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The OpenRT Platform, an integrated development en-
vironment for component-based robot system develop-
ment, is being constructed in order to enhance intelli-
gent robot research and development efficiency. In this
paper, a mobile manipulator system that can bring hu-
man indicated objects like a service dog is developed
based on the OpenRT Platform. The system works
with several components providing manipulation, lo-
comotion, and communication functions developed as
examples modularizing intelligent robotic functions.
These components are integrated using scenario tools
in the OpenRT Platform for achieving target tasks.
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1. Introduction

Robots that can achieve various tasks in complex and
dynamic environments are required for supporting daily
life. In order to develop such a next-generation robot,
robotic intelligence, especially the responsiveness to the
change of tasks and environments and the reliability of
operations, needs to be built efficiently.

So far, various robot hardware and software have been
developed focusing on each application. It is expected to
utilize existing knowledge for constructing a new robot
system. Modularizing robot functions facilitates accumu-
lating knowledge and integrating it in new robot systems.
In order to enhance the efficiency of research and develop-
ment in intelligent robotics, a common software platform
is needed for implementing intelligent robot modules ef-
ficiently and constructing robot systems readily based on
those modularized functions.

The Intelligent RT Software Project, supported by New
Energy and Industrial Technology Development Organi-
zation (NEDO) and implemented in 2007, targets a com-
mon software platform for constructing robot systems and
promoting the development and accumulation of mod-
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Fig. 1. RT-Component based robot development flow.

ularized intelligent robotic functions [1]. The OpenRT
Platform developed in this project as an integrated de-
velopment environment is based on RT-Middleware [2],
a middleware and software platform for component-
oriented robot construction, developed at National In-
stitute of Advanced Industrial Science and Technology
(AIST). Basic functional units of an RT-Middleware
based system called RT-Components have specifications
defined and standardized by the Object Management
Group (OMG) [3]. Thus, robot systems can be easily con-
structed just by connecting developed RT-Components.
As shown in Fig. 1, there are many work processes for
developing a new robot system. The OpenRT Platform
comprehensively covers all the processes to realize seam-
less system development from robot design to application.

In this paper, we build a mobile manipulator system
mimicking service dog functions. Several intelligent RT
software components, which can provide manipulation,
locomotion, and communication functions, are developed
as examples of modularization of intelligent robotic func-
tions. These components are then integrated by using sce-
nario tools in the OpenRT Platform so as to realize target
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tasks.
This paper is laid out as follows: Section 2 explains the

OpenRT Platform, focusing on the scenario tools used for
application development. Section 3 presents intelligent
software components for constructing a mobile manipu-
lator system. Section 4 discusses the mobile manipulator
system, application scenario, component connection re-
lationship, and experimental results. Section 5 evaluates
robot system construction processes using the OpenRT
Platform, and Section 6 presents conclusions.

2. OpenRT Platform

The OpenRT Platform is an integrated development en-
vironment for next-generation robot systems consisting of
various modularized software and hardware components.
For developing a new robot system, there are many work
processes classified into the robot design and application
development phases shown in Fig. 1. The platform pro-
vides various tools, which cover all the work processes, to
improve each process and achieve seamless and efficient
system development.

2.1. Related Work
Research on software platforms for robot system con-

struction have been performed actively in recent years.
Player/Stage/Gazebo [4] is a client-server software plat-
form for robot and sensor systems, developed mainly at
the University of Southern California. Player is a robot
server providing a network interface to a variety of robot,
actuator, and sensor hardware. Stage, Player’s simula-
tion backends, simulates a population of mobile robots
in a two-dimensional (2D) environment, whereas Gazebo
does so in a 3D environment. OROCOS [5], a free soft-
ware project in EU for developing a general-purpose mod-
ular framework for robot and machine control, supports a
real-time software framework, a set of generic libraries
of robots and machine tools, and a component-based ap-
plication platform. ORCA/ORCA2 [6], an open-source
framework for developing component-based robot sys-
tems and evolved from OROCOS, provides the means
and tools for defining and developing software compo-
nents to form systems ranging from simple robots to dis-
tributed sensor networks. SmartSoft [7], maintained at
Hochschule Ulm, develops communication patterns and
dynamic wiring of components on top of OROCOS and
provides a toolchain for a model-driven software devel-
opment in robotics. CLARAty [8], a framework for au-
tonomous rovers developed at JPL, NASA Ames Re-
search Center, CMU, and the University of Minnesota to
promote the reuse of robotic software, provides interfaces
for common robotic functionality, robot functions imple-
mented based on the CLARAty architecture, and an in-
tegration framework. ORiN [9], a middleware providing
standard communication interfaces over various factory
automation apparatuses including robots, has specifica-
tions released by the ORiN consortium, with which most
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Fig. 2. RT-Component architecture [2].

Japanese industrial-robot makers have affiliated. The
Microsoft Robotics Developer Studio [10], a Windows-
based software platform for creating robot applications,
includes an asynchronous services-oriented runtime and
a set of visual authoring and simulation tools. Willow
Garage’s ROS [11], an open-source software platform,
consists of an original distributed framework and tools
and libraries for intelligent robotics research and devel-
opment including results of other robotics open-source
projects.

The purpose of the OpenRT Platform is to provide
a software framework enabling component-based robot
system development based on standardized interface
specifications and a complete toolchain increasing system
development efficiency. The standardized interface spec-
ifications of software components is free and open, en-
abling vendors to implement specification-based software
platforms and develop components using an appropriate
platform and ensuring platform interoperability. This en-
hances the effectiveness of the developed components and
robot systems, but other software platform projects have
not considered standardization.

2.2. RT-Middleware and RT-Components
RT-Middleware underpinning the OpenRT Platform

is a middleware and software platform for constructing
robot systems by combining modularized robot functions.
An RT-Component is a basic functional unit of an RT-
Middleware based system, whose specifications are stan-
dardized in OMG [3]. In order for an RT-Component to
be operating system, program language, and network in-
dependent, RT-Middleware is constructed based on a dis-
tributed object middleware such as Common Object Re-
quest Broker Architecture (CORBA) [12].

Figure 2 diagrams RT-Component architecture consist-
ing of the following processes and interfaces:

• Activity – core logic execution entity implemented
in the component.

• Component Profile – component information pro-
vided for dynamic component connection and dis-
connection.
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• Data Port – used for data-centric interaction and con-
nected to ports with same data-type. InPort is defined
as data input port, and OutPort as data output port.

• Service Port – used for request/response interac-
tion. Component developers define port functions.
The Service Provider Port provides services to other
components, and the Service Consumer Port con-
sumes services of other components.

• Configuration Interface – manages internal compo-
nent parameters.

If a developer determines specifications of an RT-
Component, such as the component name, port type, port
data type, and configuration parameters, template files
for the component are automatically provided to gener-
ate the component by simply inserting program code into
the component framework.

2.3. OpenRT Platform Tools
To improve system construction efficiency, almost all

tools are implemented as Eclipse plug-ins for seamless
system development.

Specification Description
To realize seamless, efficient system development and

improve component and robot system reusability, the fol-
lowing specification descriptions are defined and used in
common on the platform.

• Hardware specification description,

• Component specification description,

• Robot system specification description,

• Robot application scenario description.

RT-Middleware
The OpenRT Platform uses RT-Middleware as a robot

system development and execution environment. To
broaden the platform environment, several types of RT-
Middleware are developed for different operating systems
and programing languages.

RT-Component Development Support Tools

• The RT-Component Builder generates RT-Compo-
nent template files based on component speci-
fications written by the specification description
and provides a development environment for RT-
Components.

• The RT-Component Debugger verifies developed
components, data flow in ports, internal component
parameters, etc.

RT System Construction Support Tools

• The RT System Editor, a Graphic User Interface
(GUI) for constructing a robot system based on
RT-Components, manages InPort/OutPort or Service
Port connection as a control-block diagram, defines
configuration parameters, and activates and deacti-
vates components.

Scenario

Scenario 

Player

Worker
controlled 

RT-Component

command

event

Scenario 

Editor

Robot System

Fig. 3. OpenRT Platform scenario tools.

• The RT Repository operates as a distributed database
to save developed RT-Components and hardware,
component, and robot system specification definition
files. The system integrator downloads these for use
on the platform for new robot systems.

• The 3D dynamic simulator and RT-Component
simulator verify developed robot systems, move-
ments, and application scenarios, developed as
OpenHRP3 [13].

Application Software Development Support Tools

• Robot Motion Design Tools plan movements and tra-
jectories for robot applications.

• Robot Application Scenario Tools provide functions
of editing application scenarios and controlling RT-
Components based on the scenario. The details of
the tools are shown in the next sub-section.

2.4. Scenario Tools
To achieve complex robot application tasks, a central

control function is necessary so as to recognize task con-
ditions and control the system according to the condition.
On the OpenRT Platform, a central control function is im-
plemented using the scenario tools developed based on
RoboStudio [14], which is a scenario platform provided
by NEC, with a robot scenario script language developed
based on XML and its interpreter.

Figure 3 shows scenario tool functions. A scenario
file generated in advance by the scenario editor is in-
stalled on the scenario player and the script is executed.
The scenario player controls RT-Components by send-
ing “command” messages and obtaining information from
RT-Components in “event” messages. Using the scenario
enables new tasks without changing or recompiling com-
ponents.

2.4.1. Scenario
A robot application scenario is written using scenario

script language based on an event-driven state transi-
tion model. All possible task states are presented in the
scenario. Robot actions in a state, internal and exter-
nal events, and subsequent destination states are also de-
scribed. According to the scenario, the scenario player
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� �
<?xml version="1.0" encoding="EUC-JP"?>
<!DOCTYPE interface SYSTEM "./worker_interface.dtd">
<interface module_name="RtcSrComponent">
<command name="Start" response="true" type="int">

<arg name="RuleName" type="string" default="Main"/>
</command>
<event name="RecogResult" duration="10000">

<arg name="Word" type="string"/>
<arg name="Score" type="int" default="100"/>

</event>
</interface>

� �
Fig. 4. Worker interface definition example. This worker
sends one command and receives one event. Command
“Start” has one argument and event “RecogResult” two.

sends commands to other RT-Components to execute cor-
responding actions, waits for events to recognize task con-
ditions, and forwards state transitions.

2.4.2. Scenario Editor
A scenario is written on the scenario editor and com-

piled into an executable file for the scenario player. The
scenario editor is implemented as an Eclipse plug-in just
like other OpenRT Platform tools.

2.4.3. Scenario Player and Worker
A worker is an RT-Component controlled by the sce-

nario player, e.g., as shown in Fig. 3. One scenario player
manages multiple workers, which may be connected to
scenario players and conventional RT-Components, thor-
ough two data ports sending command and event mes-
sages. A worker interface definition file, shown in Fig. 4,
determines commands and events sent and received by
workers.

2.4.4. Scenario Framework
The scenario framework, an execution environment

of scenario players and workers, is developed on RT-
Middleware. The framework provides basic communica-
tion functions and simplifies user programs in communi-
cation between scenario players and workers. Command
and event messages including command or event name,
type, address, and arguments are automatically gener-
ated by worker interface definition files by the framework.
Corresponding callback function is also automatically ex-
ecuted by the framework when a command or event is
called, enabling the component developer to generate a
worker simply by defining the worker interface and im-
plementing callback functions.

3. Intelligent RT Software Components for
Mobile Manipulator System

To verify OpenRT Platform effectiveness, we are devel-
oping several intelligent RT software components and the

mobile manipulator system shown in Fig. 5. The com-
ponents realize manipulation, locomotion, and commu-
nication functions required for a service robot support-
ing daily life. The mobile manipulator system integrates
these functions to communicate vocally with users, move
around in known environments, search visually for ob-
jects, and fetch objects from elsewhere.

We modularize such intelligent functions as one or
more RT-Components and determine input/output inter-
faces between the functions to maximize their reusability.
Specifications of those RT-Component are defined based
on the RT-Component specification description, and the
all components are developed using the RT-Component
Builder in the OpenRT Platform. In the following sub-
sections, the components developed for the mobile ma-
nipulator system are briefly presented.

3.1. Manipulation Intelligence
Environment and object recognition components

The components visually obtain environment and ob-
ject information required for a robot to manipulate an ob-
ject while avoiding obstacles, such as the position of a
known-shape object and the depth map around the object.

Environment and object information management
components

Environment and object information in the database,
such as name, shape, color, and existing position, is man-
aged based on data obtained by the recognition compo-
nents. The database saves such data based on an ontology
for information management, which is defined using Web
Ontology Language (OWL).

Motion planning components
A collision-free trajectory connecting given initial and

goal configurations is generated by sampling-based ap-
proaches such as PRM and RRT based on the environment
and object information saved in the database.

Grasp motion planning components
A variety of grasping-related movements such as ap-

proach, grasping, and pickup are planned based on ob-
ject and environment models abstracted using primitive
shapes for rapid planning.

Manipulator control components
The components control real and simulated manipula-

tors based on robot reference configurations fed from the
motion planning components.

3.2. Locomotion Intelligence
Localization components

Current robot position and orientation are estimated
based on odometer and vision sensor data using a Kalman
filter.

Map building and maintenance components
A 2D grid map is built using the environment model

saved in the database.
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Global path planning components
A collision-free path connecting the initial location and

given destination is planned as a grid trajectory using a
potential-based method.

Local path planning components
A local path is replanned based on the global grid tra-

jectory, current position and orientation, and obstacle in-
formation to return the wheeled robot to the reference tra-
jectory.

Vehicle control components
To move the robot steadily and efficiently on the

planned path, the robot’s reference velocity is calculated.
Both a real and simulated wheeled robots are controlled.

3.3. Communication Intelligence
Speech recognition component: Japanese language ut-
terances are recognized from voice input with a dictionary
implemented based on the subset of Speech Recognition
Grammar Specification (SRGS).

Speech synthesis component: Input Japanese sentences
are uttered based on language analysis and phoneme com-
position results.

4. Mobile Manipulator System Development

RT-Components for manipulation, locomotion, and
communication intelligence presented in the above sec-
tion are integrated using the robot application scenario
tools in the OpenRT Platform for a task fetching indicated
objects for users.

4.1. Intelligent RT Software Component Integra-
tion Using Scenario Tools

To develop an efficient system in which system recon-
struction or task process change are simple, the compo-
nent groups used in experiments were integrated as fol-
lows:

• Connect component groups through the scenario
player as often as possible to reconstruct the system
easily.

• Connect component groups directly when large
amounts of data or complex format data are sent in
the connection.

The component groups below were connected to the
scenario player with the following functions (only the
main functions are shown):
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Manipulation intelligence
• Environment and object information management

components
command: QueryKnownLocation(object_name)
command: QueryDetectedLocation(object_name)
event: DetectingObject(object_name)
event: DetectionReport(object_name,result)
event: MobilePlatformGoToGoal(x,y,orientation)

• Motion planning components
command: StartPlannedMotion()

• Grasp motion planning components
command: GraspObject(object_name)
command: PlaceObject(destination_name)
event: PlannerReport(command_name,result)

Locomotion intelligence
• GUI for managing locomotion intelligence

command: GoToGoal(x,y,orientation)
event: ArrivedAt(x,y,orientation)

Communication intelligence
• Speech recognition component

command: StartRecognization()
event: SpeechRecognized(string)

• Speech synthesis component
command: StartSpeak(string)

In Fig. 6, a scenario developed for the target task is il-
lustrated. The scenario player manipulates workers in turn
based on an input scenario, first requesting the communi-
cation components to recognize the user voice indication,
querying the location where the indicated object seems
to exist to the environment and object information man-
agement component, and ordering the locomotion com-
ponents to move there. After the robot reaches the goal,
the player requires the environment and object informa-
tion management component to recognize the actual posi-
tion and orientation of the target object. The player orders
the grasp motion planning components to plan grasping,
and requests that the motion planning component imple-
ments the plan. The task process branches based on task
conditions as shown in Fig. 6.

The connection relationship of the components is pre-
sented in Fig. 7. The blue box is an RT-Component, the
connection between small green boxes is a ServicePort
connection, and other connections are DataPort connec-
tions. The colored line is the interaction between the sce-
nario player and worker, the blue line sending command
messages and the green line event messages. As shown in
Fig. 7, this system is simulated only by changing the ma-
nipulator control components. The mobile manipulator
system was constructed by integrating 26 RT-Components
excluding the scenario player.

4.2. Experimental Setup
The experimental environment for the target task and

a mobile manipulator used for the experiments are pre-
sented in Figs. 8 and 9 respectively. As shown in Fig. 9,

the mobile manipulator RH1 consists of a 6 Degrees of
Freedom (DOF) serial link manipulator unit and a 2-
wheeled vehicle unit developed in the Intelligent RT Soft-
ware Project as reference hardware for RT-Component re-
search applications. The modularized manipulator and
vehicle enable users to use each module alone. The
755 mm high manipulator has a 2 kg payload and picks
up an object from the floor and puts it on a 700 mm high
table. The 500 mm wide and 543 mm long wheeled vehi-
cle turns in a 800 mm wide corridor. The stereo camera
system equipped at the wrist of the manipulator enables
the robot to recognize its work environment and objects.

4.3. Experimental Results
The experimental results are shown in Fig. 10. The ex-

periments were done assuming the size of the room and
the information of the objects present in the room to be
saved in advance in the database. The operator vocally
orders a red drink can. The robot then recognizes the com-
mand and determines from the environment and object in-
formation management component that the can is on the
table. The robot goes to the table, locates the can, and
planes and executes a collision-free trajectory for picking
the can up. After that, the robot takes it to the indicated
table and sets it down. The target task was successfully
executed based on the developed scenario shown in Fig. 6.

5. Estimation of Robot System Development
Using OpenRT Platform

In this paper, we aimed to show it is practicable to de-
velop a complex robot system and its application using the
OpenRT Platform by constructing the mobile manipula-
tor system. We evaluated the platform from the following
perspectives: RT-Component development; robot system
and application construction, verification, and modifica-
tion.

The mobile manipulator system used in the experi-
ments was constructed by 5 developers, starting with the
modularization of intelligent robotic functions, and de-
termining only mutual interfaces. Individual develop-
ers were responsible for one or more intelligent func-
tions and implemented RT-Components independently for
their own intelligent functions. RT-Components devel-
oped for the mobile manipulator system numbered 26, and
all were integrated based on the target task scenario us-
ing the RT System Editor. Simulation using OpenHRP3
was conducted in both verification processes for the RT-
Components and integrated mobile manipulator system.
For this system development, RT-Component Builder, RT
System Editor, the robot application scenario tools, and
OpenHRP3 in the OpenRT Platform were utilized.

Once interfaces between RT-Components are deter-
mined, developers need not consider other components,
enabling us to concentrate on implementing and debug-
ging of our own RT-Components and easily exchanging
effective information about system integration. We could
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Fig. 7. RT-Component and scenario player connection for the mobile manipulator system depicted based on an RT System Editor
screenshot.

4 [m]

4 [m]

table

robot’s
start position

(objects on it)

table
(destination to put 
objects on)

Fig. 8. Experimental environment.

spend almost all time on core logic development because
the RT-Component Builder automatically generates tem-
plate files for an RT-Component based on component
specifications. If component specifications are changed
during development, the builder automatically inserts and
deletes program code, which is related to the change, for
RT-Component program being developed.

Using RT System Editor, the mobile manipulator sys-
tem was constructed easily by connecting ports of RT-
Components via a real-time GUI. After ports are con-
nected, the editor checks connection compatibility, en-
abling simple and reliable system construction. The
RT System Editor manipulates RT-Components, such as

Fig. 9. Mobile manipulator used for experiments: reference
hardware RH1 consisting of a modularized 6 DOF manipu-
lator and a 2-wheeled vehicle, and a stereo camera system.

connection of ports, definition of component parame-
ters, activation/deactivation of components, etc., so all
system construction, modification, and verification pro-
cesses are completed seamlessly by the same editor. RT-
Components and the mobile manipulator system are simu-
lated by exchanging the hardware RT-Components for the
simulated ones on the editor using OpenHRP3. A devel-
oped system’s structure and setting are saved and restored
using the editor, enhancing reusability of constructed sys-
tems.

In the application development processes, a scenario fa-
cilitates system integration and promotes understanding
of the developing system. Once the minimum task pro-
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Fig. 10. Experimental results based on the developed sce-
nario (Fig. 6).

cess scenario was implemented and the developing sys-
tem was verified, the scenario was improved by adding
useful processes such as error management. The scenario
tools enables task processes to be readily changed without
any modification or recompiling of RT-Components.

All the aboves are the advantages of robot system de-
velopment using the OpenRT Platform. However, one
difficulty remaining is debugging a whole robot system.
While there is the RT-Component Debugger for testing
one RT-Component, additional functionality for check-

ing data flow in a whole system would be also required.
OpenRT Platform tools are being developed to provide a
complete toolchain, and our verification results are being
fed back for improvement. Determining RT-Component
modularization boundaries is also a difficult and impor-
tant problem. Too big decreases reusability. Conversely,
too small makes system development cumbersome. We
plan to show more examples of modularized intelligent
RT-Components in the future.

6. Conclusions

We have developed a mobile manipulator system that
fetches indicated objects for users based on the OpenRT
Platform to verify its effectiveness. RT-Components for
manipulation, locomotion, and communication functions
have been developed and integrated using the scenario
tools. The mobile manipulator system executed the target
task in both real and simulation world based on the de-
veloped scenario, demonstrating OpenRT Platform prac-
ticality in applications for complex robot systems.
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