian is
xped(t) at certain time t, the distance between the ego ve-
hicle and the pedestrian is as shown in Eq. (11):

V (t) ·Tdec (t)+
1
2
·ax (t) ·Tdec (t)2 +α

= Vped (t) ·Tdec (t)+ xped (t) . . . . . . (11)

Tdec(t) is calculated as shown in Eq. (12) by simplifying
Eq. (11):

Tdec (t) =
1

ax (t)

{
−(

V (t)−Vped(t)
)

+
√(

V (t)−Vped(t)
)2 −2 ·ax(t) ·

(
xped(t)−α

)}
(12)

Reference velocity V ∗ is calculated by integrating refer-
ence acceleration a∗x as shown in Eq. (13):

V ∗ (t) = V0 −
∫

a∗x (t)dt. . . . . . . . . (13)

The braking distance Dstop equation is shown in Eq. (14):

Dstop = − V 2

2 ·ax
. . . . . . . . . . . . (14)

We assume that the pedestrian moving velocity is 2 m/s
based on average walking speed as analyzed from camera
observation. We also assume that the ego vehicle is run-
ning at the same velocity 5 m behind the pedestrian. By
substituting the condition determined for Eq. (14), the ego
vehicle avoids collisions by using a gentle deceleration of
0.4 m/s2 and stopping within 5 m if the pedestrian sud-
denly stops walking. We therefore define the value of α
as 5 m.

If a safe overtake maneuver is clearly not possible at
timing in which Ttc < 1.4, the system avoids collisions
by braking hard, e.g., as in automatic emergency braking
(AEB). AEB generates deceleration a∗x-AEB of 5.88 m/s2

(= 0.6 G) with a limited jerk of 12 m/s3 [10].

3.3. Effectiveness of Autonomous Braking Control
The effectiveness of the collision avoidance system and

2-D prediction we have proposed was verified by simula-
tions. We compared the proposed systems in situations
in which the ego vehicle tries to overtake a pedestrian
walking toward a parked vehicle. Simulation conditions
are shown in Fig. 16 and Table 1. Simulation results are
shown in Fig. 17, where the ego vehicle, including first-
order prediction, could not estimate changes in direction
before pedestrians changed direction. At timing in which
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Fig. 16. Simulation and experiment conditions.

Table 1. Simulation parameters.

Definition Symbol Value Unit
Initial velocity of the vehicle V0 24 km/h

Velocity of the pedestrian Vped 1.6 m/s
Initial X-axis vehicle position Xcar0 -51 m
Initial Y-axis vehicle position Ycar0 -1.3 m

Initial X-axis pedestrian position Xped0 -13 m
Initial Y-axis pedestrian position Yped0 1.2 m

X-axis direction change start position Xstart -6 m
X-axis direction change end position Xend -0.5 m
Y-axis direction change end position Yend -0.8 m  

the pedestrian started to avoid the parked vehicle, time
to collision with pedestrian Ttc is shorter than 1.4. The
ego vehicle with the system including first-order predic-
tion must therefore avoid a collision through hard braking.
The ego vehicle with 2-D prediction started deceleration
before a pedestrian changed its direction of movement and
followed the pedestrian at a distance of 5 m. These results
show that our proposed collision avoidance system effec-
tively avoided collisions in the focused-on situation.

4. Experiments

4.1. Conditions

We confirmed the effectiveness of our proposed system
in experiments under two conditions. One condition was
an intentional near miss situation caused by deactivating
the autonomous braking control system and the other con-
dition was with the autonomous braking control system
activated. Parameters are the same as those in Fig. 15 and
experiment parameters are shown in Table 2.

First, the ego vehicle and the pedestrian stop at their
initial position. Next, the driver accelerates the ego ve-
hicle to initial velocity V0 (= 25 km/h). The pedestrian
starts walking when the ego vehicle reaches experiment
start position X0 (= −55 m). The ego vehicle detects the
pedestrian by using LIDAR on the front of the vehicle
and predicts pedestrian movement. Last, the ego vehicle
decelerates automatically based on pedestrian movement
prediction by using an electric actuator attached to the
brake pedal. Here, real-time longitudinal displacement
of ego vehicle Xcar is obtained by using odometry with
a given initial vehicle position. Lateral vehicle displace-
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Fig. 17. Comparison of our collision avoidance system
based on first-order and 2-D prediction.

Table 2. Experiment parameters.

Definition Symbol Value Unit
Initial velocity of the vehicle V0 24 km/h

Velocity of the pedestrian Vped 1.6 m/s
Initial X-axis vehicle position Xcar0 -50 m
Initial Y-axis vehicle position Ycar0 -2.0 m

Initial X-axis pedestrian position Xped0 -18 m
Initial Y-axis pedestrian position Yped0 1.0 m

X-axis direction change start position Xstart -6.0 m
X-axis direction change end position Xend -0.5 m
Y-axis direction change end position Yend -0.8 m

ment Ycar and the velocity of the pedestrian’s movement
are considered as constant values.

4.2. Pedestrian Detection Using LIDAR
We detected pedestrians and predicted pedestrian

movement in real time using the LIDAR. Object recog-
nition using the LIDAR is shown in Fig. 18. First, objects
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detected in the LIDAR range and FOV are shown as point
clouds in I. Next, point clouds are recognized as a group if
certain points next to each other are within threshold lim-
its for data association Gx1 and Gy1, as shown in II. Min-
imum and maximum displacement values are registered
for object recognition. If these groups are recognized as
objects, however, a problem arises of the parked vehicle
being divided into two groups as shown in II. The small
group, which is really part of the parked vehicle, could
also be misdetected as a pedestrian. To solve this prob-
lem, we had groups recognized as groups if the centers of
groups existed within the limits of thresholds Gx2 and Gy2
as shown in III. Objects are thus recognized by consid-
ering their length as shown in IV. Objects in experiments
are thus recognized as pedestrians if the object is narrower
than Ox [m] and Oy [m].

4.3. Autonomous Braking Pedal Control
The autonomous braking pedal control system is shown

in Figs. 19 and 20. To follow reference acceleration
and velocity without delay, we introduced lead time TC
(= 0.5 s). The reference acceleration and velocity are cal-
culated by considering lead time as shown in Eqs. (15)
and (16):

a∗x (t +TC) = a∗x (t)+TC · ȧ∗x (t) . . . . . . (15)

V ∗ (t +TC) = V ∗ (t)+TC ·a∗x (t)+
1
2

T 2
C · ȧ∗x (t) . (16)

Motor Torque Tm
Motor Angle θt

Brake Pedal
Stroke Pb

Brake Pressure pbAutonomous braking
pedal control system

Fig. 19. Components of the autonomous braking pedal con-
trol system.

+

-

+

-

_m xT aK

_mT VKV
e

xa
e +

+
mT 1

s
xa V

Plant(Vehicle)Autonomous braking pedal controller
( )

1
VV m s

V

K T
e

T s
τ−

+
( )*

x Ca t T+

( )*
CV t T+

1 CT s+

2
21

2
C

C
TT s s+ +

( )*
xa t

( )*V t

Fig. 20. Block diagram of the autonomous braking pedal
control system.

Braking system control laws are shown in Eqs. (17)–(19).

Tm (t) = KTm V · eV (t)+KTm ax · eax (t) . . . . (17)

eV (t) = [V ∗ (t +TC)]− [V (t)] . . . . . . . (18)

eax (t) = [a∗x (t +TC)]− [ax (t)] . . . . . . . (19)

Feedback variables are determined by considering final
value theorems.

4.4. Experiment Results
Portions of a movie of experiments using the au-

tonomous braking control system are shown in Fig. 21.
Experiment results under the condition that the au-
tonomous braking pedal control system is deactivated and
activated are shown in Figs. 22 and 23. Note in Fig. 22
that the ego vehicle would have collided with the pedes-
trian if the pedestrian has not stopped. Note in Fig. 23
that the autonomous braking control system maintained
enough margin between the vehicle and the pedestrian to
keep them from colliding by decelerating based on the
2-D pedestrian movement prediction indicated by the bro-
ken line at top in Fig. 22. The autonomous braking pedal
control system made the vehicle decelerate and traced the
reference acceleration and velocity without delay, i.e., the
proposed autonomous braking control system based on
2-D pedestrian movement prediction effectively enhances
collision avoidance performance.

5. Conclusions

This research has detailed 2-D pedestrian movement
prediction and autonomous braking control system for
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Fig. 21. Experiment images.
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Fig. 22. Near collision situation without autonomous braking.

avoiding collisions with pedestrians and enhancing the
collision avoidance performance of an active safety sys-
tem. We first formulated a 2-D pedestrian movement pre-
diction method related to a parked vehicle position based
on measured trajectory analysis and movement modeling.
We confirmed that the proposed prediction method pre-
dicted pedestrian positions well, especially when pedes-
trians suddenly started crossing a road laterally while
walking straight. We next formulated the overtake deter-
mination method and the reference acceleration command
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Fig. 23. Effectiveness of our proposed autonomous braking
control system.

generator based on our proposed pedestrian movement
predictor. We verified the effectiveness of the autonomous
braking control system we designed by conducting simu-
lations and experiments. We thus found that the system
performs in actual practice and confirmed that the pro-
posed autonomous braking control system based on 2-D
pedestrian movement prediction effectively enhanced col-
lision avoidance performance.
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