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This paper proposes a cooperative visual object track-
ing by a multi-robot system, where robust cognitive
sharing is essential between robots. Robots identify
the object of interest by using various types of infor-
mation in the image recognition field. However, the
most effective type of information for recognizing an
object accurately is the difference between the object
and its surrounding environment. Therefore we pro-
pose two evaluation criteria, called ambiguity and sta-
tionarity, in order to select the best information. Al-
though robots attempt to select the best available fea-
ture for recognition, it will lead a failure of recogni-
tion if the background scene contains very similar fea-
tures with the object of concern. To solve this prob-
lem, we introduce a scheme that robots share the re-
lation between the landmarks and the object of in-
terest where landmark information is generated au-
tonomously. The experimental results show the effec-
tiveness of the proposed multi-robot cognitive sharing.

Keywords: object tracking, multi-robot, feature evalua-
tion, feature selection, autonomous landmark generation

1. Introduction

Many projects that include cooperative distributed tasks
using multi-robots are underway. Above all, improving
the visual-cognitive ability of robot is important to make
the system adaptable to the actual environment. There-
fore, we discuss two cognitive-ability factors required for
multi-robot systems. The first is the ability of a robot to
recognize an object accurately. The second is cognitive
sharing, which is a typical issue in multi-robot systems.
Cognitive sharing involves identifying the object or event
and sharing them with the other robots. As regards object
recognition, many methods have been proposed before.
The method described in [1] uses a color histogram and
that described in [2] uses a histogram of texture as a fea-
ture used for recognizing similar objects. These methods
are efficient when it comes to single-color objects or ob-
jects with simple texture, but they cannot be used for com-
plex objects. Meanwhile, many methods that focus on lo-
cal features have been suggested. The method described
in [3] uses the Harris interest point operator, while those

described in [4] and [5, 6] use an original interest-point-
detection algorithm to extract local area information and
relate it to the occlusions. On the other hand, [7] discusses
the recognition of more kinds of object by describing the
probabilistic model of the local area and the positional re-
lation. However, these methods based on local features
will depress the cognitive ability because they cannot ex-
tract enough interesting points with respect to a simple
object, whereas this ability is high in [1] and [2]. Fur-
thermore, in distributed robots system [8, 9], robots are
observing objects from different field of view. So the ef-
fectiveness of the features proposed in conventional work
depends on the representation of objects as well as their
surrounding environment. So the effectiveness of the fea-
tures that have been proposed before depends on objects
that should be recognized as well as their surrounding en-
vironment. Thus, in this paper, we propose evaluation
parameters such as ambiguity and stationarity to assess
the effectiveness of each feature described in full detail
in Section 2. Depending on the object that should be
recognized and the surrounding environment, we try to
solve this problem by selecting a feature that presents a
small probability of false recognition based on these eval-
uation parameters. Next, we discuss cognitive sharing.
In the previous studies on multi-robot cooperative tasks,
Tan [10] and LeBlanc [11] simplified the cognitive shar-
ing by using a RFID tag on the target whose information
needs to be shared and Xue [12] simplified by using QR-
code. Also, in situations where environment information
is limited, such as at the RoboCup, specific objects like
the goal are treated as landmarks and cognitive sharing is
handled by utilizing the relation between those landmarks
and the ball [13]. But to invest in using multi-robot sys-
tems in the human society or in extreme environments, we
cannot use markers because the information of the target
that needs to be shared will change dynamically according
to the task. Also, in an unknown environment, it is diffi-
cult to configure the landmark preliminarily. Therefore, in
this paper, we try to solve this problem by identifying the
target based on the landmark that the robot determined
autonomously. We use as landmark an object that can
be easily identified and shared; in other words, a unique
object that presents a small probability of false recogni-
tion. Here, based on the aforementioned feature-selection
method, the robot will select the most efficient feature
with respect to each object that it is recognizing. Compar-
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ing the evaluation parameters of the selected feature, we
can figure out the object, which is now easy to recognize.
The most easily recognizable object is used as a landmark
by the robot; we call this “landmark generation.” In re-
lated research described in [14], planar quadrangulars like
doors or posters that exist in the environment are treated
as landmarks and are used for performing the environment
mapping. Frintrop [15] proposed the landmark genera-
tion method which is focused on the SIFT detector and
succeeded in visual localization and scene recognition.
In this paper, first we define the ambiguity and station-
arity as evaluation parameters for the color and shape fea-
ture; subsequently we consider their adequateness. Then
we propose feature-selection and autonomous landmark-
generation methods based on the evaluation values. Fi-
nally we indicate the effectiveness of our proposed meth-
ods by accomplishing cognitive sharing through coopera-
tive object tracking.

2. Evaluation of Feature Effectiveness

2.1. Ambiguity and Stationarity Definition
In this section, we define ambiguity and stationarity,

which are used to evaluate the effectiveness of the color
and shape feature. Ambiguity is an indicator that is used
to evaluate how ambiguous the feature is. For example,
when the robot tries to recognize a blue ball among many
blue-colored objects, it cannot identify which object the
target is, based on the color feature. Therefore if there is
no ambiguity in the situation – in other words the ambigu-
ity of the feature has a low value – the feature is effective
for recognizing the object accurately. Stationarity is an in-
dicator that is used to evaluate the change rate of the ambi-
guity. The ambiguity changes according to the movement
of the robot and the changes in the surrounding environ-
ment. Therefore if the change rate of the ambiguity is
low, the feature is invariant with respect to environmental
changes and is effective.

2.2. Ambiguity of Color Feature
2.2.1. Definition

First of all, we evaluate how a same-color object used
as target is distributed in an input image by using a color
histogram. Normalizing the target-color histogram Htarget
and the whole image’s color histogram Himage, we calcu-
late the intersection C of the two histograms by Eq. (1),
and C can get a value between 0 and 1. i is the histogram’s
bin. If there are objects of the same color in the input im-
age, C increases.

C = ∑
i

min(Htarget(i),Himage(i)) . . . . . . (1)

The mean-shift tracker calculates the distribution of the
histograms in the window and the center of gravity of the
distribution. Then tracker transfers the window’s center
of gravity to the calculated distribution’s one. Because the
tracker searches for objects around the window, if objects

Fig. 1. Definition of the distance between objects.

of the same color as the target are present, the tracker will
falsely recognize them. Therefore it is necessary to eval-
uate the distance between the target and the same-color
objects. To evaluate the distance, we use a poisson distri-
bution. The poisson distribution shown in Eq. (2) gives
the probability distribution only based on the expected
value of occurrences λ . And k refers to the number of
occurrences of an event.

P(k) =
e−λ λ k

k!
. . . . . . . . . . . . . (2)

First, we define the distance between the target and other
objects according to the following list and Fig. 1.

• Area of target: Atarget

• Radius of target approximated by a circle:
R =

√
Atarget/π

• Same-color object’s area: Aob ject

• Radius of object approximated by a circle:
r =

√
Aob ject/π

• Distance between the center of the target and the ob-
ject approximated by a circle: L

• Distance: d = L− r−R

Next, we define the distance as k.

d < 5 : k = 1
5 · (n−1)≤ d < 10 ·n : k = n (2 ≤ n ≤ 19)

95 ≤ d : k = 20

If k is a small number, the distance is short and there is a
high probability of false recognition. Then we can evalu-
ate the distance by calculating the cumulative probability
in k < 6, as shown in Eq. (3).

P =
∫ 5

0
P(k)dk . . . . . . . . . . . . . (3)

Finally we define the ambiguity in the color feature
Acolor by calculating the weighted geometric mean of C
and P, because it depends highly on the distance between
objects whether the false recognition happens or not. The
ambiguity ranges from 0 to 1.

Acolor = C
n

n+m ·P m
n+m , n : m = 1 : 3 . . . . . (4)

2.2.2. Evaluation
In this section, we examine the correlation between the

ambiguity found and the actual recognition rate. We eval-
uated the recognition performance of designated targets
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Fig. 2. Suc-
cessful case in
ideal scene.

Fig. 3. Suc-
cessful case in
real scene.

Fig. 4. Fail-
ure case in real
scene.
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Fig. 5. Success prob. in
ideal scene.
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Fig. 6. Success prob. in
real scene.

for 50 scenes in total. The breakdown is: 5 ideal and
real scenes for each ambiguity value that is from 0.00 to
0.19, 0.20 to 0.39, 0.4 to −0.59, 0.6 to 0.79, and over
0.80. Figs. 2, 3, and 4 are snapshots from the experi-
ments. The target to recognize is a blue ball, the red circle
corresponds to the recognition of an object by a robot,
and the gray circles correspond to an approximated circle
of other objects of the same color. In Figs. 2 and 3, the
color distribution C is low, and P is low because the dis-
tances between objects d are long, thus Acolor is low and
the robot can recognize the target. However, in Fig. 4,
C is similar to Figs. 2 and 3, P is high because there are
blue objects near the target and each d is low. Thus Acolor
is high and the robot fails to recognize the target. We
conducted experiments like the above for each ambiguity,
and the results are shown in Figs. 5 and 6. The horizontal
axis represents the ambiguity and the vertical axis repre-
sents the probability of success of the recognition, whose
max value is 5. From these results, it is obvious that false
recognition occurs when the ambiguity exceeds 0.60 and
the robot cannot recognize the target based on the color
feature when the ambiguity exceeds 0.80.

2.3. Ambiguity in the Shape Feature
2.3.1. Definition

We use a pattern-matching algorithm for the recogni-
tion of a target based on the contour feature. The similar-
ity Si of each contour is defined by Eq. (4) using the Hu
moment hk [16]. The additional character t refers to the
target and i refers to each contour.

mt
k = sign(ht

k) · log | ht
k |

mi
k = sign(hi

k) · log | hi
k |

Si =
7

∑
k=1

| mt
k −mi

k | . . . . . . . . . . . (5)

Si = 0 means that the two contours match perfectly,
whereas if Si is high, they do not match. Therefore trans-

Fig. 7. Suc-
cessful case in
ideal scene.

Fig. 8. Suc-
cessful case in
real scene.

Fig. 9. Fail-
ure case in real
scene.
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Fig. 10. Success prob. in
ideal scene.
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Fig. 11. Success prob. in
real scene.

forming Si to S′i by using the sigmoid function shown in
Eq. (5), S′i = 1 means perfect matching and is suitable for
the meaning of the ambiguity.

S′i =
1

1+ exp−α(S−β ) . . . . . . . . . . (6)

α = −15 , β = 0.3

By calculating S′i for all contours obtained from the in-
put image and the number of contours N, we can define
the ambiguity on contour Acontour based on Eq. (6). The
ambiguity is found to be from 0 to 1.

Acontour =
1
N

N

∑
i=1

S′i . . . . . . . . . . . (7)

However, if there is no contour similar to the target, thus
there is no contour with a S′ over the threshold or if the
robot cannot get the contour at all from the input im-
age, the robot cannot recognize the target at all based
on the contour feature and it sets the ambiguity value to
Acontour = 1.

2.3.2. Evaluation
In this section, we examine the correlation between the

ambiguity found and the actual recognition rate in the
same way as for the color feature. Figs. 7, 8, and 9 are
snapshots from the experiments. In Figs. 7 and 8, Acontour
is low and the robot recognizes the target correctly. How-
ever, in Fig. 9, Acontour is high and the robot fails to rec-
ognize target. We performed experiments similar to the
above for each ambiguity, and the obtained results are
shown in Figs. 10 and 11. Although false recognition oc-
curs when the ambiguity exceeds 0.60 in the color feature,
from these results it is obvious that false recognition oc-
curs when the ambiguity exceeds 0.40 and the robot can-
not recognize the target based on the contour feature when
it exceeds 0.60.
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Fig. 12. Explanation drawing of stationarity.

2.4. Stationarity
2.4.1. Definition

In this section, we define stationarity. The drawing of
Fig. 12 can be used to explain this parameter. First, we
calculate the difference between the maximum and the
minimum value of the ambiguity in frame interval i based
on Eq. (8). n denotes how many times ago the differ-
ence was calculated, with the latest frame interval being
n = 0. Next, we sum the exponentially weighted diffni

based on Eq. (9). Then we sum Sti weighted by wi based
on Eq. (10). The smaller the value of St is, the better. In
addition, we discuss how to determine the frame intervals.
These intervals are determined based on the movement
velocity of the robots and the tracking object, and the fps
of robot vision. In the experiment described in this paper,
the tracking target crosses the field of view of the robot
within 1 to 2 seconds. Consequently robots repeat their
rotation and movement every 1 to 2 seconds when they
are tracking the target. The fps of robot vision is about 10
to 30. Therefore, we estimate that we need to measure sta-
tionarity for up to 2 seconds and we decide that the frame
intervals are 60 frames, 30 frames, 10 frames.

diff i
n = Ambiguitymax−Ambiguitymin . . . . (8)

sti = ∑
n=0

diff i
t · exp−n . . . . . . . . . (9)

St =
3

∑
i

si ·wi, (w1 : w2 : w3 = 1 : 1 : 1) . . . (10)

2.4.2. Evaluation
In this section, we examine the adequateness of station-

arity using ambiguity with respect to blue color. In this
experiment, we move the camera from the low-ambiguity
scene shown in Fig. 13 to the high-ambiguity scene shown
in Fig. 14, and then return the camera to the scene shown
in Fig. 13. We show the transition of ambiguity and sta-
tionarity calculated in the experiment in Fig. 15. From
frame 1 to 25, the ambiguity remains nearly constant and
the stationarity is less than 0.1. Then from frame 26 to
40, the ambiguity increases rapidly and the stationarity is
over 0.6. After that, from frame 41 to 97, the change of the
ambiguity is small and the stationarity starts to decrease
slowly. From frame 98 to 132, the ambiguity decreases

Fig. 13. Low-ambiguity scene. Fig. 14. High-ambiguity scene.
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Fig. 15. Transition of ambiguity and stationarity.

No Yes

Detects Target

Calculates Ambiguity and Stationarity
of Each Feature

Ranks Each Feature

Some
“Best Rank“ Feature 

are Existing

“Best Rank” Feature 
is Selected

“Low Ambiguity” Feature 
is selected

Next Frame

Current Frame

Fig. 16. Flowchart of feature selection.

rapidly and the stationarity is over 0.6 again. Finally, af-
ter frame 132, the ambiguity remains nearly constant and
the stationarity decreases. Based on this experiment, we
confirmed that the stationarity works well when changes
in ambiguity occur.

3. Feature Selection

In this section, we demonstrate the feature-selection
method. Fig. 16 shows the feature-selection flowchart.
First, the robots calculate the ambiguity and the station-
arity of the color and shape feature in every frame. Then
the robots determine the rank of each feature based on the
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Table 1. Feature evaluation.

Ambiguity Stationarity Rank
Low (≤ 0.5) Low ( ≤ 0.5) 1

Low High (> 0.5) 2
High (> 0.5) Low 3

High High 4

0

0.25

0.5

0.75

1

0 0.25 0.5 0.75 1

St
at

io
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ri
ty

Ambiguity

Fig. 17. Evaluation of object recognition based on ambigu-
ity and stationarity.

ambiguity and the stationarity. The rank is determined ac-
cording to Table 1. If the ambiguity is less than 0.5, the
robots can recognize objects because of the reasons ex-
plained in Sections 2.2.2 and 2.3.2. Also if the stationar-
ity is less than 0.5, we estimate that the feature has enough
stationarity tentatively. Because the robots can easily rec-
ognize the object by using the feature that has the lowest
rank, the feature is selected as the most adequate. And if
various features have the lowest rank, the feature with low
ambiguity is selected. Fig. 17 is a graph of the ambiguity
and the stationarity of Fig. 15, plotted on each axis. In
Fig. 17, the better the feature is, the closer to the origin it
appears.

4. Autonomous Landmark Generation

4.1. Definition of Landmark

In this section, we define the conditions under which
objects can become landmarks. In order to determine a
landmark, we introduce two evaluation factors; saliency
and stationarity. Saliency means that an object has unique
characteristics compared to other objects. For example,
an object has a unique visual feature such as color, shape,
or texture compared to other objects. Also some objects
have unique physical or semantic relations between them,
such as constellations. This means that we can evaluate
saliency based on the ambiguity as defined in Section 2.4.
Stationarity means that the time rate of change of the
saliency is low or repeats the cycle. We already defined
stationarity in Section 2.4. We deem that the object for
which the ambiguity and the stationarity are determined
can be used as landmark.

No
Yes

Detects Objects

Executes “Feature Selection”
for Each Object

Some Objects  
Recognized by

“Best Rank“  Feature
are Existing

An Object Recognized by 
“Best Rank” Feature 

is Landmark

An Object Recognized by 
“Low Ambiguity” Feature 

is Landmark

Next Frame

Current Frame

No Yes

Fig. 18. Flowchart of autonomous landmark generation.

Robot A
Robot B

Robot C

Target

Fig. 19. Experimental environment.

4.2. Method to Generate Landmark
Figure 18 shows the flowchart of autonomous land-

mark generation. First, the robots execute “Feature Se-
lection” on each object that they try to recognize, and
then they select the best feature to use for the recognition.
Next, the robots compare each feature rank. Finally, the
robots determine which object recognized has the lowest
feature rank, in other words the object that was recognized
most accurately, and consider it a landmark. If several ob-
jects are found to have the lowest feature rank, the robots
consider the object with the lowest ambiguity feature to
be the landmark.

5. Experiment

5.1. Experimental Conditions
The aim of this experiment is to perform cognitive shar-

ing of the blue ball based on the autonomous landmark-
generation method. Fig. 19 shows the experimental en-
vironment. We assign the feature (color and shape) of
tracking the target beforehand only to Robot A. Any in-
formation is not provided preliminarily to Robot B, thus
it searches the target by using the only information given
by Robot A. Robot C only carries the blue ball that is the
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Table 2. The cognitive ability of robots.

Color Blue, Red, Green, Yellow
Shape Circle or Other Shape

No

Yes

Search Target

Get Target Information

Found?

Generate Landmark

Send Information of 
Target and Landmark

    Robot A       Robot B

Receive?

Waiting for Information

Search Target

Found?
No

Search Landmark

Found?
No

No

Identify Target and
Achieve Cognitive Sharing

Yes

Yes

Yes

Fig. 20. Flowchart of cognitive sharing on robot communi-
cation.

tracking target and it never interlopes with Robot A or
B by using communication, etc. Robot C is operated by
a human. The blue arrows point in the initial direction
of each Robot’s camera. The red arrow points in the di-
rection of motion of Robot C. Also, Robot A and B can
recognize the object that has the features listed in Table 2.

5.2. Cognitive Sharing on Robot Communication
Figure 20 shows the flowchart of the cognitive-sharing

process performed by the robots in this experiment. First
we discuss Robot A. It searches the target until it can
find the tracking-target information given previously. If
it finds the target, it generates the landmark based on the
aforementioned ambiguity and stationarity. If it generates
the landmark, it sends the information of this landmark
(color and shape) and of the target to Robot B. Otherwise,
if it cannot generate the landmark, it informs Robot B ac-
cordingly. It performs this process at each frame. Next
we discuss Robot B. Until it receives the information from
Robot A, it is in standby condition. When it receives the
information, first it searches around the target that has the
desired features. If it finds the target, then it searches for
the object that has the features included in the received in-
formation of the landmark. On the other hand, if it cannot
find the landmark, it deems that the candidate for track-
ing object is not the object that Robot A is tracking, so it
searches the tracking target again. If it finds both the re-
ceived target and the object that has same features as the
landmark, it can identify the candidate as the object that
Robot A is tracking; thus we can estimate the success of
the cognitive sharing.

Fig. 21. Field of view of the robots in frame 34. The left
image is of Robot A. The right image is of Robot B.

Fig. 22. Field of view of the robots in frame 72.

Fig. 23. Field of view of the robots in frame 112.

Fig. 24. Field of view of the robots in frame 154.

5.3. Experimental Results

We focus on and explain some important steps in the
experiment. The fields of view of Robot A and Robot B
are shown in Figs. 21–24. The left images correspond to
Robot A and the right images to Robot B. Figs. 25–28
show graphs of each object’s ambiguity and stationarity
that Robot A plots in real time. Tables 3–6 are radical
data that are plotted in Figs. 25–28. “No.” is the number
of each object shown in Figs. 21–24 and “T” indicates the
tracking target. “A” denotes Ambiguity, “S” is Stationar-
ity, and “R” is Rank. Figure 29 shows the transition of
ambiguity of the tracking target which was observed by
Robot A. First we consider the transition of ambiguity and
feature selection with respect to the environment changes.
In Figs. 21 and 22, the blue object has a higher proportion
in the field of view of Robot A. In fact, in Fig. 29, the
ambiguity of the color shows the highest value through
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Fig. 25. Feature eval. in
frame 34.

Fig. 26. Feature eval. in
frame 72.

Fig. 27. Feature eval. in
frame 112.

Fig. 28. Feature eval. in
frame 154.

Table 3. Feature evaluation data in frame 34.

No. Color A S R Shape A S R
1 Red 0.234 0.138 1 Not Circle 0.595 0.011 2
2 Red 0.118 0.104 1 Circle 0.405 0.009 1
3 Yellow 0.308 0.134 1 Circle 0.405 0.009 1
4 Yellow 0.314 0.034 1 Circle 0.405 0.009 1
T Blue 0.505 0.003 2 Circle 0.405 0.009 1

Table 4. Feature evaluation data in frame 72.

No. Color A S R Shape A S R
1 Red 0.309 0.138 1 Not Circle 0.596 0.038 2
2 Red 0.202 0.071 1 Circle 0.404 0.038 1
3 Red 0.190 0.104 1 Circle 0.404 0.038 1
4 Yellow 0.211 0.093 1 Circle 0.404 0.038 1
T Blue 0.501 0.001 2 Circle 0.404 0.038 1

Table 5. Feature evaluation data in frame 112.

No. Color A S R Shape A S R
1 Red 0.396 0.121 1 Not Circle 0.730 0.024 2
2 Red 0.345 0.087 1 Circle 0.270 0.024 1
3 Red 0.292 0.121 1 Not Circle 0.730 0.024 2
4 Yellow 0.168 0.045 1 Circle 0.270 0.024 1
T Blue 0.255 0.018 1 Circle 0.270 0.024 1

Table 6. Feature evaluation data in frame 154.

No. Color A S R Shape A S R
1 Red 0.346 0.135 1 Not Circle 0.764 0.007 2
2 Red 0.324 0.138 1 Not Circle 0.764 0.007 2
3 Red 0.452 0.132 1 Circle 0.236 0.007 1
4 Green 0.062 0.103 1 Not Circle 0.764 0.013 2
5 Yellow 0.220 0.115 1 Not Circle 0.764 0.011 2
6 Yellow 0.319 0.128 1 Circle 0.236 0.024 1
7 Yellow 0.243 0.015 1 Circle 0.236 0.024 1
T Blue 0.038 0.002 1 Circle 0.236 0.024 1

all of the data. Reading out the data in column “T” of
Tables 3 and 4, the color rank is 2 and the shape rank is
1. Consequently, Robot A is recognizing the tracking tar-
get based on the shape feature. Secondly, in Figs. 23 and
24, the proportion of the blue object in the field of view
of Robot A is decreasing. Indeed, the color ambiguity
shows a decreasing trend in Fig. 29. Reading out the data

in column “T” of Tables 5 and 6, the color rank and the
shape rank are both 1. So comparing each ambiguity we
find that the color ambiguity has a lower value and there-
fore Robot A is recognizing the tracking target based on
the color information. As described above, the surround-
ing environment changes with the movement of the track-
ing target and the robot, and the ambiguity reflects these
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Fig. 29. Transition of ambiguities.

changes. Also, based on the ambiguity and the stationar-
ity, the robot is recognizing the tracking target correctly.
Now we discuss about the autonomous landmark genera-
tion. In Fig. 21, Robot A is recognizing object No.2 (red
circle at the lower right) as the landmark. According to
the method of landmark generation, comparing the rank
of each object’s color and shape feature, the rank values
are equal to 1, except that of the shape feature of No.1.
The comparison also shows that the ambiguity of the color
feature of No.2 has the lowest value. So according to the
process described in the preceding section, Robot A sends
information (red and circular) about No.2 as the landmark
to Robot B. On the other hand, in the field of view of
Robot B in Fig. 21, there are objects that have the same
features as the tracking target and as the landmark which
are received from Robot A, and thus we know that it is
recognizing them. It means that the cognitive sharing is
successfully done, but practically each robot is viewing
the different objects so that wrong cognitive sharing can
be overcome. In Fig. 22, the landmark that Robot A gen-
erates becomes No.3 (red block at the lower right). Com-
paring the value in the same way as before in Table 4, we
know that it becomes the landmark as the object of No.3
is recognized based on the color feature. Robot A sends
the information of the new landmark to Robot B, but there
are still objects like the tracking target and the landmark
in the field of view of Robot B, so that wrong cognitive
sharing is overcome. In Fig. 23, Robot A is recognizing
No.4 (yellow circle (lemon) on the right) as the landmark.
The red objects increased compared to Figs. 21 and 22,
and we think that the color ambiguity of the red object
that was the landmark until now is increasing. In fact, if
we check Table 4, we can see that the ambiguity of the
red objects (Nos.1–3) is increasing. In contrast, confirm-
ing the table according to the method of landmark gen-
eration, we know that the object becomes the landmark
as the object of No.2 is recognized based on the color
feature. Robot A sends the information (yellow and cir-
cular) of the newly received landmark to Robot B. Then
Robot B first confirms that it was recognizing the wrong
object as the tracking target because the object that has

the same features as the landmark doesn’t exist in the field
of view of Robot B. After that, Robot B starts searching
around. In Fig. 24, the landmark that Robot A generates
becomes No.4 (green box on the right). Comparing the
value according to the method of landmark generation in
Table 6, we know that it becomes the landmark as the
object of No.4 is recognized based on the color feature.
Robot A sends the information (not circle, green) of the
new landmark to Robot B. Then Robot B recognizes both
new objects that have the same features as the tracking
target and the landmark whose information was received
from Robot A. This allows us to say that the cognitive
sharing was successfully done. As seen above, we make
sure that the cognitive sharing is attainable by generat-
ing the landmark around the tracking target and searching
both the tracking target and the landmark. Finally we dis-
cuss the reason why stationarity values in Tables 3–6 are
globally low. This time, the robot that carries the track-
ing target moves slowly, so the movement of the robot’s
field of view is also slow. Consequently, we consider that
stationarity has a low value because the changes in the
environment which produce a change in ambiguity arise
gradually, and therefore the change in ambiguity is also
gradual.

6. Conclusion

In this paper we set as our goal the advancement of
object recognition and the implementation of cognitive
sharing among robots, which is a big problem at a multi-
robot cooperative level. For the former, the solution is the
selection of the best feature by the robot autonomously,
whereas for the latter the solution is the generation of a
landmark by the robot autonomously and subsequently
the use of that generated landmark. Thus, we first pro-
posed the use of ambiguity and stationarity, which are the
indexes used to gauge the effectiveness with respect to the
feature of color and shape. According to these indexes,
we proposed a method for selecting the best feature and
for generating the landmark autonomously. Based on our
experiment on cooperative object tracking using a multi-
robot system, we indicate that the robots select the best
feature depending on the environment which varies from
hour to hour based on the ambiguity and the stationar-
ity. Also, we confirm that successful cognitive sharing
among robots can be achieved by considering the object
that is the most easily recognized on a case-by-case basis
autonomously to be the landmark and sharing the relevant
information.
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