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For reasons of production cost and differences in man-
ufacturing dates for mobile robots, individual robots
on a robot team have different processing, movement,
and detection abilities. To maximize the potential abil-
ity of individual robots and minimize overall explo-
ration time in unknown environments, this paper pro-
poses a novel discrete adaptive auction-based algo-
rithm for coordinating multirobot systems (MRSs). A
utility calculation scheme that takes into account the
dispersion of teammates is presented, followed by an
identical performance index formula that converges to
a value for measuring differences in exploration effi-
ciency. The performance measure is taken into ac-
count in calculating bids for exploration tasks. We
compared our results to other exploration strategies
by simulation and results show improved exploration
time.

Keywords: multi-robot systems (MRSs), discrete adap-
tive auction-based algorithms, market economy, task as-
signments

1. Introduction

There are many potential applications for multirobot
systems (MRSs), such as exploring and mapping, surveil-
lance, and foraging. Making a MRS of heterogeneous
robots exploring an unknown environment efficiently re-
quires a coordinated algorithm. A number of coordinated
algorithms have been developed in the last two decades. A
representative result proposed early on is a frontier-based
strategy for decentralized MRS coordination [1]. In as-
signing targets to individual robots, the approach consid-
ered distances alone. Distance is taken as cost that is one
of two factors in arriving at a target cell in frontier-based
approaches. To trade off on the cost of arriving at a fron-
tier cell and the utility of the cell, a decision-theoretic
approach was proposed [2]. The utility consists of two
parts – a constant value for all frontier cells and a re-
duction value proportional to the detection range of other
robots. The second part forces dispersion of all teammates
throughout the environment. Target distribution for all

teammates is not considered from the view of the scale of
the whole environment. Dias et al. summarized achieve-
ments of early market-based coordination algorithms [3].

Results were in some cases based on the fact that
knowledge about the environment was known a priori by
individual robots. Dynamic task assignment through a re-
peated algorithm based on single-item auction was real-
ized [4]. A distinctive feature of this work is its robust-
ness against uncertainties and against robot malfunctions.
The cost measure was travel time. It was assumed that
all robots possessed constant and equal speeds in the ap-
proach. Total tasks and unknown workspace are parti-
tioned into as many clusters of tasks [5] and regions [6, 7]
as robots by K-mean clustering algorithms (K-Means).
Based on clustering results, the coordination problem was
converted to a multitraveling salesmen problem [5]. To-
tal cost consisting of travel cost and idle cost minimiza-
tion and robot workload balancing were realized by an
auction mechanism. The result is limited to static condi-
tions. A K-Means-based coordinated algorithm optimized
the online assignment of robots to targets, and kept robots
working in separate areas [6]. It efficiently reduces vari-
ations in average waiting time in those areas and fulfilled
balanced and sustained exploration for each teammate of
the MRS. In [7], unknown space was dynamically reparti-
tioned whenever new areas were discovered by the team.
A coordinated approach based on a partitioning of an en-
vironment Voronoi graph generated from occupancy grid
maps was proposed [8]. The contribution is that task as-
signment for robots takes into account the environmental
structure.

In contrast to above results, a kind of time-extended
coordination – more than one task is assigned to a robot
– with intrapath constraints was investigated [9]. Tiered
auctions and clustering and opportunistic path planning
were utilized in bounded searching of possible schedules
and allocations. A genetic algorithm was then adopted to
solve the coordinated problem again. Results indicated
that the second approach with an enough large population
has better quality solutions than the first approach at a cost
of greater calculation time.

An optimal task allocation approach via stochastic clus-
tering auction that uses a Markov chain search process
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along with simulated annealing was proposed [10]. Re-
sults showed that team performance slides into the region
between global optimal performance and performance as-
sociated with random allocation. Mapping and explo-
ration approaches for a heterogeneous MRS were dis-
cussed [11], adopting a hierarchical system consisting of
manager robots at upper levels and worker robots at lower
levels. The two kinds of robots are divided by the cal-
culation power of individual robots. Unfortunately, the
approach assumed that processing abilities of individual
robots are known in advance. In contrast, the approach
proposed in this paper removes the prerequisite. Decen-
tralized coordinated strategies used consensus algorithms
to overcome inconsistencies in detected target positions,
target classification, and robot position [12]. Work com-
bined consensus and auction algorithms to obtain task al-
location solutions robust against both the above inconsis-
tencies across the team and variations in the communi-
cation network topology. The decentralized auction ap-
proach used a consensus algorithm for conflict resolution
without the need for an auctioneer.

From the view of coordination, MRSs may have cen-
tralized [2, 10], decentralized [1, 12], distributed [4, 13],
or hierarchical [11] architectures. Distributed and decen-
tralized system architectures have no centralized auction-
eer, and individual robots bids for tasks and auctions tasks
detected independently. To assign unfinished tasks, the
auction algorithm is repeated whenever a robot finishes
its task [2, 4], or whenever the distance traveled by robots
or time elapsed exceeds a given threshold [2]. In the
auction-based algorithm developed here, the former mode
is adopted to start a new series of auction actions.

This paper is organized as follows. After reviewing the
representative results based on market economy for MRS
coordination, Section 2 gives an overview of the MRS
considered here and discusses the motivation of our re-
search. Section 3 presents a utility calculation scheme.
Section 4 covers the main contribution of this paper, i.e.,
the establishment of an identical performance index for
teammates, and the presentation of our discrete adaptive
auction-based algorithm based on the performance index.
Section 5 gives simulation results, and Section 6 summa-
rizes conclusions.

2. System Overview

Due to limitations on communication bandwidth [13],
the limited MRS dealt with here consists of a total of n
heterogeneous mobile robots called R1, . . . ,Rn. The MRS
explores and maps in an unknown environment. The envi-
ronment is sparsely occupied by obstacles and is modeled
by a grid map. All teammate robots have the same geo-
metrical shapes which occupy a planar cell on the map.
Individual robots have no knowledge about the environ-
ment except for relative distances from other robots. As
exploration progresses, individual robots run a simultane-
ous localization and mapping (SLAM) algorithm. When
the assigned task is finished or when time for the current

auction period is over, the algorithm on individual robots
builds a local environment model. By interchanging map-
ping results and map merging, all robots have a common
global environment model before each new auction period
begins.

Market economy-based approaches are suitable for co-
ordinating heterogeneous MRSs. The essence of the ap-
proach is that robots trading tasks and resources to max-
imize individual profit simultaneously improve team ef-
ficiency [3]. An issue arises of differences in the mo-
tion speed, processing ability and detection range of the
individual robots. The issue is not taken into account
when tasks are assigned to each teammate in the litera-
ture. Motivated by the above fact, this paper proposes a
novel adaptive auction-based strategy for moving target
assignment of a team of heterogeneous MRSs.

The main contribution of this paper is a meaningful
scheme that takes full advantage of available environment
and robot location information for a calculation utility.
Conventional methods take the utility for each frontier cell
as a constant [2] or as the number of unknown cells that
fall within the radius of the frontier [13, 14]. Because the
environment is unknown, the number of cells is unknown
until a robot arrives at the frontier cell. To prevent dupli-
cating exploration of a local area, the proposed Gaussian
function-based utility calculation scheme keeps different
robots separated effectively over the whole environment.

It is difficult to describe performance differences in all
aspects when exploring. To differentiate the exploration
and mapping ability for individual robots and to simplify
the corresponding algorithm, a unified performance for-
mula is established and applied to individual robots, so
the achievement per time unit of each teammate, i.e., the
area explored by each teammate per time unit, is used as
the performance index. As exploring progresses, the per-
formance formula converges to a different value that cor-
rectly reflects its exploration ability on individual robots.
Adaptability means that the performance calculation strat-
egy adapts to performance differences step by step (dis-
crete).

3. Improvement of the Auction Algorithm

In the market economy-based approach, exploration
tasks are assigned based on the utility and cost of each
frontier cell. The utility of a frontier for Ri takes the form
of

Ui
p (Ri|R1, . . . ,Ri−1,Ri+1, . . . ,Rn)

= Ui
p1 +Ui

p2 (Ri|R1, . . . ,Ri−1,Ri+1, . . . ,Rn) . (1)

where Ui
p1 and Ui

p2(•) are the first and second parts of
the utility of frontier cell cp (p = 1, . . . ,m) ∈ C, where
C = {c1, . . . ,cm} is the set composed of frontier cells that
Ri would bid for, i (i = 1, . . . ,n) is the index of current
robot Ri, cp may be a frontier cell detected by any robot
in the MRS. Contrary to current available methods, the
two parts are calculated as described below. First part Ui

c1
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is the size of the detectable subset of Ci in case of Ri arriv-
ing at cp. Because coordinates of each frontier are known,
the calculation scheme is realizable. Second part Ui

p2(•)
is the influence resulting from targets or locations of all
other robots. If a robot was assigned a target, then the
influence imposed on Ri by the robot results from the tar-
get, or else influence results from the current location of
the robot. Ui

p2(•) is represented as two summarizations of
Gaussian functions

Ui
p2 = −

i−1

∑
j=1

exp

(
− (xi

p− x j
t )2 +(yi

p− y j
t )2

r2
j

)

−γ
n

∑
l=i+1

exp

(
−
(
xi

p − xl
c
)2 +

(
yi

p − yl
c
)2

r2
l

)
(2)

where x j
t and y j

t are target coordinates of R j, xl
c and yl

c are
current position coordinates of Rl , xi

p and yi
p are coordi-

nates of frontier cell cp, r j and rl are the detection ranges
of R j and Rl , and γ is a weighting scalar. If the direct path
between Ri and R j or Rl is blocked, then R j or Rl have no
influences on Ri. It is assumed that teammate robots are
assigned tasks based on a sequence from R1 to Rn, when
discussing assigning task to Ri,R j ( j = 1, . . . , i− 1) are
assigned tasks and Rl (l = i+1, . . . ,n) are not.

The evaluation of cp for Ri is

Ei
p = Ui

p −ρDi
p . . . . . . . . . . . . (3)

where Di
p is the distance from the current location of Ri

to frontier cell cp, and ρ is a weighting scalar. Ri sub-
mits bids to all available frontiers. It is assumed that the
frontier cell

pi
max = arg max

p=1,...,m
Ei

p . . . . . . . . . . (4)

has the maximal evaluation. After time threshold ts, if no
other robot submits a bid with a bigger evaluation than
that of Ri, then the corresponding auctioneer robot auc-
tions frontier cell pi

max to Ri.
For simplicity, the above coordinated algorithm is

called improved auction-based algorithm (IA-A). Com-
pared to conventional auction-based algorithms [1–5, 9,
10, 13], IA-A introduces exponential functions to calcu-
late utility for frontier cells. If and only if argument x
converges to infinity, the value of exponential function
exp(−x) converges to zero. Because of this fact, influence
spreads over the whole environment and the distribution
of all teammate robots is more dispersive.

4. Discrete Adaptive Auction Algorithms

In this section, IA-A is improved further. The amount
of utility a robot gained per time unit is defined as effi-
ciency. To emphasize the time factor, the evaluation of
frontier cell cp is designed as the expected efficiency, as

Êi
p =

Ui
p

t̂i
p

. . . . . . . . . . . . . . . (5)

where t̂ i
p = Di

p/vi is the estimated time for Ri moving from
the current location to frontier cell cp, and vi is the speed
of Ri.

Auction behavior is similar to IA-A in that all robots
bid for tasks based on Eq. (5), and the winner is de-
termined by Eq. (4). The algorithm is called efficiency
auction-based algorithm (EA-A).

Although EA-A is expected to improve the efficiency
of MRSs, performance differences in individual robots is
not taken into account. In fact, differences result in differ-
ent exploration efficiency for individual robots. To further
improve the efficiency of such a MRS when coordinated
by an auction-based algorithm, the robot with higher per-
formance should conduct more exploration tasks.

To implement the above idea, the average area per time
unit individual robots explores is taken as performance
index Ai(k) of Ri, and

Ai(k) =

k

∑
t=1

ΔAi(t)

k

∑
t=1

T (t)

. . . . . . . . . . . (6)

where k and t are discrete time variables (k = 1, . . ., t =
1, . . . ,k), ΔAi(t) is the area of a local environment mod-
eled by Ri in T (t), and T (t) is the time period between
two consecutive auction actions at t −1 and t. In general,

T (t1) �= T (t2) (∀t1, t2 ∈ k). . . . . . . (7)

For calculating efficiently, Eq. (6) is converted to an iter-
ative form

Ai(k) =
Ai(k−1)+ΔAi(k)P−1(k−1)

1+T (t)P−1(k−1)
. . . . (8)

P(k) = P(k−1)+T(k) . . . . . . . . . (9)

where Ai(1) = ΔAi(1)/T(1). The value of ΔAi(t) is taken
as the number of cells Ri explores in auction period T (t).

Differences in past exploration achievements result in
utility differences when these robots bid for the same
frontier cell for the current exploration period, so ex-
pected utility Û i

c(k|k− 1) is introduced and taken as pro-
portional to Ai(k−1) by

Û i
c(k|k−1) = αAi(k−1) . . . . . . . . (10)

where α is a scalar. To consider Ui
p(k) and Û i

p(k|k− 1)
together when bidding for a frontier cell cp, let

Û ig
p (k) = Ui

p(k)+Û i
p(k|k−1) . . . . . . . (11)

where Ui
p(k) and Û i

p(k|k − 1) are the utility and the ex-
pected utility as defined in Eqs. (1) and (10). Û ig

p (k) is
defined as a generalized utility function.

Time variable k is omitted below without confusion
since evaluating efficiency based on a generalized utility
will make MRSs more efficient in exploration than that
in EA-A. The algorithm is thus modified into a form that
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Broadcast local environment model  

Calculate the second part of utility 

If Ri-1 is assigned task?

Update environment and unfinished job list, 
Calculate the first part of utility

Other robots in MRS

Submit bids, receive acknowledgment 
and broadcast target

Y

N

Conduct local SLAM

Finished the current task?

Y

Update performance index 

Inquire other teammates

Begin

End

Fig. 1. The flowchart for an auction cycle of DAA-Algorithm.

enables individual robots to bid for tasks based on

Êig
p =

Û ig
p

t̂i
p

. . . . . . . . . . . . . . (12)

where t̂ i
p is estimated time as defined in Eq. (5).

The winner cell is determined as expressed in Eq. (4).
The algorithm is called discrete adaptive auction-based
algorithm (DAA-A). It is an iterative procedure and be-
haves similar to a sequential single item auction-based al-
gorithm. In the algorithm, each teammate plays roles of
bidder and auctioneer. Fig. 1 shows the role of Ri acting
as a bidder in an auction period. Ri acts as an auctioneer
receiving bids submitted by other teammates and itself to
frontiers it detected, and assigned a frontier to a robot with
maximal efficiency utility. All teammates are assigned
tasks based on an order from R1 to Rn. Progress goes on
until all teammates have finished bidding for tasks. The
next round of auction actions is triggered by a signal sent
by the robot that finished its assigned task first.

To enable all unassigned tasks to the chance of being
auctioned, an unassigned job list is constructed composed
of all unexplored frontier cells detected by all teammate
robots during the last exploration period. The list is main-
tained at the same status for all robots based on the newest
global environment model before a new auction. Unfin-

C
oo

rd
in

at
e 

y 

Coordinate x 

Fig. 2. The simulated environment.

ished tasks in the list and frontiers detected currently are
combined and auctioned for all teammates as soon as a
teammate robot has finished its assigned task. In other
words, unfinished tasks are reauctioned in the next cycle.

Note that Eq. (12) reflects all aspects of robot perfor-
mance for exploration. In detail, influence resulting from
speed vi is included through t̂ i

p, and influence resulting
from processing ability, detection range, etc., is included
through Û ig

p .

5. Simulation

A MRS considered in our simulation consists of 4
robots with different processing ability, speed, and detec-
tion ranges. Individual robot speeds are 3, 4, 3, and 2.
Detection ranges of individual robots are 4, 8, 3, and 4.
Among the four teammate robots, R2 has the fastest speed
and the largest detection range. When exploration tasks
are assigned by the algorithm developed in this paper, R2
must complete the highest proportion of tasks. R1 and
R3 move at the same speed and the detection range of R1
is larger than that of R3. R1 should complete more tasks
than R3. R1 and R4 have the same detection range and R1
is faster than R4. R1 should complete more tasks than R4.
A communication link with infinite bandwidth is assumed
to be ideal.

To demonstrate the effectiveness of our algorithm,
much computer simulation is conducted for the environ-
ment in Fig. 2. The environment is a square 100 by 100
cells. Our algorithms are simulated in MATLAB.

To get comparative results, all utilities in DAA-A, EA-
A, and IA-A are calculated using Eqs. (1) and (2). A case
simulation in which 4 teammate robots initially located at
(97, 36), (5, 76), (89, 29) and (25, 93) is given through
Figs. 3 and 4. Fig. 3 shows trajectories for 4 teammates
and Fig. 4 the time when 95% of the environment was
explored by the MRS coordinated by the three algorithms.

Note that trajectories in Fig. 3(a) are neat and regular
and all robots are separated adequately. Table 1 shows
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Fig. 3. Trajectories for all teammates under coordination of
(a) DAA-A, (b) EA-A, and (c) IA-A, respectively.

intersection numbers (in) on trajectories and trajectory
lengths of 4 robots for the three algorithms. Note that
the in of R2 for DAA-A has the least number among ins
for the three algorithms. The sum of the individual in for
DAA-A is also the least. There is no significant difference
in trajectory length (tl) for all robots. The above fact re-
sults in trajectories in Figs. 3(b) and (c) being anomalistic
and disordered compared to those in Fig. 3(a). Most im-
portantly, the percentage of overlap regions explored by
the MRS in coordination of DAA-A is the lowest and the
other two cases are intermediate and highest. For display-
ing sharp trajectories in Fig. 3, obstacles in the environ-
ment are hidden temporarily.

As shown in Fig. 4, DAA-A improved exploration effi-

Algorithms 

C
om

pl
et

io
n 

tim
es

 

1 2 3
0

50

100

150

200

250

1 DAA-A 

2 EA-A 

3 IA-A 

Fig. 4. Completion times vs. algorithms.

ciency relatively well. The three algorithms in ascending
order of exploration time are DAA-A, EA-A, and IA-A.
It has been shown that robot behavior does not change
no matter how many times simulation is repeated for the
same initial conditions.

To show their effectiveness and generality, our three
algorithms and a conventional auction-based algorithm
(TA-A) [10] are compared for two cases of different initial
locations of teammates. Each case consists of 20 trials for
each algorithm. In each trial of the first case, initial loca-
tions for all teammates are generated randomly. In each
trial of the second case, an initial location generated ran-
domly for a robot is imported to the other three robots. All
four algorithms have the same initial location. For con-
venience, the two cases are called random initialization
and uniformly random initialization case. Tables 2 and
3 show initial coordinates and corresponding exploration
times of the four algorithms. To show the level of differ-
ence in exploration times between DAA-A and other al-
gorithms from the view of statistics, exploration time data
for each algorithm is taken as a sample for statistical test-
ing. Sample means and unbiased estimators of variations
in the four algorithms under two initial cases are shown
in Table 4. Based on the above data, paired two-sample
t-tests are applied to test the null hypothesis in each ini-
tialization case.

Test statistics for significance level α = 0.05 for the two
cases are shown in Tables 5 and 6. The null hypothesis
implies that the means of populations from which the two
samples were taken are equal. If the null hypothesis is
rejected, then exploration times are different. In the 6 tests
listed in Tables 5 and 6, the null hypothesis is rejected
for all tests, indicating that improvement resulting from
DAA-A are evident.

Percentages of average areas that individual robots ex-
plore are summarized in Table 7. Ai (i = 1, . . . ,4) is the
percentage of average unknown area explored by Ri. A2 is
clearly the largest among the four percentage variables for
each algorithm. A1,A3, and A4 in DAA-A are the largest
among corresponding variables of the three algorithms.
For each algorithm, percentages of areas explored by in-
dividual robots have the relationship described at the be-
ginning of this section. DAA-A improved efficiency most
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Table 1. Intersection numbers (in) on trajectories and trajectory lengths (tl).

Algorithms
R1 R2 R3 R4 Team

in tl in tl in tl in tl in tl
DAA-A 11 321.0 4 439.9 22 294.3 11 199.4 48 1254.6
EA-A 2 300.5 44 433.0 58 308.5 28 199.4 132 1241.3
IA-A 42 318.7 35 471.5 53 331.5 16 201.4 146 1323.1

Table 2. Exploration times for four algorithms – random
initialization case.

No.
Initial 

coordinates 

Exploration times 

DAA-A EA-A IA-A TA-A

1. (88,74),(14,1), 
(89,20),(30,66) 

173 217 179 207 

2. (61,2),(2,19), 
(59,6),(37,63) 

137 207 188 167 

3. (27,25),(87,23),
(80,91),(23,24) 

163 184 234 164 

4. (72,51),(78,49),
(19,70),(98,81) 

163 186 239 185 

5. (5,57),(70,96), 
(75,74),(43,63) 

151 207 205 166 

6. (68,5),(36,50), 
(43,56),(62,11) 

159 258 176 173 

7. (33,48),(60,16),
(83,96),(60,3) 

174 178 237 209 

8. (95,64),(25,35),
(19,49),(41,46) 

159 237 245 232 

9. (72,57),(46,45),
(9,44),(37,30) 

130 196 195 159 

10. (97,36),(5,76), 
(89,29),(25,93) 

139 227 230 154 

11. (41,82),(87,2), 
(73,85),(73,96) 

165 176 195 185 

12. (84,18),(51,45),
(33,38),(89,76) 

171 170 239 218 

13. (10,64),(44,7), 
(37,25),(93,63) 

179 210 188 195 

14. (82,13),(88,51),
(96,12),(5,38) 

157 203 221 177 

15. (95,26),(51,64),
(40,49),(75,13) 

152 210 212 189 

16. (84,88),(70,76),
(97,40),(13,72) 

141 198 208 185 

17. (56,70),(29,99),
(22,50),(43,52) 

144 216 240 167 

18. (1,66),(72,28), 
(26,71),(78,99) 

140 206 200 215 

19. (13,94),(70,85),
(21,46),(8,85) 

159 181 202 179 

20. (5,1),(76,60), 
(95,82),(56,98) 

156 201 234 160 

on the grounds that each teammate runs on an efficient tra-
jectory, as shown by Fig. 3 and Table 1. Overlap regions
explored by any two teammates in the MRS are reduced.
To save space, all robot trajectories for the two cases are

Table 3. Exploration times of four algorithms – uniformly
random initialization case.

No. 
Initial 

coordinates 

Exploration times 

DAA-A EA-A IA-A TA-A

1. (95,23 ×4 156 201 183 246 
2. (46,51) ×4 186 215 208 269 
3. (92,74) ×4 172 210 225 258 
4. (41,89) ×4 144 200 179 265 
5. (20,60) ×4 167 172 206 274 
6. (45,93) ×4 196 179 197 271 
7. (20,67) ×4 181 225 205 281 
8. (83,50) ×4 171 244 241 284 
9. (19,68) ×4 162 250 199 277 
10. (38,86) ×4 159 209 199 288 
11. (82,64) ×4 192 179 252 292 
12. (34,53) ×4 144 187 208 298 
13. (37,40) ×4 187 221 195 258 
14. (79,96) ×4 202 188 209 250 
15. (27,25) ×4 152 161 207 260 
16. (30,66) ×4 184 205 196 272 
17. (58,42) ×4 173 200 238 241 
18. (58,76) ×4 177 205 193 268 
19. (78,68) ×4 187 187 225 274 
20. (60,5) ×4 198 215 197 245 

Table 4. Statistical parameters of robot team for two cases.

Algorithms
Random initializa-
tion case

Uniformly random
initialization case

Mean Var. Mean Var
DAA-A 155.6 187.5 174.5 307.5
EA-A 203.4 469.1 202.7 511.2
IA-A 213.4 511.4 208.1 364.5
TA-A 184.3 490.5 268.6 253.3

omitted. It was found from Table 4 that only DAA-A
saves exploration time compared to TA-A for random ini-
tialization cases. All three algorithms save on exploration
times compared to TA-A for uniformly random initializa-
tion cases, however, because all 4 robots are located to-
gether initially. The calculation scheme of the second part
utility takes a role in the second case. In the first case, all
robots are separated initially and the scheme takes fewer
roles.
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Table 5. Paired two-sample t-test for exploration time data
in Table 2.

t-test
A = DAA-A

B = EA-A B = IA-A B = TA-A

tAB −8.3424 −9.7691 −4.9291

d. f .AB 32.0973 31.2822 31.6741

Null hypothesis Rejected Rejected Rejected

Table 6. Paired two-sample t-test for exploration time data
in Table 3.

t-test
A = DAA-A

B = EA-A B = IA-A B = TA-A

tAB −4.3997 −5.7964 −17.7605

d. f .AB 35.7856 37.7287 37.6482

Null hypothesis Rejected Rejected Rejected

Table 7. Comparison of four algorithms in explored areas (percentages).

Algorithms
Random initialization case Uniformly random initializa-

tion case

A1 A2 A3 A4 A1 A2 A3 A4

DAA-A 10.43 77.32 4.99 7.26 10.17 77.53 4.98 7.32

EA-A 8.95 79.82 4.83 6.39 9.12 79.71 4.77 6.40

IA-A 8.97 80.02 4.89 6.12 8.87 80.41 4.65 6.07

TA-A 10.63 76.98 5.03 7.36 10.53 77.21 5.68 6.58

6. Conclusions

A novel discrete adaptive auction-based algorithm for
coordination of MRS has been proposed based on a per-
formance measure for individual robots calculated itera-
tively by an identical formula. Without initial knowledge
about performance differences between individual robots,
the performance index converges to a different value that
expresses performance correctly. In cases in which some
robots degrade performance or malfunction, the perfor-
mance index reflects this fact in DAA-A. Our coordinated
algorithm brings out the best in individual robots for ex-
ploration, so the efficiency of exploration for MRS is im-
proved.

Improvement was realized at the cost of distances trav-
eled by individual robots being different. A potential dis-
advantage is that the robot traveling the longest distance
may consume its energy first. Time for calculating bids
and communication are not considered. Future work will
be to extend the approach to make it suitable for dynamic
environments.
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