Yamanobe, N. et al.

Paper:

https://doi.org/10.20965/jrm.2010.p0322

Integration of Manipulation, Locomotion, and Communication
Intelligent RT Software Components for Mobile Manipulator
System Using Scenario Tools in OpenRT Platform

Natsuki Yamanobe™, Ee Sian Neo*, Eiichi Yoshida*, Nobuyuki Kita*,
Kazuyuki Nagata®, Kazuhito Yokoi*, and Yosuke Takano**

“Intelligent Systems Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
1-1-1 Tsukuba Central 2, Umezono, Tsukuba, Ibaraki 305-8568, Japan
Email: n-yamanobe @aist.go.jp
**Service Platforms Research Labs, NEC Corp.
[Received September 30, 2009; accepted February 16, 2010]

The OpenRT Platform, an integrated development en-
vironment for component-based robot system develop-
ment, is being constructed in order to enhance intelli-
gent robot research and development efficiency. In this
paper, a mobile manipulator system that can bring hu-
man indicated objects like a service dog is developed
based on the OpenRT Platform. The system works
with several components providing manipulation, lo-
comotion, and communication functions developed as
examples modularizing intelligent robotic functions.
These components are integrated using scenario tools
in the OpenRT Platform for achieving target tasks.

Keywords: OpenRT Platform, intelligent RT software
component, system integration, application scenario

1. Introduction

Robots that can achieve various tasks in complex and
dynamic environments are required for supporting daily
life. In order to develop such a next-generation robot,
robotic intelligence, especially the responsiveness to the
change of tasks and environments and the reliability of
operations, needs to be built efficiently.

So far, various robot hardware and software have been
developed focusing on each application. It is expected to
utilize existing knowledge for constructing a new robot
system. Modularizing robot functions facilitates accumu-
lating knowledge and integrating it in new robot systems.
In order to enhance the efficiency of research and develop-
ment in intelligent robotics, a common software platform
is needed for implementing intelligent robot modules ef-
ficiently and constructing robot systems readily based on
those modularized functions.

The Intelligent RT Software Project, supported by New
Energy and Industrial Technology Development Organi-
zation (NEDO) and implemented in 2007, targets a com-
mon software platform for constructing robot systems and
promoting the development and accumulation of mod-

322

Robot System Design Phase
Hardware RTC
*RTC Builder

| rrcfl
*RT CompcnenlDebuqqer

f Distributed DB
Specw \canon .. lmg:\hg_entmw% ———
Hardware reference @@= Description, e | SoftwareRTC: .. A -

,,,,,, ——

Maker I \-I 9 RT
relerence > o "" ’/ RTS_‘, " Xg, 1Repository.
) Spemflcatlon *RT System Editor = 5
Q’ ideas + research results

........... accumulation

Vf.“»
[Hardware |

Robot Design

Robot reference S”PP"”TOO'S’r M

RTSystem

Motion Design Tools
~motion generation
-path planning

7
Y /
H s

Simulators

4—— [-dynamic simulator
-RTC simulator

i [verification

Application
Scenario Editor

Robot System Designer
corporation;

Robot
Scenario
Specificatior

Application Development Phase

Service Provider for Intelligent Robot Services

Intelligent Robots

Fig. 1. RT-Component based robot development flow.

ularized intelligent robotic functions [1]. The OpenRT
Platform developed in this project as an integrated de-
velopment environment is based on RT-Middleware [2],
a middleware and software platform for component-
oriented robot construction, developed at National In-
stitute of Advanced Industrial Science and Technology
(AIST). Basic functional units of an RT-Middleware
based system called RT-Components have specifications
defined and standardized by the Object Management
Group (OMG) [3]. Thus, robot systems can be easily con-
structed just by connecting developed RT-Components.
As shown in Fig. 1, there are many work processes for
developing a new robot system. The OpenRT Platform
comprehensively covers all the processes to realize seam-
less system development from robot design to application.

In this paper, we build a mobile manipulator system
mimicking service dog functions. Several intelligent RT
software components, which can provide manipulation,
locomotion, and communication functions, are developed
as examples of modularization of intelligent robotic func-
tions. These components are then integrated by using sce-
nario tools in the OpenRT Platform so as to realize target

Journal of Robotics and Mechatronics Vol.22 No.3, 2010

© Fuji Technology Press Ltd. Creative Commons CC BY-ND: This s an Open Access article distributed under the terms of
BY ND the Creative Commons Attribution-NoDerivatives 4.0 International License (http://creativecommons.org/licenses/by-nd/4.0/).

http://creativecommons.org/licenses/by-nd/4.0/

tasks.

This paper is laid out as follows: Section 2 explains the
OpenRT Platform, focusing on the scenario tools used for
application development. Section 3 presents intelligent
software components for constructing a mobile manipu-
lator system. Section 4 discusses the mobile manipulator
system, application scenario, component connection re-
lationship, and experimental results. Section 5 evaluates
robot system construction processes using the OpenRT
Platform, and Section 6 presents conclusions.

2. OpenRT Platform

The OpenRT Platform is an integrated development en-
vironment for next-generation robot systems consisting of
various modularized software and hardware components.
For developing a new robot system, there are many work
processes classified into the robot design and application
development phases shown in Fig. 1. The platform pro-
vides various tools, which cover all the work processes, to
improve each process and achieve seamless and efficient
system development.

2.1. Related Work

Research on software platforms for robot system con-
struction have been performed actively in recent years.
Player/Stage/Gazebo [4] is a client-server software plat-
form for robot and sensor systems, developed mainly at
the University of Southern California. Player is a robot
server providing a network interface to a variety of robot,
actuator, and sensor hardware. Stage, Player’s simula-
tion backends, simulates a population of mobile robots
in a two-dimensional (2D) environment, whereas Gazebo
does so in a 3D environment. OROCOS [5], a free soft-
ware project in EU for developing a general-purpose mod-
ular framework for robot and machine control, supports a
real-time software framework, a set of generic libraries
of robots and machine tools, and a component-based ap-
plication platform. ORCA/ORCA?2 [6], an open-source
framework for developing component-based robot sys-
tems and evolved from OROCOS, provides the means
and tools for defining and developing software compo-
nents to form systems ranging from simple robots to dis-
tributed sensor networks. SmartSoft [7], maintained at
Hochschule Ulm, develops communication patterns and
dynamic wiring of components on top of OROCOS and
provides a toolchain for a model-driven software devel-
opment in robotics. CLARAty [8], a framework for au-
tonomous rovers developed at JPL, NASA Ames Re-
search Center, CMU, and the University of Minnesota to
promote the reuse of robotic software, provides interfaces
for common robotic functionality, robot functions imple-
mented based on the CLARALty architecture, and an in-
tegration framework. ORIN [9], a middleware providing
standard communication interfaces over various factory
automation apparatuses including robots, has specifica-
tions released by the ORiN consortium, with which most

Journal of Robotics and Mechatronics Vol.22 No.3, 2010

Intelligent RT-Component Integration for Mobile Manipulator

SDO Interfaces RTC Interfaces RTCEx Interfaces

| | | RTComponent Service

RTComponent Service '
Consumer Activity

Service
provj provide
— >— Proxy ——= —._>
y

[
InPort 0 St ine OutPort0
’ Buffer \ / Buffer .

get, subscribe
InPortn

put OutPortn reply
put —»’ Buffer 4—‘ —»EuﬂarF’pusn
reply

InPort OutPort

RTCS Consumer

Consumer

>— Proxy

Fig. 2. RT-Component architecture [2].

Japanese industrial-robot makers have affiliated. The
Microsoft Robotics Developer Studio [10], a Windows-
based software platform for creating robot applications,
includes an asynchronous services-oriented runtime and
a set of visual authoring and simulation tools. Willow
Garage’s ROS [11], an open-source software platform,
consists of an original distributed framework and tools
and libraries for intelligent robotics research and devel-
opment including results of other robotics open-source
projects.

The purpose of the OpenRT Platform is to provide
a software framework enabling component-based robot
system development based on standardized interface
specifications and a complete toolchain increasing system
development efficiency. The standardized interface spec-
ifications of software components is free and open, en-
abling vendors to implement specification-based software
platforms and develop components using an appropriate
platform and ensuring platform interoperability. This en-
hances the effectiveness of the developed components and
robot systems, but other software platform projects have
not considered standardization.

2.2. RT-Middleware and RT-Components

RT-Middleware underpinning the OpenRT Platform
is a middleware and software platform for constructing
robot systems by combining modularized robot functions.
An RT-Component is a basic functional unit of an RT-
Middleware based system, whose specifications are stan-
dardized in OMG [3]. In order for an RT-Component to
be operating system, program language, and network in-
dependent, RT-Middleware is constructed based on a dis-
tributed object middleware such as Common Object Re-
quest Broker Architecture (CORBA) [12].

Figure 2 diagrams RT-Component architecture consist-
ing of the following processes and interfaces:

o Activity — core logic execution entity implemented
in the component.

o Component Profile — component information pro-

vided for dynamic component connection and dis-
connection.

323

Yamanobe, N. et al.

« Data Port — used for data-centric interaction and con-
nected to ports with same data-type. InPort is defined
as data input port, and OutPort as data output port.

e Service Port — used for request/response interac-
tion. Component developers define port functions.
The Service Provider Port provides services to other
components, and the Service Consumer Port con-
sumes services of other components.

« Configuration Interface — manages internal compo-
nent parameters.

If a developer determines specifications of an RT-
Component, such as the component name, port type, port
data type, and configuration parameters, template files
for the component are automatically provided to gener-
ate the component by simply inserting program code into
the component framework.

2.3. OpenRT Platform Tools

To improve system construction efficiency, almost all
tools are implemented as Eclipse plug-ins for seamless
system development.

Specification Description

To realize seamless, efficient system development and
improve component and robot system reusability, the fol-
lowing specification descriptions are defined and used in
common on the platform.

o Hardware specification description,
« Component specification description,
« Robot system specification description,

« Robot application scenario description.

RT-Middleware

The OpenRT Platform uses RT-Middleware as a robot
system development and execution environment. To
broaden the platform environment, several types of RT-
Middleware are developed for different operating systems
and programing languages.

RT-Component Development Support Tools

e The RT-Component Builder generates RT-Compo-
nent template files based on component speci-
fications written by the specification description
and provides a development environment for RT-
Components.

e The RT-Component Debugger verifies developed
components, data flow in ports, internal component
parameters, etc.

RT System Construction Support Tools

e The RT System Editor, a Graphic User Interface
(GUI) for constructing a robot system based on
RT-Components, manages InPort/OutPort or Service
Port connection as a control-block diagram, defines
configuration parameters, and activates and deacti-
vates components.

324

e |
Editor

4 Robot System
Scenario I
command
Scenario 2] W?ﬂfz
controlle
Player [RT—Componenl]
event

Fig. 3. OpenRT Platform scenario tools.

« The RT Repository operates as a distributed database
to save developed RT-Components and hardware,
component, and robot system specification definition
files. The system integrator downloads these for use
on the platform for new robot systems.

e« The 3D dynamic simulator and RT-Component
simulator verify developed robot systems, move-
ments, and application scenarios, developed as
OpenHRP3 [13].

Application Software Development Support Tools

« Robot Motion Design Tools plan movements and tra-
jectories for robot applications.

« Robot Application Scenario Tools provide functions
of editing application scenarios and controlling RT-
Components based on the scenario. The details of
the tools are shown in the next sub-section.

2.4. Scenario Tools

To achieve complex robot application tasks, a central
control function is necessary so as to recognize task con-
ditions and control the system according to the condition.
On the OpenRT Platform, a central control function is im-
plemented using the scenario tools developed based on
RoboStudio [14], which is a scenario platform provided
by NEC, with a robot scenario script language developed
based on XML and its interpreter.

Figure 3 shows scenario tool functions. A scenario
file generated in advance by the scenario editor is in-
stalled on the scenario player and the script is executed.
The scenario player controls RT-Components by send-
ing “command” messages and obtaining information from
RT-Components in “event” messages. Using the scenario
enables new tasks without changing or recompiling com-
ponents.

2.4.1. Scenario

A robot application scenario is written using scenario
script language based on an event-driven state transi-
tion model. All possible task states are presented in the
scenario. Robot actions in a state, internal and exter-
nal events, and subsequent destination states are also de-
scribed. According to the scenario, the scenario player

Journal of Robotics and Mechatronics Vol.22 No.3, 2010

4 ™
<?xml version="1.0" encoding="EUC-JP"?>
<!DOCTYPE interface SYSTEM "./worker_interface.dtd">
<interface module_name="RtcSrComponent">
<command name="Start" response="true" type="int">
<arg name="RuleName" type="string" default="Main"/>|
</command>
<event name="RecogResult" duration="10000">
<arg name="Word" type="string"/>
<arg name="Score" type="int" default="100"/>
</event>
</interface>

. v

Fig. 4. Worker interface definition example. This worker
sends one command and receives one event. Command
“Start” has one argument and event “RecogResult” two.

sends commands to other RT-Components to execute cor-
responding actions, waits for events to recognize task con-
ditions, and forwards state transitions.

2.4.2. Scenario Editor

A scenario is written on the scenario editor and com-
piled into an executable file for the scenario player. The
scenario editor is implemented as an Eclipse plug-in just
like other OpenRT Platform tools.

2.4.3. Scenario Player and Worker

A worker is an RT-Component controlled by the sce-
nario player, e.g., as shown in Fig. 3. One scenario player
manages multiple workers, which may be connected to
scenario players and conventional RT-Components, thor-
ough two data ports sending command and event mes-
sages. A worker interface definition file, shown in Fig. 4,
determines commands and events sent and received by
workers.

2.4.4. Scenario Framework

The scenario framework, an execution environment
of scenario players and workers, is developed on RT-
Middleware. The framework provides basic communica-
tion functions and simplifies user programs in communi-
cation between scenario players and workers. Command
and event messages including command or event name,
type, address, and arguments are automatically gener-
ated by worker interface definition files by the framework.
Corresponding callback function is also automatically ex-
ecuted by the framework when a command or event is
called, enabling the component developer to generate a
worker simply by defining the worker interface and im-
plementing callback functions.

3. Intelligent RT Software Components for
Mobile Manipulator System

To verify OpenRT Platform effectiveness, we are devel-
oping several intelligent RT software components and the

Journal of Robotics and Mechatronics Vol.22 No.3, 2010

Intelligent RT-Component Integration for Mobile Manipulator

mobile manipulator system shown in Fig. 5. The com-
ponents realize manipulation, locomotion, and commu-
nication functions required for a service robot support-
ing daily life. The mobile manipulator system integrates
these functions to communicate vocally with users, move
around in known environments, search visually for ob-
jects, and fetch objects from elsewhere.

We modularize such intelligent functions as one or
more RT-Components and determine input/output inter-
faces between the functions to maximize their reusability.
Specifications of those RT-Component are defined based
on the RT-Component specification description, and the
all components are developed using the RT-Component
Builder in the OpenRT Platform. In the following sub-
sections, the components developed for the mobile ma-
nipulator system are briefly presented.

3.1. Manipulation Intelligence

Environment and object recognition components

The components visually obtain environment and ob-
ject information required for a robot to manipulate an ob-
ject while avoiding obstacles, such as the position of a
known-shape object and the depth map around the object.

Environment and object information management
components

Environment and object information in the database,
such as name, shape, color, and existing position, is man-
aged based on data obtained by the recognition compo-
nents. The database saves such data based on an ontology
for information management, which is defined using Web
Ontology Language (OWL).

Motion planning components

A collision-free trajectory connecting given initial and
goal configurations is generated by sampling-based ap-
proaches such as PRM and RRT based on the environment
and object information saved in the database.

Grasp motion planning components

A variety of grasping-related movements such as ap-
proach, grasping, and pickup are planned based on ob-
ject and environment models abstracted using primitive
shapes for rapid planning.

Manipulator control components

The components control real and simulated manipula-
tors based on robot reference configurations fed from the
motion planning components.

3.2. Locomotion Intelligence

Localization components

Current robot position and orientation are estimated
based on odometer and vision sensor data using a Kalman
filter.

Map building and maintenance components
A 2D grid map is built using the environment model
saved in the database.

325

Yamanobe, N. et al.

Application Scenario

DBfor environment/
objectinformation

Robotic Hardware

Stereo Camera

Tactile Sensor

L —

1K

Force Sensor

Pyroelectric Sensor

Temperature Sensor| Sensor Modules

/

1Sensor

Manipulation Intelligent
RT Software Components

Life Environment
Information Sensing

Robotic Functions:

« bring the indicated objects from
another room

« detectunusual situations by
observing human daily life

P Manage the all components

Recognize user's voice command |

=I Reportspeech recognition results |

J Manage environmentand object
["|information

== Keep user's position and situation |

[

|

| IK]

Odor Sensor

Moisture Sensor

Range Sensor

\

Image Recognition

Stereo Camera
Hardware

Motion Control
Hardware

Locomotion Intelligent
RT Software Components

Map Building/Maintenance
Obstacle Detection

Global Path Planning

Local Path Planning

Vehicle Control

»{ Localize and build amap

J Move to the destinations
'| (position of the indicated objects etc.)

»| Avoid obstacles onthe path

| Update the map based on the
| detected obstacle information

) | Update the DB based on the
" | recognized objectinformation

Recognize the indicated objects |

¥

Microphone

Reference Hardware: Speech Recognition

Communication Intelligent RT Software Componentg

Speech Recognition

J Plan and execute grasping and
'| placementmotions

Observe human life environments |

modularized wheeled Hardware

platform and manipulato

RN

Stereo Speaker

Sound Direction Detection

Speech Synthesis

V‘I Detectunusual situations

Fig. 5. Intelligent RT software components for a mobile manipulator system. Those in gray were used in our experiments.

Global path planning components

A collision-free path connecting the initial location and
given destination is planned as a grid trajectory using a
potential-based method.

Local path planning components

A local path is replanned based on the global grid tra-
jectory, current position and orientation, and obstacle in-
formation to return the wheeled robot to the reference tra-
jectory.

Vehicle control components

To move the robot steadily and efficiently on the
planned path, the robot’s reference velocity is calculated.
Both a real and simulated wheeled robots are controlled.

3.3. Communication Intelligence

Speech recognition component: Japanese language ut-
terances are recognized from voice input with a dictionary
implemented based on the subset of Speech Recognition
Grammar Specification (SRGS).

Speech synthesis component: Input Japanese sentences
are uttered based on language analysis and phoneme com-
position results.

326

4. Mobile Manipulator System Development

RT-Components for manipulation, locomotion, and
communication intelligence presented in the above sec-
tion are integrated using the robot application scenario
tools in the OpenRT Platform for a task fetching indicated
objects for users.

4.1. Intelligent RT Software Component Integra-
tion Using Scenario Tools

To develop an efficient system in which system recon-
struction or task process change are simple, the compo-
nent groups used in experiments were integrated as fol-
lows:

o Connect component groups through the scenario
player as often as possible to reconstruct the system
easily.

o Connect component groups directly when large
amounts of data or complex format data are sent in
the connection.

The component groups below were connected to the
scenario player with the following functions (only the
main functions are shown):

Journal of Robotics and Mechatronics Vol.22 No.3, 2010

Manipulation intelligence

« Environment and object information management
components
COHHnand:QueryKnownLocation(object_name)
COHHnandZQueryDetectedLocation(objectiname)
event: DetectingObject (object_name)

event: DetectionReport (object_name, result)
event: MobilePlatformGoToGoal (x,y, orientation)

o Motion planning components
command: StartPlannedMotion ()

o Grasp motion planning components
command: GraspObject (object_name)
command: PlaceObject (destination_name)
event: PlannerReport (command_name, result)

Locomotion intelligence

o GUI for managing locomotion intelligence
command: GoToGoal (x,y,orientation)
event: ArrivedAt (x,y,orientation)

Communication intelligence

o Speech recognition component
command: StartRecognization ()
event: SpeechRecognized (string)

o Speech synthesis component
command: StartSpeak (string)

In Fig. 6, a scenario developed for the target task is il-
lustrated. The scenario player manipulates workers in turn
based on an input scenario, first requesting the communi-
cation components to recognize the user voice indication,
querying the location where the indicated object seems
to exist to the environment and object information man-
agement component, and ordering the locomotion com-
ponents to move there. After the robot reaches the goal,
the player requires the environment and object informa-
tion management component to recognize the actual posi-
tion and orientation of the target object. The player orders
the grasp motion planning components to plan grasping,
and requests that the motion planning component imple-
ments the plan. The task process branches based on task
conditions as shown in Fig. 6.

The connection relationship of the components is pre-
sented in Fig. 7. The blue box is an RT-Component, the
connection between small green boxes is a ServicePort
connection, and other connections are DataPort connec-
tions. The colored line is the interaction between the sce-
nario player and worker, the blue line sending command
messages and the green line event messages. As shown in
Fig. 7, this system is simulated only by changing the ma-
nipulator control components. The mobile manipulator
system was constructed by integrating 26 RT-Components
excluding the scenario player.

4.2. Experimental Setup

The experimental environment for the target task and
a mobile manipulator used for the experiments are pre-
sented in Figs. 8 and 9 respectively. As shown in Fig. 9,

Journal of Robotics and Mechatronics Vol.22 No.3, 2010

Intelligent RT-Component Integration for Mobile Manipulator

the mobile manipulator RH1 consists of a 6 Degrees of
Freedom (DOF) serial link manipulator unit and a 2-
wheeled vehicle unit developed in the Intelligent RT Soft-
ware Project as reference hardware for RT-Component re-
search applications. The modularized manipulator and
vehicle enable users to use each module alone. The
755 mm high manipulator has a 2 kg payload and picks
up an object from the floor and puts it on a 700 mm high
table. The 500 mm wide and 543 mm long wheeled vehi-
cle turns in a 800 mm wide corridor. The stereo camera
system equipped at the wrist of the manipulator enables
the robot to recognize its work environment and objects.

4.3. Experimental Results

The experimental results are shown in Fig. 10. The ex-
periments were done assuming the size of the room and
the information of the objects present in the room to be
saved in advance in the database. The operator vocally
orders a red drink can. The robot then recognizes the com-
mand and determines from the environment and object in-
formation management component that the can is on the
table. The robot goes to the table, locates the can, and
planes and executes a collision-free trajectory for picking
the can up. After that, the robot takes it to the indicated
table and sets it down. The target task was successfully
executed based on the developed scenario shown in Fig. 6.

5. Estimation of Robot System Development
Using OpenRT Platform

In this paper, we aimed to show it is practicable to de-
velop a complex robot system and its application using the
OpenRT Platform by constructing the mobile manipula-
tor system. We evaluated the platform from the following
perspectives: RT-Component development; robot system
and application construction, verification, and modifica-
tion.

The mobile manipulator system used in the experi-
ments was constructed by 5 developers, starting with the
modularization of intelligent robotic functions, and de-
termining only mutual interfaces. Individual develop-
ers were responsible for one or more intelligent func-
tions and implemented RT-Components independently for
their own intelligent functions. RT-Components devel-
oped for the mobile manipulator system numbered 26, and
all were integrated based on the target task scenario us-
ing the RT System Editor. Simulation using OpenHRP3
was conducted in both verification processes for the RT-
Components and integrated mobile manipulator system.
For this system development, RT-Component Builder, RT
System Editor, the robot application scenario tools, and
OpenHRP3 in the OpenRT Platform were utilized.

Once interfaces between RT-Components are deter-
mined, developers need not consider other components,
enabling us to concentrate on implementing and debug-
ging of our own RT-Components and easily exchanging
effective information about system integration. We could

327

Yamanobe, N. et al.

YES

; — - - environment/ - - - - -
|scenar|o| |commun|cat|on| ||nf0rmat|on | Ghjest grasp mot|0n| motion mampulatlon| Iocomotlon|
player intelligence management recognition planning lanning control intelligence

command for speech recognition [StartRecognization()]
reconmon

results of speech recognition (object name + placement position) [SpeechRecognized(string)]

command for obtaining the pgsition where the indicated object likely exists (object name) [QueryKnownlLocation(object_name)]
Query check the
known object

location

Start Object
Recognition

object
location

location (position + orientation where the indicated object likely exists) [MobilePlatformGoToGoal(x, y, orientation)]

command for speech synthesis (sentences) [StartSpeak(string)]
- Start to
move

command for movement (position + orientation) [GoToGoal(x, y, orientation)]

path
planning

+

arrived position (position + orientation) [Arrived At(x, y, orientation)] movement

command for recognizing the indicated object (object name) [QueryDetectedLocation(object_name)]

(EUREINEIEY reference position + orientatiQn of camera coordinate system
frame] trajectory
position planning result plannin

<€
Ifthe planning is failed, replan the camera frame position.

planned results [DetectionReport(object_name, result)]

command for speech synthesis (sentences) [StartSpeak(string)]
“ Start to
move for

command for starting planned motion [StartPlannedMotion()] plannedEeRigEIEtcnS

send
planned control

configuration| manipulator

data
recognize current configurations
the object

recognized results (exact position + orientation of the object) [DetectionReport(object_name, result)]

Recognize

YES command for grasping the indicated object (object name) [GraspObject(object_name)]

reques} object position + orientation

plan reference position + orientation of hand

approach,
grasp,
pick-up

motions planning result
If theplanning is failed, replan the grasp motions.

results (position + orientation etc.)

results of grasp planning [PlannerReport(command_name, result)]

command for starting planned motion [StartPlannedMotion()] planned path

results of arrival
planned configurations

<
send
planned
configuratiol

data control
[UEVE]g

result

current configurations
command for speech synthesis (sentences) [StartSpeak(string)]

the object

command for speech synthesis (sentences) [StartSpeak(string)]

failed

Fig. 6. Object pickup scenario as the first task process. Subsequent scenarios for bringing the object and putting it on indicated
table are similar.

328

Journal of Robotics and Mechatronics Vol.22 No.3, 2010

Environment/Object
Information Management RTCs gpject
in

Intelligent RT-Component Integration for Mobile Manipulator

Environment/Object
Recognition RTC

Manipulator Control RTCs for Real Robot
reference

__confighration ——————

hppRtmTimingPlanner0

RH1ArmCentrol0 I

4

result of reference
recognition | o camera
jectRecognitionSerer0
tcknowledgeWorker0 frame
env/obj InfoServer0 L
. - -
1 info v

result of

grasping T
command for
recognition K

RtcGraspPlannerWorkerO

W rcontroltero

hpoRtmPathProvider OB ko exchangeable for
current simulated ones

configuration
g — |

Grasp Motion

RH1ArmControl0

endflag ¥ 1™ Control RTCs rasp 1]
command for
grasp plancommant:l to

start motion RtcMotionPlannerWorker0

RH1RController0 RH1FKO

. Motion Planning
s‘fb goals C Manipulator Control RTCs for Simulation
1r

| ROV

command for speech

Scenario Player

arrived
RtcSimpleWorker0

RtcNrComponent0

RicScenarioPlayer

command for movement
(reference pos/ori)

RecWSrComponent0

'se::t%'r“i::g Communication fesesssssssssss
RecSpeechComponent Intelligent RTCs

RtcVehicleWorke

arrived position/orientation

Fig. 7. RT-Component and scenario player connection for the mobi
screenshot.

.\ table

(objects on it)

/.I:I 4[m]

table
(destination to put

objects on)
robot’s
start position \‘

4 [m]

Fig. 8. Experimental environment.

spend almost all time on core logic development because
the RT-Component Builder automatically generates tem-
plate files for an RT-Component based on component
specifications. If component specifications are changed
during development, the builder automatically inserts and
deletes program code, which is related to the change, for
RT-Component program being developed.

Using RT System Editor, the mobile manipulator sys-
tem was constructed easily by connecting ports of RT-
Components via a real-time GUI. After ports are con-
nected, the editor checks connection compatibility, en-
abling simple and reliable system construction. The
RT System Editor manipulates RT-Components, such as

Journal of Robotics and Mechatronics Vol.22 No.3, 2010

recognition/synthesis hppREmMultiDevPlamer0 KPP“”’”“"”'“D”P"’:%“

pos/ori

- F [l [RefHardRh10
DriveControlo)

Odometry0

alPathPlanningd

0

MapBuilder0 Loalizations Locomotion Intelligent RTCs

le manipulator system depicted based on an RT System Editor

&— Stereo Camera
System

6 DOF
Manipulator

Fig. 9. Mobile manipulator used for experiments: reference
hardware RH1 consisting of a modularized 6 DOF manipu-
lator and a 2-wheeled vehicle, and a stereo camera system.

connection of ports, definition of component parame-
ters, activation/deactivation of components, etc., so all
system construction, modification, and verification pro-
cesses are completed seamlessly by the same editor. RT-
Components and the mobile manipulator system are simu-
lated by exchanging the hardware RT-Components for the
simulated ones on the editor using OpenHRP3. A devel-
oped system’s structure and setting are saved and restored
using the editor, enhancing reusability of constructed sys-
tems.

In the application development processes, a scenario fa-
cilitates system integration and promotes understanding
of the developing system. Once the minimum task pro-

329

Yamanobe, N. et al.

moving to the destination
' w

recognition result of the can

grasping the can based on
the planned collision-free trajectory

planned grid trajectory

Fig. 10. Experimental results based on the developed sce-
nario (Fig. 6).

cess scenario was implemented and the developing sys-
tem was verified, the scenario was improved by adding
useful processes such as error management. The scenario
tools enables task processes to be readily changed without
any modification or recompiling of RT-Components.

All the aboves are the advantages of robot system de-
velopment using the OpenRT Platform. However, one
difficulty remaining is debugging a whole robot system.
While there is the RT-Component Debugger for testing
one RT-Component, additional functionality for check-

330

ing data flow in a whole system would be also required.
OpenRT Platform tools are being developed to provide a
complete toolchain, and our verification results are being
fed back for improvement. Determining RT-Component
modularization boundaries is also a difficult and impor-
tant problem. Too big decreases reusability. Conversely,
too small makes system development cumbersome. We
plan to show more examples of modularized intelligent
RT-Components in the future.

6. Conclusions

We have developed a mobile manipulator system that
fetches indicated objects for users based on the OpenRT
Platform to verify its effectiveness. RT-Components for
manipulation, locomotion, and communication functions
have been developed and integrated using the scenario
tools. The mobile manipulator system executed the target
task in both real and simulation world based on the de-
veloped scenario, demonstrating OpenRT Platform prac-
ticality in applications for complex robot systems.

Acknowledgements

This work was supported by the Intelligent RT Software Project
of NEDO.

References:

[1] T. Sato and H. Hirukawa, “Intelligent RT Software Project,” Proc.
of Annual Conf. of the Robotics Society of Japan, AC1F1-01, 2008.
(in Japanese)

[2] N. Ando, T. Suehiro, K. Kitagaki, T. Kotoku, and W. K. Yoon, “RT-
Middleware: Distributed Component Middleware for RT (Robot
Technology),” Proc. of IEEE/RSJ Int. Conf. on Intelligent Robots
and Systems, pp. 3555-3560, 2005.

[3] Object Management Group, “Robotic Technology Component
Specification Version 1.0,” formal/2008-04-04.

[4] T. H.J. Collett, B. A. MacDonald, and B. P. Gerkey, “Player 2.0:
Toward a Practical Robot Programming Framework,” Proc. of the
Australasian Conf. on Robotics and Automation, 2005.

[5] H. Bruyninckx, “Open Robot Control Software: the OROCOS
Project,” Proc. of IEEE Int. Conf. on Robotics and Automation,
pp- 2523-2528, 2001.

[6] A. Makarenko, A. Brooks, and T. Kaupp, “Orca: Components for
Robotics,” Proc. of IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems, Workshop on Robotic Standardization, 2006.

[7] C. Schlegel, “A Component Approach for Robotics Software Com-
munication Patterns in the OROCOS Context,” Autonome Mobile
Systeme (AMS), Informatik aktuell, Springer, pp. 253-263, 2003.

[8] 1. A. Nesnas et al., “CLARAty: Challenges and Steps Toward
Reusable Robotic Software,” Int. J. of Advanced Robotic Systems,
Vol.3, No.1, pp. 023-030, 2006.

[9] M. Mizukawa et al., “ORiN: Open Robot Interface for the Network.
The Standard and Unified Network Interface for Industrial Robot
Applications,” Proc. of SICE Annual Conf., pp. 1160-1163, 2002.

[10] J. Jackson, “Microsoft Robotics Studio: A Technical Introduction,”
IEEE Robotics and Automation Magazine, Vol.14, pp. 82-87, 2007.

[11] M. Quigley et al., “ROS: An Open Source Robot Operating Sys-
tem,” Proc. of IEEE Int. Conf. on Robotics and Automation, Work-
shop on Open Source Software, 2009.

[12] Object Management Group, Common Object Request Broker Ar-
chitecture (CORBA) Specification Version 3.1, formal/2008-01-04.

[13] S. Nakaoka, S. Hattori, F. Kanehiro, S. Kajita, and H. Hirukawa,
“Constraint-based Dynamics Simulator for Humanoid Robots with
Shock Absorbing Mechanisms,” Proc. of IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems, pp. 3641-3647, 2007.

[14] Y. Takano, A. Uda, and M. Ishida, “The Design of Robot Software
development kit RoboStudio,” Proc. of JSME Conf. on Robotics
and Mechatronics, 1A1-L1-10, 2004. (in Japanese)

Journal of Robotics and Mechatronics Vol.22 No.3, 2010

Intelligent RT-Component Integration for Mobile Manipulator

Name:
Natsuki Yamanobe

Affiliation:

Researcher, Intelligent Systems Research Insti-
tute, National Institute of Advanced Industrial
Science and Technology (AIST)

A |

Address:

1-1-1 Tsukuba Central 2, Umezono, Tsukuba, Ibaraki 305-8568, Japan
Brief Biographical History:

2004 M. Eng Degree (Precision Engineering, University of Tokyo)
2007 Dr. Eng Degree (Precision Engineering, University of Tokyo)
2007- Researcher, Intelligent Systems Research Institute, National
Institute of Advanced Industrial Science and Technology (AIST), Japan
Main Works:

e “Motion Generation for Clutch Assembly by Integration of Multiple
Existing Policies,” IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems, pp. 3218-3223, 2008.

Membership in Academic Societies:

e The Institute of Electrical and Electronics Engineers (IEEE)

e The Japan Society of Mechanical Engineers (JSME)

e The Japan Society of Precision Engineers (JSPE)

e The Robotics Society of Japan (RSJ)

Name:
Ee Sian Neo

Affiliation:

Research Scientist, National Institute of Ad-
vanced Industrial Science and Technology
(Current) Invention Specialist, Intellectual Ven-
tures

Address:
1-1-1 Tsukuba Central 2, Umezono, Tsukuba, Ibaraki 305-8568, Japan
(Current) 150 Beach Road, #08-05/08, Gateway West 189720, Singapore
Brief Biographical History:

2006- Joined National Institute of Advanced Industrial Science and
Technology

2009- Joined Intellectual Ventures

Main Works:

e “Whole-Body Motion Generation Integrating Operator’s Intention and
Robot’s Autonomy in Controlling Humanoid Robots,” IEEE Trans. on
Robotics, Vol.23, No.4, pp. 763-775, 2007.

Membership in Academic Societies:

e The Robotics Society of Japan (RSJ)

e The Institute of Electrical and Electronics Engineers (IEEE)

Name:
Eiichi Yoshida

Affiliation:

Co-Director, CNRS-AIST JRL (Joint Robotics

Laboratory), UMI3218/CRT, Intelligent Sys-

tems Research Institute, National Institute of
) Advanced Industrial Science and Technology

(AIST)

Address:

1-1-1 Tsukuba Central 2, Umezono, Tsukuba, Ibaraki 305-8568, Japan

Brief Biographical History:

1990-1991 Research Student in Swiss Federal Institute of Technology at

Lausanne (EPFL)

1993 M.Eng Degree (School of Engineering, University of Tokyo)

1996 Dr.Eng Degree (School of Engineering, University of Tokyo)

1996- Joined former Mechanical Engineering Laboratory

2001- Senior Research Scientist, Intelligent Systems Research Institute,

National Institute of Advanced Industrial Science and Technology (AIST),

Japan

2004-2008 Co-Director of AIST/IS-CNRS/ST2I Joint French-Japanese

Robotics Laboratory (JRL) at LAAS-CNRS, Toulouse, France

2009- Co-Director of CNRS-AIST JRL (Joint Robotics Laboratory),

UMI3218/CRT, AIST, Japan

Main Works:

e “Pivoting based manipulation by a humanoid robot,” Autonomous

Robots, Vol.28, No.1, pp. 77-88, 2010.

e “Planning 3D Collision-Free Dynamic Robotic Motion through Iterative

Reshaping, IEEE Trans. on Robotics, Vol.24, No.5, pp. 1186-1198, 2008.

Membership in Academic Societies:

e The Institute of Electrical and Electronics Engineers (IEEE)

e The Japan Society of Mechanical Engineers (JSME)

e The Society of Instrument and Control Engineers (SICE)

e The Japan Society of Precision Engineers (JSPE)

e The Robotics Society of Japan (RSJ)

Name:
Nobuyuki Kita

Affiliation:

Senior Researcher, Humanoid Research Group,
Intelligent Systems Research Institute, National
Institute of Advanced Industrial Science and
Technology (AIST)

Address:

1-1-1 Tsukuba Central 2, Umezono, Tsukuba, Ibaraki 305-8568, Japan
Brief Biographical History:

1981- Joined Electrotechnical Laboratory (ETL)

2009- Humanoid Research Group

Main Works:

e Active vision, robotics vision.

Membership in Academic Societies:

e The Robotics Society of Japan (RSJ)

Journal of Robotics and Mechatronics Vol.22 No.3, 2010

331

Yamanobe, N. et al.

Name:
Kazuyuki Nagata

Affiliation:
Senior Research Scientist, Intelligent Systems
Research Institute, AIST

Address:

1-1-1 Tsukuba Central 2, Umezono, Tsukuba, Ibaraki 305-8568, Japan
Brief Biographical History:

1986- Joined Tohoku National Industrial Research Institute (TNIRI) at
former AIST of MITI

1991- Joined Electrotechnical Laboratory (ETL) at former AIST of MITI
2001- Assigned to Planning Headquarters of AIST

2002- Intelligent Systems Research Institute of AIST

Main Works:

e “Manipulation by a Parallel-Jaw Gripper Having a Turntable at Each
Fingertip,” Proc. of 1994 IEEE Int. Conf. on Robotics and Automation,
pp. 1663-1670, 1994.

e “Grasping Operation Based on Functional Cooperation of Fingers,” J.of
Robotics and Mechatronics, Vol.19, No.2, pp. 134-140, 2007.
Membership in Academic Societies:

e The Japan Society of Mechanical Engineers (JSME)

e The Robotics Society of Japan (RSJ)

e The Society of Instrument and Control Engineers (SICE)

Name:
Kazuhito Yokoi

Affiliation:

Deputy Director, Intelligent Systems Research
Institute (IS), National Institute of Advanced In-
dustrial Science and Technology (AIST)
Research Group Leader of Humanoid Research
Group, IS/AIST

Adjunctive Member, CNRS-AIST JRL
UMI3218/CRT

Adjunctive Professor, University of Tsukuba
Visiting Professor, Fukuyama University

.

Address:

1-1-1 Tsukuba Central 2, Umezono, Tsukuba, Ibaraki 305-8568, Japan
Brief Biographical History:

1986- Joined Mechanical Engineering Laboratory, Ministry of
International Trade and Industry, Japan

2001- Senior Researcher, Intelligent System Research Institute (IS),
National Institute of Advanced Industrial Science and Technology (AIST)
2009- Deputy Director, IS/AIST

Main Works:

e “Planning 3D Collision-Free Dynamic Robotic Motion through Iterative
Reshaping,” IEEE Trans. on Robotics, Vol.24, No.5, pp. 1186-1198, Oct.
2008.

Membership in Academic Societies:

e The Japan Society of Mechanical Engineers (JSME)

e IEEE, Robotics and Automation Society

e The Robotics Society of Japan (RSJ)

332

Name:
Yosuke Takano

Affiliation:
Senior Manager, Services Platforms Research
Laboratory, NEC Corporation

Address:

1753 Shimonumabe, Nakahara, Kawasaki, Kanagawa 211-8666, Japan
Brief Biographical History:

1989- Joined NEC Corporation

2000- Engaged in research of the software platform of personal robots
Main Works:

e “Field trial of Asynchronous Communication Using Network-based
Interactive Child Watch System for the Participation of Parents in
Day-care Activitie,” IEEE Int. Conf. on Robotics & Automation, 2008.
Membership in Academic Societies:

e Information Processing Society of Japan (IPSJ)

Journal of Robotics and Mechatronics Vol.22 No.3, 2010

http://www.tcpdf.org

