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The method we propose for constructing a large three-
dimensional (3D) map uses an autonomous mobile
robot whose navigation system enables the map to be
constructed. Maps are vital to autonomous naviga-
tion, but constructing and updating them while en-
suring that they are accurate is challenging because
the navigation system usually requires accurate maps.
We propose a navigation system that explores areas
not explored before. The proposed system mainly uses
LIDARs for determining its own position – a process
known as localization – or the environment around
the robot – a process known as environment recogni-
tion – for creating local maps and for avoiding mo-
bile objects – a process known as motion planning.
We constructed a detailed 3D map automatically using
autonomous driving data to improve navigation accu-
racy without increasing the operator’s workload, con-
firming the feasibility of the proposed method through
experiments.

Keywords: autonomous navigation robot, human recog-
nition, automatic three dimensional map construction

1. Introduction

Research and development on mobile robots is pro-
ceeding worldwide, focusing on robots that move au-
tonomously in urban environments. The objective of such
research is to have robots replace human beings in work
such as delivery, security, and driving in urban environ-
ments. Many difficulties arise for mobile robots navigat-
ing autonomously, such as static obstacles – buildings and
roadsides – and dynamic obstacles – pedestrians and cars
–, and high-rise buildings is the reason why finding out its
own position by using global positioning systems (GPS)
is very difficult. These problems are why detailed maps
are often made by hand a priori using light detection and
ranging (LIDAR), cameras, or GPS [1–3]. Navigation
systems based on detailed a priori map information could
increase autonomous mobile robot efficiency and safety
because these let the system know where robots are and
what they see. Putting such navigation systems to prac-
tical use requires time and labor by operators and robots

in advance to determine locations. Changes in building
or road locations, for example, require even more work to
update map information [4]. Using autonomous mobile
robots in urban environments requires that we overcome
difficulties such as the above. To do this, we set a goal
of making an autonomous navigation system that guesses
and judges things using general concepts in the same way
as human beings do [5]. Specifically, maps including the
place information are helpful to understanding the envi-
ronment. We hold that autonomous navigation systems
without precise prior information, using map construc-
tion and autonomous renewal by robots alone, use con-
structed maps. In such cases, map information should in-
clude static obstacles and considering that most moving
obstacles in urban environments are human beings then
human beings should be recognized as such. Because
of this, autonomous mobile robots move more efficiently,
safely, and smoothly in areas which robots have already
been – without repeating or increasing operators’ work.
We propose a multiple flexible autonomous navigation
system that does not require prior detailed information or
automatic large three-dimensional (3D) map construction
or renewal using sensor data and robot’s pose. Results of
our experiments demonstrate the validity of our proposed
method.

2. System Architecture

2.1. Autonomous Mobile Robot INFANT
The configuration of our mobile robot, known as Inte-

grated Foundations for Advanced Navigation Technology
(INFANT), is detailed in [6]. The HDL-32e LIDAR is
used for localization and environment recognition. We
also used the Silicon Sensing Systems AMU-1802BR to
determine the pose and a wheel encoder to obtain travel
speed. The robot has a differential GPS (MicroStrain) to
determine position but only for the operator to determine
the robot’s position. Sensor processing and autonomous
mobile calculation are done by a laptop computer on the
robot using an Intel R© Core i7-c3630 QM 2.40 GHz and
RAM 3.8 GB. PCs, the motor controller and sensors com-
municate over the Ethernet using TCP/IP.
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Fig. 1. System architecture of our autonomous system run-
ning on INFANT. The background of the new module is
shaded.

2.2. Autonomous Navigation System
Figure 1 shows the autonomous navigation system ar-

chitecture that runs in unknown environments where prior
information is gotten easily from the Internet and real-
time data from the robot is used without the need for
previous detailed information. This detailed information
is a specific environment map made by the operator on
the spot using the LIDAR. In unknown environments, the
plotted point (waypoint) indicating the global position is
given as prior information so that the robot determines
the rough direction to the target (global path planning)
and follows road surfaces automatically by creating lo-
cal maps (local path planning). Local planning consists
mainly of environment recognition, localization and path
planning. In environment recognition, it searches for the
static obstacles (road edges and walls) and dynamic obsta-
cles (human). Localization estimates the robot’s position
using a digital map, LIDAR, AMU and initial position.
Additionally, to know the global position helps to figure
out the target area and exploring area. To reduce accu-
mulated error such as slippage, the global position is de-
termined by the matching of the point cloud from LIDAR
and electronic map. In path planning using the results
of environment recognition and localization, it creates a
rough route to the waypoint and selects the smooth path
from several local path candidates for avoiding obstacle
with best final pose for effectiveness and safety.

2.3. Autonomous Large Scale 3D Map Construction
A 3D map tracing the robot’s is constructed by in-

putting robot movement and environment shape informa-
tion. Shape information is used as underlying informa-
tion. For this, this information should consist of static
information alone by having information on dynamic ob-
stacles removed. In this system, the living environment
is the main work area for the autonomous mobile robot
and pedestrian are the large majority of mobile obstacles.
A human remover is established between environmental

sensors and map construction and from this, we construct
a 3D map using only static obstacles. A constructed par-
tial 3D maps are handed over to the map construction
module and integrated by common territory among each
partial maps. The large 3D map is then constructed.

3. Localization

One of our navigation system’s main functions involves
describing localization in map coordinates. Navigation
system accuracy based on localization may be strongly
controlled by results of localization. For these reasons,
high multiplicity and flexibility are important factors in
localization. Adapting to this requirement, we propose
integrating the following two methods: (i) local localiza-
tion state estimation (dead reckoning) using wheel odom-
etry, (ii) global localization using a digital map that con-
tains latitude and longitude. Additionally, localization in
map coordinates consists of azimuth estimation and trans-
lational position estimation in map coordinates. Digital
maps from the Internet are given to both processes as prior
information. Specifically, by comparing shape informa-
tion of buildings from the digital map and the real world
around the robot, the position and azimuth of robot’s are
estimated in map coordinates. Thanks to map-provision
services, e.g., Google maps, easily acquired digital maps
of living environments ensure a multiplicity of localiza-
tions. We detail flexibility of each estimation and mod-
ules. Note that the digital map we use is from Google
maps [a] and that the map resolution of the map is 0.238 m
per pixel.

3.1. Azimuth Estimation Using a Gaussian Map
Most surface of buildings in the map in our living en-

vironment are flat, so we assume that the real digital map
shape and model match. This suggests that azimuth of the
robot be estimated from the distribution of surrounding
surface directions even where robot cannot measure own
position from artificial satellite. We extract predominant
surface data from shape data obtained from the LIDAR,
and compare this surface with digital map to estimate
the azimuth. The azimuth estimation flow is normal es-
timation from point cloud, Gaussian map generation with
Gaussian representation, and predominant normal extrac-
tion. A final comparison is made by using the work of
Shimizu [7]. In this process, classifying a Gaussian map
based on normals of point cloud, the median and varia-
tion is derived from each cluster. The processing flow for
extracting the dominant normal on Gaussian sphere is de-
scribed in [6]. Note that after clustering, the dominant
rate is given to each superior normal using the number
of elements. The dominant rate is the rate of point cloud
regarded as the same group in acquired point cloud. If
this ratio for all dominant normals is not enough or the
variation of each cluster is high, it is necessary to reduce
the probability of the estimated normal value in the next
matching process. In real urban environments, there are
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some places that the LIDAR can find any of the buildings
inside the sensor area. In such areas, it is possible that es-
timating the azimuth using the predominant normal may
not be activated correctly, but we solve this problem by
integrating with a gyro sensor.

3.2. Translational Position Estimation by Map
Matching

Azimuth error accumulated from odometry is corrected
by azimuth estimation using the Gaussian map mentioned
above. In the sections that follow, we detail how to cor-
rect accumulated translational error. Images used in map
matching are digital with depicted building shapes (model
image) and point clouds acquired from the LIDAR for
each 3 m. The distance between points and the robot
are 30 m or less (query image) and the amount of posi-
tion calibration is calculated by searching the spot where
the model and query images correspond. General-purpose
template matching using intensity is not enough, however,
for finding the correct relationship between two images,
so we calibrated the position by using formula evaluation
(Eq. (1)) to calculate the similarity of the model and query
images.

Score = A
Qu,v

f it

Qplot
+B

(
1−
(

du,v

w

)2
)

. . . . (1)

(u,v) is a coordinate of pixels, Qplot is the total number
of wall pixels detected as a wall of a building in a query
image, Qu,v

f it is the number of pixels which the shape of
building in model image and the wall surface in query data
are matched in pixel coordinate (u,v). du,v is the distance
between (u,v) and the estimated position of the robot con-
verted in the model image. w is a region to be searched in
model data and this is also denoted as the distance from
the robot not yet estimated in the model image.

4. Environment Recognition and Path Plan-
ning

The most important task for the autonomous robot in
an urban environment is avoiding obstacles. Obstacles
are divided into two groups – static and dynamic. Dy-
namic obstacles especially interrupt robot safety, so we
must know the movement and instance of dynamic ob-
stacles for planning movement to avoid them. When the
robot recognizes the environment or constructs the envi-
ronment map while running, only static information are
expected as sensor data. In fact, using dynamic informa-
tion may decrease the accuracy of environment recogni-
tion and of the map. Recognizing human beings in the en-
vironment is critical to recognizing the environment and
constructing the environment map. For these reasons, we
use human recognition from the point cloud and use shape
features in motion planning. Point cloud of pedestrians
which have a large majority of obstacles in the urban en-
vironment removed are used in environment recognition,

Table 1. Extracting features.

No. Dimension Description of the feature

f1 1 Distance to the centroid of the cluster

f2 1 Number of points contained in the cluster

f3 3 Size of the cluster

f4 6 Three dimensional covariance of the cluster

f5 6 The normalized moment of inertia tensor

f6 9 Two dimensional covariance of upper and bottom body

f7 30 Width, length and curvature in each block

f8 143 Histogram of the point number in the grid

f9 143 Histogram of the normal gradient in the grid

environment map construction and 3D map construction
to improve accuracy, as mentioned below.

4.1. Human Recognition

This section focuses on human recognition using the
3D point cloud from the LIDAR and shape feature. We
only require a solid object to detect human beings, so the
point cloud of the ground surface is excluded by using
Min-Max. Projecting acquired points on two dimensional
grid maps, individual cells compare the highest and low-
est values of points in each cells. If the difference is below
the threshold, points in the voxel are discarded; in other
words, only 3D object points are extracted. Remaining
points are then clustered by Euclidean distance. Gener-
ated clusters contain objects of different sizes in the en-
vironment, e.g., human beings, trees, or walls. These ob-
jects are regarded as in the same cluster if a human being
is close to these objects. This means that people walk-
ing in the group or standing by the objects gathered as
the same cluster because of short distance between clus-
ters. Dividing clusters is thus an important technique for
recognizing human beings correctly. Principal component
analysis (PCA) and a bounding box are used for this pro-
cess. These clusters are then used to extract the nine shape
features shown in Table 1. These features are high di-
mension, so it is undesirable to determine by the thresh-
old alone. We use a support vector machine (SVM) [8]
trained by feature vector calculated from shape informa-
tion of object and construct the classifier. Note that train-
ing data is created from the 3D point cloud from the LI-
DAR. Positive data are a human being who is standing or
walking. Negative data are the other 3D objects (Fig. 2).
Figs. 3 and 4 show the ROC and precision-recall curves
used to evaluate the classifier trained by the extracted
features. Test data consist of positive human and nega-
tive other object data and differs from the training data.
With the observation value alone, however, false detec-
tion may occur due to the sensor rate and environment
noise. To avoid this problem, we predicted and tracked
target movement, using the motion model to estimate the
cluster movement and track cluster to weigh based on the
previous recognition rate.
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Fig. 2. The figure above shows positive data and that below
shows negative data.

Fig. 3. ROC curves.

Fig. 4. Precision/recall curves.

4.2. Environment Recognition
We recognize the environment by using a LIDAR. Va-

riety exists in real-world regions that robots cannot en-
ter. Similar to other processes, environmental recogni-

tion requires flexibility to adapt to these situations, which
change over time. In our local map construction, regions
that robots cannot enter are divided into three parts –
obstacles with large height change, obstacles with little
height change and different material load surfaces. Using
the optimum technique in individual regions may improve
flexibility in recognizing where robots can enter and inte-
grating each technique at the suited situation to be more
multiple system. Note that as the path planning below is
executed in 2-dimensional grid cells, environment recog-
nition represents obstacles by 2-dimensional grid cell.

Static obstacles are assumed to exist in our living en-
vironment as walls and road edges. Min-Max [9] used in
previous obstacle recognition is selected for use with ob-
stacles with large height change, but its use with obstacles
with little height change is difficult to recognize because
of noise from robot movement and ground roughness. To
solve this problem, we use PCA [10] with points near
around the interest point and estimate curvatures calcu-
lated from variance-covariance matrix. By changing the
likelihood of obstacles found by using both techniques
dynamically, regions that robots cannot enter could be es-
timated.

4.3. Path Planning and Motion Selection
With path planning and motion selection, a local en-

vironment map is constructed by using the environment
recognition above. A global path toward a waypoint is
generated by using a D*Lite algorithm [11]. After a
global path is generated, local path candidates are gen-
erated and a path is selected with smoothness, no fear of
interference by obstacles, and considering the robot’s last
pose to ensure efficient safe movement.

To follow the global path generated by the D*Lite al-
gorithm, we set a target trajectory point on the global path
and select a point on the global path and in distance d
as target position coordinate (x,y). The trajectory gener-
ated toward the target point coordinate without consider-
ing robot motion model may deviate from the trajectory,
so in this approach we use our proposed trajectory gener-
ation [12]. This enables us to plan 5 degrees of freedom in
Eq. (2) at every point in the trajectory. Motion parameters
considered while calculating the trajectory are max accel-
eration, the max curvature to trace and the max difference
of curvature.

xt =
[

xt yt θt κt vt
]T . . . . . . . (2)

xt is the robot state in time t, xt , yt , θt are the position
and pose of the robot, κt is trajectory curvature, and vt is
forward velocity. The processing flow for generating tra-
jectories while following a waypoint is described in [6].
Marked in the grid are obstacles judged as impossible to
run by local map construction. Trajectories without inter-
fering obstacles are saved as candidates and that with high
adaptability with the global path is selected.
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Fig. 5. Graph. Fig. 6. Detailed graph.

5. Automatic 3D Map Construction

In this section, we describe constructing a large scale
map. Optimization and generation of the graph is essen-
tial for map construction. Our system created a highly
accurate map using the point cloud which removed hu-
man [13].

5.1. Graph-Based SLAM
Here we illustrate graph-based SLAM [14, 15]. This

is a localization method containing odometry and sensor
data proposed by Giorgio Grisetti. The estimated position
and sensor data are kept by graph structure. As Figs. 5
and 6 show, a graph consists of nodes and edges. Node x
is the state of the robot in the corresponding frame. The
relative position between nodes is expressed in edges and
has relative position data zi j and matrix Ωi j, which has the
weight of each component in a diagonal element. This
is used while calculating the information matrix of each
edge while estimating the maximum position likelihood.
In the optimization process, maximum likelihood position
x∗ makes objective function F(x) in Eq. (3) the minimum.

F(x) = ∑
i, j∈C

eT
i jΩi jei j . . . . . . . . . . (3)

x∗ = arg min
x

F(x) . . . . . . . . . . (4)

ei j = ẑi j(xi,x j)− zi j . . . . . . . . . . (5)

ẑi j is the relative state between temporary estimated posi-
tion x j and xi and zi j is an observed value of state x j, xi.
Next is the minimization of objective functions in Eq. (4).
To optimize objective function F(x), which is nonlinear to
estimated position x, it is solved by regarding the objec-
tive function as a topically linear function and using repet-
itive calculations around temporary estimated position x.
If appropriate estimated position x̆ is established, the error
function around the position is expressed as shown below.

ei j(x̆+Δx) � ei j(x)+ Ji jΔx . . . . . . . (6)

Taylor expansion is done until the first member to re-
gard error function ei j around estimated position x̆ as lin-
ear. Ji j is a Jacobian matrix around estimated route x̆ of
error function ei j. With this in mind, the component of ob-
jective function Fi j(x̆+Δx) around initial estimated route
x̆ is expressed as follows:

Fi j(x̆+Δx)

= ei j(x̆+Δx)T Ωi jei j(x̆+Δx)

= (ei j(x̆)+ Ji jΔx)T Ωi j(ei j(x̆)+ Ji jΔx)

= ci j +2bi jΔx +ΔxT Hi jΔx. . . . . . . (7)⎛
⎝ ci j = eT

i jΩei j

bi j = eT
i jΩJi j

Hi j = JT
i jΩJi j

⎞
⎠

Objective function F(x̆+Δx) is a summation of com-
ponent Fi j(x̆+Δx), and is given as follows:

F(x̆+Δx)

= ∑
i, j∈C

(
ci j +2bi jΔx+ΔxT Hi jΔx

)
= c+2bΔx+ΔxT HΔx. . . . . . . . . (8)

By replacing Δx with Δx∗ to make the first derivative
Δx of objective function F(x̆+Δx) as 0, Δx∗ is expressed
as follows:

HΔx∗ = −b. . . . . . . . . . . . . . (9)

In Eq. (9), we must select an efficient computational
method such as LU decomposition to calculate the inverse
matrix to be implemented because H is a nondense matrix
most of the time. From Eq. (9), calculated Δx∗ updates the
estimated route x̆ as mentioned below. This calculation
only ends if the desired accuracy is satisfied.

x̆ = x̆+Δx∗ . . . . . . . . . . . . . (10)

5.2. ICP
The iterative closest point (ICP) [16] is used to correct

the position of two sets of point clouds and to calculate
edges containing relative position data among two frames
in our system. The ICP estimates highly accurate relative
positions by using repetitive calculations when two sets
of point clouds are in a suitable initial relative position. If
the initial relative position is far from the final estimated
relative position, however, registration of our method fails
because of the relationship between the points of the coor-
dinates that compose each set of point clouds. By search-
ing for the congruent point of interest in the ICP, points
of coordinates that are a short distance away are selected.
Not giving a suitable initial position may cause mistaken
matching and collapse registration. In other words, stabi-
lized registration requires a suitable initial position. With
our method, odometry becomes a useful initial relative
position for the initial position.

5.3. Loop Closure
Using the ICP enables us to estimate a high accurate

edge from adjoined nodes, but as a running course be-
come longer, estimation error accumulates. To solve this
problem, the ICP is executed with two nodes that reach
the same region to generate another edge. After this, con-
ducting Graph-based SLAM may correct accumulated er-
ror.
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6. Experimental Result

We use autonomous mobile experiments to prove the
feasibility of our system in the real environment include
both indoor and outdoor types.

6.1. Autonomous Navigation
6.1.1. Environmental Recognition and Path Planning

Figure 7 shows generated path results based on the en-
vironmental recognition in Fig. 8. In this environmen-
tal recognition, our system detected obstacles with large
height change, little height change and a different material
load surface. Path planning also followed the preset route
at first and in the step for generating a trajectory, thus
creating a path toward the middle of the traversable area
based on the local map. These results show that our envi-
ronmental recognition and path planning are effective.

6.1.2. Localization
Figure 8 shows localization results. As shown in

Fig. 8, our localization performs in various environments
without fail.

6.1.3. Human Recognition
Figure 9 shows human recognition in experiments. At

top in Fig. 9, a cluster estimated to be a human being is
surrounded by a bounding box. It is color-coded for each
estimated cluster. The point cloud from which the cluster
of the human being has been removed is shown at bot-
tom. These results show that recognizing and removing a
human from the point cloud work successfully.

6.2. 3D Map Construction
To demonstrate the usefulness of our 3D map construc-

tion, we selected 3 routes from experiments to create a
partial map and combined them into a large map. Just as
in the autonomous navigation experiments, these routes
include both inside and outside. The estimated trajectory
and map construction process are shown in Fig. 10, and
the detailed large 3D map constructed is shown in Fig. 11.
As shown in Fig. 10, the whole map has less distortion
than an aerial photograph thanks to the position collec-
tion process. Fig. 11 shows that the detailed 3D map has
high accuracy in the limited place.

7. Conclusions and Future Work

We have proposed autonomous navigation without
prior detailed map information and automatic large 3D
map construction. Autonomous navigation consists
mainly of localization, environmental recognition, and
path planning. Localization using azimuth estimation and
translational position estimation showed the robustness by
using LIDAR and digital map. In environmental recogni-
tion, a robot could detect obstacles by integrating height

information with curvature information while the robot
avoiding obstacles such as moving like pedestrian, trees
and road edges. In human recognition, the robot calcu-
lated high dimensional parameters from shape informa-
tion provided by the LIDAR and judged whether a shape
was human by using an SVM. In path planning, our sys-
tem moved safely and smoothly by using global and local
path planning. Global path planning shows the approxi-
mate direction the robot should go by waypoints and lo-
cal path planning follows the global path and avoids sur-
rounding obstacles based on the robot’s kinematic model.
In automatic large 3D map construction, our system cre-
ated a highly accurate map using sensor information from
which human beings had been removed. Based on the
relative distance between two points calculated by odom-
etry, our system estimated both the relative position and
relative angle by using the ICP, enabling us to automat-
ically construct the map so that it revised cumulative er-
ror by optimization using graph-based SLAM. When the
robot revisited, our system cloud updated and integrated
the map highly accurately by reprocessing the above pro-
cess. In experiments in various environments, we demon-
strated the usefulness of our proposed autonomous navi-
gation system. It became possible to automatically con-
struct a large highly accurate 3D map. In the future, we
will develop a construction method for semantic maps.
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Fig. 10. Large-scale 3D map.

Fig. 11. Detailed constructed map.
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