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The purpose of this paper is to propose a remote-
controlled robot system capable of accurate high-
speed performance of the same operation strictly con-
forming to human operator movement without sensors
or special control means. We specifically intend to im-
plement high-precision high-speed 3D hand pose esti-
mation enabling a remote-controlled robot to be oper-
ated using two cameras installed loosely orthogonally
using one ordinary PC. The two cameras have their
own database. Once sequential hand images are shot
at high speed, the system starts selecting one database
with bigger size of hand region in each recorded im-
age. Coarse screening then proceeds based on propor-
tional hand image information roughly corresponding
to wrist rotation or thumb or finger extension. Fi-
nally, a detailed search is done for similarity among
selected candidates. Experiments show that mean
and standard deviation scores of errors in estimated
angles at the proximal interphalangeal (PIP) index
are 000...444555 ±±± 111444...555777 and at the carpometacarpal (CM)
thumb 444...777 ±±± 111000...888222, respectively, indicating it as a
high-precision 3D hand pose estimation. Remote con-
trol of a robot with the proposed vision system shows
high performance as well.

Keywords: 3D hand pose estimation, two cameras in-
stalled at position of loosely orthogonal relationship, 3D
shape reconstruction of a hand from a 2D image, remote
control of a robot

1. Introduction

Robot research and development projects have not yet
succeeded in incorporating a high level of intelligence in
a robot. When an object having various poses, weights
and centers of gravity is located in front, for example, it
remains difficult to ensure that the robot hand holds the
object in conformance to individual object features so that

the object can be manipulated. The level of intelligence
built into a robot is currently that of a six-year-old child,
at best. With countries such as Japan facing a declining
birthrate and an aging population, robots are expected to
be required to have an advanced level of intelligence es-
pecially in the fields of logistics and elder care meeting
the needs and requirements of senior citizens.

A paradigm shift in thinking is needed. To be more
specific, it is not easy to incorporate an advanced level of
intelligence in a robot in such a way that the robot will
take care of the work of assortment. Assume, for exam-
ple, that a human operator in a room different from that
of the assortment worksite monitors the area to confirm
that items to be sorted travel as designated on a belt con-
veyer. In response to what is the operator’s movements, a
robot at the remote locations imitates the operator’s move-
ment. This would enable comparatively complex sorting
without requiring that an advanced level of intelligence be
built into the robot. This requires only that daily human
action be done through a monitor.

Hand tracking is not the robot vision technology re-
quired in this case. What is needed is “hand pose esti-
mation.” Specifically, hand tracking in which images of
hand movement direction and distance are analyzed and
assigned to robot functions and information communica-
tion equipment. This is comparable to cases in which, for
example, if the operator gestures “scissors” in a rock, pa-
per, scissors game, the robot is made to do operation A.
If the operator gestures “paper,” the robot is made to do
operation B. Hand tracking is enabled in a pointing de-
vice where hand direction and distance are detected and
used to do the required work. The robot is not manipu-
lated by daily operator action. Instead, in the technique of
hand pose estimation, the “pose or posture of the hand”
are associated with dynamic robot behavior. In hand pose
estimation, the same movement as that of the operator is
reconfigured by the robot. This does not require that the
user to learn a specific action in advance to ensure that the
robot does it. Once the user conducts a daily action, the
robot will do the same.
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Two approaches are used to roughly classify conven-
tional hand pose estimation – 3-dimensional (3D) model-
based and 2-dimensional (2D) appearance-based action.
The 3D model-based approach [1–6] involves extracting
local characteristics or silhouettes from images recorded
by a camera and fitting a 3D hand model constructed be-
forehand on a computer. This approach estimates hand
shapes highly accurately, but it processes self-occlusion
poorly and requires long processing time. The 2D-
appearance-based approach [7–9] involves directly com-
paring an input image to an image stored in a database,
which cuts calculation time. If 3D changes in hand ap-
pearance – e.g., wrist and forearm movement – are in-
volved, however, this approach requires a large refer-
ence database, and robot hand movement is difficult to be
controlled using imitation. If basic difficulty in estimat-
ing hand poses lies in hand shape complexity and self-
occlusion, high-accuracy poses become theoretically pos-
sible to estimate, but this requires an extensive database of
all possible hand images, including complexity and self-
occlusion. The feasibility of this approach thus depends
on the search algorithm.

In 2D appearance-based approach, Hoshino et al. [8]
proposed using computer graphics (CG) editing software
and data gloves to create a large database containing per-
sonal hand pose attributes such as movable joint range
and bone length. They developed a search algorithm
that shortens search time in looking for unknown input
images by using a multi-layer database based on a self-
organization map accompanying self-multiplication and
self-extinction so that similar hand images are brought
closer and the search area is reduced to only that data near
the search result during previous search time is inquired
about [10].

In hand pose estimation using one camera, self-
occlusion is fatal to manipulating an object by a remote-
controlled robot. Assume, for instance, that an object cap-
tured by the camera from the back of the hand has al-
most the same the silhouette. This may involve at least
two types of postures, such as power grasping and preci-
sion pinching. If the positional relationship between the
finger and object to be grasped or pinched is inaccurate,
the robot hand will easily lose the object. When an ap-
plication example of hand pose estimation is considered,
however, it is unrealistic to use a multiple-camera system
to capture an object by surrounding it. If possible, re-
quirements should be met by installing two cameras po-
sitioned loosely orthogonally, without camera installation
being specifically or precisely positioned.

Given the above background, we propose a remote-
controlled robot system capable of accurate high-speed
performance of the same operation strictly conforming to
human operator movement, but without sensors or special
controllers. We are particularly interested in introducing
a way to implement high-precision high-speed 3D hand
pose estimation enabling real-time operation by a remote-
controlled robot using two cameras, positioned loosely or-
thogonally, together with an ordinary PC.

2. System Configuration

2.1. Data Sets
Our previous system database was constructed using a

single hand model, i.e., the operator’s hand [11, 12]. The
database stored individual hand images paired with fin-
ger and wrist angles synchronously acquired from a data
glove and camera. Images were recorded using a camera
with a resolution of 320× 240 pixels, laterally and verti-
cally viewing hands and fingers on an appropriately sized
screen. Fingers and wrist angles were acquired using a
data glove (Cyber Glove, Virtual Technologies Inc.) that
simultaneously obtained 18 types of angle information on
the hand.

The database must contain every possible hand pose for
a hand model, without exception. Here, we therefore pro-
vide a system with two types of hand model pose patterns
– called basic and additional – generated using 3D com-
puter graphics [8] (Poser 5, Curious Labs). Basic pose
patterns are created to cover all hand poses. We inde-
pendently captured images on bending and extending the
index, middle, ring, and little fingers in turn, the degree
to which fingers spread or close toward one another in
five stages, thumb motions with six stages, and wrist mo-
tion and forearm rotation with seven stages. We saved
data sets combining these poses in the database. Individ-
ual stages were decided based on dynamic range and joint
DOF (degree of freedom) number. For wrist motions, we
only moved the wrist within the same plane, relative to
the camera, for each rotation of the forearm.

We used additional pose patterns to add data sets for
poses when the palm or back of the hand faced the camera.
Whereas we had treated how much the fingers spread mu-
tually as one degree of freedom, fingers are actually all ca-
pable of moving independently toward or away from each
other, so appearance when the palm or back of the hand is
facing the camera differs greatly. We added further hand
pose data combining basic pose patterns for thumb and
wrist motions with new patterns for finger bending and
extension and how much fingers spread. In other words,
hand CGs with various poses are systematically generated
through the former “basic pose” procedure, and hand CGs
with individual differences are generated through the lat-
ter “additional pose” procedure. Fig. 1 shows examples
of additional bending/extending and spreading of fingers.
The resulting database contained 772,576 data sets from
collecting large-scale data sets.

2.2. Calculation of Proportional Information on
Hand Images

We first defined hand contours. Specifically, the out-
ermost pixel becomes Labeling No.1 and the pixel inter-
nally adjacent to the outermost pixel Labeling No.2. Re-
peating this labeling yields the pixel position becoming
the largest labeling found, i.e., the reference point. A hand
range is defined and cut out. On the original image from
the previous paragraph, the top, left and right ends of the
hand image correspond to the top, left and right ends of
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Fig. 1. Additional hand poses derived from basic poses.

the hand contour. The bottom of the hand image is lower
than the reference point in distance to such a pixel on the
outermost contour nearest to the reference point – the dis-
tance is defined by pixel number (N).

For a hand image as cut out above, three proportions,
shown in Fig. 2, are calculated.

(1) Height: Rtall [i] = H[i]/(H[i]+W [i])

(2) Top-heaviness: Rtopheavy[i] = Hupper[i]/H[i]

(3) Right-bias: Rrightbiased [i] = Wright [i]/W [i]

H indicates the number of pixels measured vertically
within the cutout. W indicates the number of pixels mea-
sured horizontally within the cutout. Hupper indicates the
number of pixels located above the reference point. Wright
indicates the number of pixels in the region to the right of
reference point. Suffix i indicates the dataset number in
the database.

These three proportions correspond roughly to forearm
rotation, thumb bending, and nothumb finger bending.
Image interpretation by proportional information is thus
used for coarse stage-1 screening.

Fig. 2. Proportional image information.

Fig. 3. Silhouette appearing the same in hand pose estima-
tion by monocular camera but differing with types of pos-
ture.

2.3. Image Feature Calculation
In the present study, an image is divided into 64 sec-

tions – 8× 8 each vertically and laterally – and divided
images were represented by numbers of dots, i.e., M0 pat-
tern in HLAC [13]. A single hand image is thus described
using image features as a dot of 1 pattern× 64 divided
sections.

2.4. Database Construction
As stated, when one camera is used in capture, various

postures can be included when the appearance is the same
viewed from one direction, as shown in Fig. 3. When the
silhouette is the same viewed from the back of the hand,
various positional relationships of the thumb arise for the
other four fingers. Taking advantage of the two high-
speed cameras installed loosely orthogonally, we intro-
duce a way for configuring the database for high-precision
estimation of the positional relationship of the thumb to
the fingers. Specifically, the data set of the database for
matching has five types of information, shown in Fig. 4
– (i) finger joints angles and wrist angles (18 + 3 DOFs)
with which hand CG images were generated, (ii) and (iii)
proportional information on each image (3 DOFs) ob-
tained from two cameras, and (iv) and (v) hand image
features (64 DOFs) obtained from two cameras.

The sections that follow describe basic concepts for
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Fig. 4. Data set configuration in database for matching.

hand pose estimation using two cameras at positions
loosely orthogonally. In stage 1, comparison is made
of hand regions captured by two cameras, and the image
having greater area is determined. The scope of choices
is then roughly narrowed using proportional hand image
information on one of the images selected ((ii) or (iii))
alone. For simplicity, the first processing determines the
approximate posture viewed from the back of the hand.
High-definition matching of the degree of similarity (i.e.,
(v) or (iv)) is done using only image features from cam-
eras loosely orthogonally, from selected candidates. For
brevity, using the image viewed from the lateral position,
the second processing determines how far the finger is
bent.

Because each data set has two types of image features
as primitive learning data and paired with joint angle data,
our system can allow 3D hand shapes to be reconstructed
from 2D images.

3. Hand Pose Estimation

3.1. Hand Area Extraction

To extract the user’s hand area, we use background sub-
traction. Where the background image is relatively stable,
it is sufficient to generate a background model in advance
by averaging a number of image frames that do not in-
clude hand area. In most cases, however, some fluctua-
tion occurs in the background due to light fixtures blink-
ing, sunlight changing, foliage moving, and shadows from
moving objects. Many ways have thus been proposed for
background models that consider such background fluctu-
ation. These can be divided into two main types those for
constructing a background model in advance and those for
dynamically updating the background model. Compared
to construction an advance background model, dynami-
cally updating a background model enables more stable
extraction of movement area where there is significant
change in the background. This latter type of modeling
has problems, including high computing cost and the need
for large-capacity memory to ensure high-speed process-
ing.

Fig. 5. Correction of forearm inclination.

To achieve high-speed processing, we constructed a
background model in advance, assuming an indoor en-
vironment, where fluctuation may occur due to lighting
but shadows from moving objects are ignored. An image
captured by the camera is express by RGB colorimetrics.
This is, however, greatly affected by changes in brightness
due to the high correlation between various values, so our
system converts image data from RGB colorimetrics to
HSV colorimetrics having uniform color space.

Once background and foreground have been separated
using background subtraction, the system removes noise
by morphological opening, and takes the maximum linked
area of the foreground as the hand area.

3.2. Compensating for Forearm Inclination
Estimation requires that the user be able to move freely

in front of the camera. In images used to construct our
database, the hand and forearm appear from the bottom
of the screen, but during estimation, the system must be
able to recognize hand poses regardless of the direction
from which the hand appears. We use the fact that incli-
nation results in virtually no change to the forearm outline
to calculate and compensate for forearm inclination.

The system first looks for four points S, S′, E, and E ′
as shown in Fig. 5. Points S and E are pixels at which
the hand outline and forearm cross the edge of the screen.
The system traces pixels of the hand outline from point S
to point E, and calculates individual pixel inclination. In-
dividual pixel inclination is used as the inclination of a
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Fig. 6. Two-stage hand pose estimation using two cameras installed loosely orthogonally.

straight line linking it to two other pixels, located a few
pixels in front of and after it on the outline. The next step
is to calculate the standard deviation around each pixel.
If inclination changes significantly, standard deviation is
large, and vice versa. Where standard deviation exceeds
a threshold, the nearest point to S is taken as S′ and that
nearest E as E ′. The straight line connecting S and S′ is
called Ls and that connecting E and E ′ as LE . Forearm
inclination is used as the average of Ls and LE inclination.

3.3. Two-Stage Search
In roughly narrowing the scope of choices and high-

definition matching similarity, stage 1 in a 2-stage search
involves coarse screening using proportional hand image
information. Stage 2 is detailed screening determining the
image most similar among candidates selected in stage 1.
Stage 2 uses similarity calculation based on specified im-
age feature types. Fig. 6 shows two-stage hand pose esti-
mation using two cameras installed loosely orthogonally.

Screening 1 uses three parameters defined by propor-
tional information. If all three fall within the specified
threshold, the dataset is chosen as a candidate for screen-
ing 2. These three parameters and their thresholds are
shown below.

(1) Height threshold: T htall > |Rtall [i]−Rcurrent-tall |,
(2) Top-heaviness threshold:

T htopheavy > |Rtopheavy[i]−Rcurrent-topheavy|,
(3) Right-biased threshold:

T hrightbiased > |Rrightbiased [i]−Rcurrent-rightbiased |.
Rtall , Rtopheavy, and Rrightbiased are proportions rep-

resenting height, top-heaviness, and right-bias of the
hand image in the data set in question. Rcurrent-tall ,
Rcurrent-topheavy, and Rcurrent-rightbiased are proportions rep-
resenting height, top-heaviness, and right-bias of the cur-
rent input image. Suffix i is the data set number.

Screening 2 uses a Euclidean-distance-based similarity
search to determine the highest possible image similarity.
Data set joint angles having the shortest distance among
candidates chosen represent the result to be determined
as the image having the highest possible similarity to the
input image.

In stage 1, roughly narrowing the finger posture scope
is done based on proportional information on the image

having greater hand region. In stage 2, a high-definition
finger posture is obtained from features of images in the
loosely orthogonal relationship. The dotted line indicates
step 1 of rough narrowing. The solid line indicates step 2
of high-definition matching of the degree of similarity.

3.4. Arm Pose Estimation
In estimating the upper limb attitude, we capture a

checkerboard based on the Zhengyou Zhang [a] proce-
dure, and calculate internal and external camera param-
eters. Internal parameters are indicated by lens distortion,
focal distance, and projection offset in an image space.
These internal parameters are calculated from multiple
checkerboard images captured by two cameras. External
parameters are indicated by camera position and rotation
for world coordinates. These external parameters are cal-
culated from one set of checkerboard images captured by
two cameras. The left top corner of one set of these im-
ages indicates the origin of coordinates, which provides a
basis for forming X-, Y - and Z-axes.

We estimate then bone position using a 2D real image
with distortion. Arm contour is determined by binariza-
tion and edge detection, assuming that the arm edge is a
straight line. When the arm is viewed from the side –
“upper camera” – the locus of the center of the inscribed
circle indicates the center line of the bone, and the radius
of the inscribed circle at each position indicates bone ra-
dius.

Specifically, row values on both ends of the edge are
calculated in the specific direction of column in the coor-
dinates (column and row) of a real image with lens dis-
tortion where row 1 < row 2. A search is then made for
a space where the edge point is located inside the radius
of the circle referencing radius (row 2− row 1)/2. This
is followed by calculating the distance to the edge within
the range from row 1 to row 2. The minimum distance is
recorded as an array for each row value. The row value
where the distance is maximum in the row direction indi-
cates the row position. The above distance is assumed to
indicate the bone radius.

The above calculation is done for the upper camera and
the image – “lateral camera” – of the arm viewed from
the top. The relationship between the column and row is
reversed for the lateral camera.

We thirdly create points corresponding to bone, and re-
cover the 3D position. The lateral camera image is as-
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sumed as the reference image. Lateral camera image and
upper camera image bone point sequence data is then con-
verted to distortion-free space bone point sequence data.
An epipolar line is obtained for a bone point sequence
data point of the lateral camera by projecting the sight
line determined by accurate coordinates of bone point se-
quence data onto the distortion-free image space of the
upper camera using a camera parameter. The 3D recov-
ery position is the position where sight lines cross at two
points for the upper and lateral cameras.

We fourthly detect wrist and elbow positions and calcu-
late wrist and elbow vectors. The wrist position is found
as follows: the bone radius of the lateral camera at each
bone position is multiplied by the corresponding bone ra-
dius of the upper camera, and the sectional area of the arm
is obtained. A search is made by moving toward the wrist.
If there is no updating for a prescribed distance, this is as-
sumed as the minimum value, namely, the wrist position.
The elbow position corresponds to the 3D position that
conforms to the length from the obtained wrist position to
the elbow input in advance.

To get wrist and elbow vectors, the 3D point sequence
covariance matrix is found within the length from the
wrist to the elbow. This singular matrix value is analyzed.
The corresponding to the eigenvalue providing the maxi-
mum singular value is the vector from the wrist to the el-
bow, i.e., wrist vector. The vector from the elbow toward
the shoulder, i.e., elbow vector, is derived from the same
processing, using data from obtained elbow position.

4. Estimation Experiments

4.1. Methods and Procedures
To verify the effectiveness of our proposal, actual im-

ages were subjected to experimental estimation. Subjects
raised their hand to 1 m in front of a high-speed cam-
era and moved their fingers and wrist freely. Hand move-
ment was allowed in all directions, provided that it was
within the camera field angle. We used a notebook PC
(Dell Precision M4300, CoreTM 2 Duo Processor T8300
(2.40 GHz, 800 MHz FSB), main memory 4 GB) and a
high-speed camera (Dragonfly ExpressTM, Point Grey Re-
search Inc.).

Technically speaking, the system works with one cam-
era, but we used two here to enable the operator to handle
various hand motions such as grasping and pinching and
so that the remote robot could operate and handle an ob-
ject appropriately and accurately based on the operator’s
motions.

4.2. Results
Figure 7 shows four examples of hand pose estimation

in snapshots from two cameras positioned loosely orthog-
onally. Estimated results were drawn using the CG hand
at the bottom of each example. Finger angles with wrist
rotation were estimated with high precision, including dif-
ferent hand motions such as power grasping and precision

Fig. 7. Four types of captured hand images and results of
hand pose estimation by two cameras installed loosely or-
thogonally. (c) Power grasping. (d) Precision pinching.

pinching.
In quantitative assessment, measured and estimated

data should be compared, but in an ordinary environment
using the similar approach to ours, joint angle informa-
tion data from the hand and fingers moving in front of the
camera cannot be obtained. We therefore conducted esti-
mation experiments making the same motions with both
hands – one recorded by the camera for hand pose esti-
mation and the other wearing a data glove (Cyber Glove,
Virtual Technologies Inc.) – to obtain the joint angle.
Subjects were instructed to move their hands and fingers
freely in front of the high-speed camera.

Results in Fig. 8 show angle data measured using the
data glove and estimated results by our proposal with
750,000 data sets and our previous system. Figs. 8(a-1),
(b-1), (a-2), and (b-2) show the proximal interphalangeal
(PIP) joint of the index finger and the carpometacarpal
(CM) joint of the thumb, respectively, with the palm fac-
ing the high-speed camera or the little finger facing an-
other camera. The state with the joint extended was set
to 180◦. Mean and standard deviation scores of errors
in estimated angles at PIP index were 0.45± 14.57, and
at thumb CM, 4.7 ± 10.82. Standard deviations of er-
rors seem to be bypassed compared to our previous sys-
tem [12], but mean error is lower, showing the improve-
ment in accuracy. The system operates at 80 fps using a
notebook PC with a single high-speed camera and enables
real-time estimation.

Figures 9–11 show results for three subjects estimated
with the new system, showing individual differences in
estimation. The three have different hand shapes and mo-
tion. Subject M.T. is an experimenter and hand image
parameters in the database were constructed based on his
hand. Subject H.F. is an athletic man with large hands.
Subject N.I. is a woman with small hands. Despite these
differences, estimation results did not show big differ-
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Fig. 8. Examples of estimated results for subject M.T.

ences.
Figure 12 shows robot remote control in hand pose

estimation. (See a YouTube robot video clip [b], al-
though a user put on a wrist band for arm pose estima-
tion for exhibit.) Readers of this paper may see how the
remote-controlled robot with our proposed vision technol-
ogy works well.

5. Discussion

A 3D hand pose estimation system must fulfill the fol-
lowing conditions [12]:

Fig. 9. Examples of estimation by subject M.T., with results
drawn with new system and measured data.

(i) Hand pose estimation must be sufficiently accurate
with joint angle estimation error at a maximum of 4◦
to 5◦.

(ii) Processing must be sufficiently fast – at least 100 fps.

(iii) All users must be processed, regardless of different
hand size and shape.

Our approach in this paper meets these three conditions.
Other conditions that should also be satisfied include:

(iv) Relatively fast hand movement such as for sign lan-
guage – possibly representing a user’s natural move-
ment – must be accepted.
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Fig. 10. Examples of estimation by subject H.F., whose
hand images are not stored in the database.

(v) Both hands must be able to be used simultaneously,
if possible.

Experimental results showed that thumb CM errors
were 4.7 with a variation of 10.82. For condition (i), our
results meet this condition, although variation was a little
bit large. Variation mainly depends on database granular-
ity, and we could decrease variation in output with adap-
tive filters such as Kalman or adaptive FIR and moving
average, although output may produce a time delay de-
pending on the filter time window. For condition (ii),
our system did not satisfy processing speed. We used a
notebook PC that accepts ExpressCard for the high-speed

Fig. 11. Examples of estimation by subject N.I., whose hand
images are not stored in the database.

camera interface. The system may work at over 100 fps if
it uses a more powerful PC. For condition (iii), Figs. 9–11
in Section 4.2 show that our system satisfies the condition.

The biggest reason for improved accuracy for unspec-
ified users is the massive increase in data sets in the
database. Because our proposal constructs a database
that includes all possible hand movements of a hand pose
model, data sets number 772,576. These means that a
database covering a single hand model evenly and in de-
tail requires from several hundred thousand to several mil-
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Fig. 12. Snapshots of robot remote control by hand pose
estimation.

lion data sets. Our previous proposal created only 30,000
datasets [8, 10, 11]. In our previous method, a researcher
created the database by using a data glove and forming
various hand poses in front of the camera. While the re-
searcher took care to cover “all” hand poses, hand poses
in the database were influenced by the database creator’s
particular movements, so a database created this way in-
evitably reflects a single individual, which does not raise
problems in estimating hand poses of individuals even if
the database is small. We think, however, that this pre-
vented the database from working well for unspecified
users.

The biggest reason the previous database did not work
well for unspecified users was that a person wearing a data
glove could not simulate individual differences in spread-
ing the fingers because doing so involves moving the joint
at the base of each finger, which greatly affects the hand’s
appearance. It is difficult to cover all possible combina-
tions of such a movement and bending and extending the
human hand as a model.

This paper has proposed hand pose estimation using
two cameras installed loosely orthogonally. When a dis-
tinction is to be made between similar operations such as
power grasping and precision pinching or an object is to

be grasped stably, the above loose constraints are permis-
sible, but if hand pose estimation is to be applied both
to the manipulation of a remote-controlled robot and to
information communication terminals by gesture, virtual
key input – a “virtual” keyboard – 3D-free form input de-
vice, digital signage, or finger motion capturing, pose es-
timation should be achieved successfully using one or two
camera images where the system can be observed clearly,
“even using two to four appropriately installed cameras”
by each user. Specifically, there should be no need to ac-
curately specify where more than one camera should be
installed, unlike the multicamera system, and the system
should not use camera position information. There is no
way of knowing the image from which direction is appro-
priate for pose estimation, however. Hand pose estima-
tion using a 2D silhouette, for instance, is not robust for
images observed and captured from the direction of the
fingertip or wrist. If the number of cameras is limited, a
user should install cameras where the system can observe
the hands appropriately. The system should handle and
overcome such problems automatically in the near future.
Thus, it would be more preferred to provide a system that
will provide “a plausible solution which is not very accu-
rate in the strict sense of the word.” Solving this problem
will require further study.

6. Conclusion

The purpose of this paper is to propose a remote-
controlled robot system capable of accurate high-speed
performance of the same operation in strict conformance
to human operator movement, without sensors or spe-
cial controllers. We specifically intended to introduce
a method for implementing high-precision high-speed
3D hand pose estimation enabling real-time operation of
a remote-controlled robot using two cameras installed
loosely orthogonally and an ordinary notebook PC.

The two cameras have their own databases, with each
database storing computer graphic hand images syn-
chronously paired with fingers and wrist rotation angles.
Each database has 772,576 data sets. Once sequential
hand images are captured with high-speed cameras, the
system selects a database with bigger hand regions in each
recorded image. Coarse screening is based on propor-
tional information on the hand image roughly correspond-
ing to wrist rotation or thumb or finger extension. A de-
tailed search then looks for similarity among selected can-
didates.

In system evaluation, we used a notebook PC having
a CoreTM 2 Duo Processor T8300 (2.40 GHz, 800 MHz
FSB) and main 4 GB memory. Experiments showed that
mean and standard deviation scores of errors in estimated
angles at the index PIP are 0.45±14.57 and at the thumb
CM 4.7 ± 10.82. Processing time was 80 fps for hand
pose estimation. Remote robot control with the proposed
vision system showed high performance and experimental
results indicated that our system enables high-precision
3D hand pose estimation at high speed.
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