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We propose a human-adaptive approach for calculat-
ing human pointing targets, integrating (1) calculat-
ing the user’s subjective pointing direction from fin-
ger direction, (2) integrating sensory information ob-
tained from user pointing and contextual information
such as user action sequences, and (3) arranging target
candidates based on the user’s characteristics of point-
ing and action sequences. The user’s subjective point-
ing direction is approximated by the linear function
with the finger direction. Integration of sensory and
contextual information using a probabilistic model en-
ables the system to calculate the target accurately. Us-
ing a force-directed approach, we obtained good place-
ment in which false estimations are decreased and not
moved much from initial placement. Experimental re-
sults demonstrate the usefulness of our proposal.

Keywords: pointing, context, epistemic action, human-
robot interface

1. Introduction

Over the last decade, several studies have been made on
intelligent robotic systems that support everyday living at
home or in an office setting [1, 2].

People typically spend significant time at there desks,
doing computer work, reading and writing documents,
letters, and books, eating lunch, and assembling objects.
Therefore supporting individuals who work at desks by
using a robotic system could have a great deal of benefit.

The authors proposed the design of an Attentive Work-
bench (AWB) that helps people work at their desks [3].

AWB has following three key components:

� EnhancedDesk: The EnhancedDesk is an aug-
mented desk interface [4]. The user expresses inten-
tion by hand gestures, and the system presents infor-
mation using an LCD projector and plasma display.

� Self-moving trays: The self-moving trays, which
are driven by a Sawyer-type 2-DOF stepping mo-
tor [5], deliver necessary objects and clear unnec-
essary objects. Each tray has square shape with a
side of 80 mm, and is characterized with high speed

(0.8 m/s at maximum) and high positioning accuracy
(about 40 μm).

� Estimation of a worker’s state based on bio-
measurement technologies: A worker’s state can be
estimated from heart rate and respiration measured
by vital-signs monitors. It applies a method for an-
alyzing respiratory sinus arrhythmia (RSA) with re-
spect to respiratory phase [6].

Considering a robot system such as the AWB that sup-
ports people where they live or work, it is inevitable that
humans and robot will interact. Especially, in the home
or office, an intuitive way of instructing a robotic system
will be necessary if they are to be operated by ordinary
people.

In this study, we focused on finger pointing, which is
deictic and intuitive gesture. We plan to employ such a
gesture to give instructions to an intelligent system. Point-
ing is often used to indicate a specific object or location
in interpersonal communication; however, it is not always
easy, even for humans, to identify the object at which
someone is pointing.

Here, we assume the following environment (Fig. 1):

� Many objects are placed on a desk.

� A user sits on a chair at the desk.

� The user points at a target object.

� The target object among many is identified and the
system acts as the user indicates.

Pointing has been long and widely studied in the input
device context. In what follows, we briefly review related
work in pointing gestures.

A pioneering work on the use of pointing gestures as an
input device was conducted by Bolt [7]. In a “Put-That-
There” system, a user could manipulate objects on a large
screen using voice and pointing gestures. In this system,
the direction of pointing is measured by a magnetic field
sensor attached to a user’s wrist and finger.

Tsukada and Yasumura’s Ubi-Finger [8], a finger-
wearable input device, enables the user to operate home
appliances using finger gestures such as pointing.

As these studies require users to attach or wear sensing
devices, this can interfere with the performance of other
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Fig. 1. Schematic view of the assumed environment.

tasks. To resolve such problems, many studies have been
undertaken that deal with the recognition of pointing by
using image processing.

Cipolla and Hollinghurst present a pointing-based in-
terface for robot guidance [9]. In their study, they defined
the direction of pointing as the direction of the index fin-
ger. Sato and Sakane, as well as Cipolla and Hollinghurst,
presented a pointing-based interface system “Interactive
Hand Pointer,” which is used for instructing a robot ma-
nipulator to conduct a pick-and-place task [10]. The sys-
tem relied on visual feedback to a user by projecting a
mark at the indicated location in the real workspace.

Kahn et al. defined the direction of pointing as the di-
rection from head to hand [11]. In their study, they as-
sumed a virtual cone whose tip is at the hand and the indi-
cated object is in the cone. This definition of the direction
of pointing has been used in many other studies [12–14].

Fukumoto et al. assumed that the direction of pointing
is determined by a straight line defined by a fingertip and a
base point [15]. They reported that the base point differs
for operators and for postures of the operator and there-
fore used a virtual base point calibrated beforehand.

Based on a similar idea, Mashita et al. proposed a point-
ing gesture model [16]. They reported that the cognitive
origin, which is the same concept as the base point [15],
lies in the reference plane and its coordinates are deter-
mined from the posture of the pointing arm.

Given the definitions of the direction of pointing, these
studies are roughly classified into (1) finger direction [7–
10], (2) head to hand [11–14], and (3) base point to fin-
gertip [15, 16].

The finger direction approach is not directly applica-
ble in a situation in which target candidates are too far
from the user or candidates are too close together. In some
studies [9, 10], visual feedback is used to solve this prob-
lem; however, visual feedback sometimes degrades point-
ing performance [17].

Compared to the finger direction approach, the head to
hand approach more accurately determines the direction
of pointing, but accuracy depends highly on positioning
of user or target candidates.

The base point to fingertip approach requires that the
position of the base point be known, but this differs with
positions of target candidates or postures of user. Thus
gesture recognition system must continuously recalibrate

the base point and the direction of pointing is based on
this calibration.

Regardless of the approach, errors inevitably occurs in
pointing recognition. Even in inter-human communica-
tion, it is known to be difficult to understand precisely
what another person is pointing to [18, 19]. Recognition
error was about 8 cm [19]. Considering these facts, in-
tegrating the direction of pointing and other information
such as verbal instructions [20] could considerably dimin-
ish error and increase target recognition.

The objective of this study is to propose a method that
can be used to estimate the target from pointing in which
multiple objects are close together. In such a situation, an
accurate estimation is required.

Considering the related studies mentioned above, an ac-
curate model for the direction of pointing is useful for this
objective; however, such a model would be expensive and
require a great deal of sensory information, such as the
positions of the head, shoulder, elbow, wrist, finger, and
eye gaze.

To limit the amount of sensory information required to
identify a target, we integrated the following approaches:

1. Estimating the user’s subjective pointing direction
based on a linear model using finger direction.

2. Integrating sensory information from the user’s
pointing and contextual information such as action
sequence.

3. Arranging target candidates as appropriate according
to the user’s characteristics.

Approaches 1 and 2 are passive in that the gesture
recognition system receives information from the user and
adapts internal parameters to the user. Approach 3 is ac-
tive in that the system rearranges target candidates to redi-
rect the user’s pointing.

This paper is organized as follows: Section 2 gives an
overview of how the user’s subjective pointing direction
is estimated. The integration of sensory and contextual
information is proposed in Section 3. We describe the
method for adaptive placement of the target candidates
according to the user’s characteristics in Section 4. The
experiments for verifying these approaches are described
in Section 5. In Section 6, we discuss the advantages and
limitations of the method. In Section 7, we conclude the
paper and refer to future research.

2. Estimation of the User’s Subjective Pointing
Direction

2.1. Recognition of Pointing
To recognize the position of a user’s hands and fingers,

we adopt the following recognition method by Oka et
al. [4]. We extract a hand region using an infrared camera
and binarize the input image with an appropriate thresh-
old. We search for a fingertip based on its geometrical
features using a circular template. The center of the hand
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Center of the palm: 

Tip of the index finger

Finger direction:

Target:

Target direction:

Fig. 2. Definition of finger and target direction.

is given as the point at which the distance to the clos-
est region boundary is maximum. This can be obtained
by repeatedly applying a morphological erosion operator
until the region becomes smaller than a threshold, then
calculating the resulting region’s center of mass.

In this study, pointing is defined as an action meeting
the following conditions:

� The center of the hand is outside a specific work
space.

� Only the index finger of a user’s dominant hand is
observed.

� A user’s hand remains almost stationary.

2.2. Model of the User’s Subjective Pointing Direc-
tion

In order to estimate a user’s subjective pointing direc-
tion, too much information is required as mentioned in
the previous section. Making use of all the information is,
however, unreasonable from the viewpoint of the compu-
tational cost.

In this study, we try to estimate a user’s subjective
pointing direction from the direction of the user’s index
finger, which is acquired with relative ease. Consider-
ing the situation in which a sitting user indicates an ob-
ject, which is on a desk, the cost effectiveness of using
three-dimensional data is thought to be low. In this paper,
therefore, we use two-dimensional data acquired from an
infrared camera from overhead.

As illustrated in Fig. 2, finger direction φ is defined as
the direction from the center of the palm to the fingertip
of the index finger, and target direction θ�O�� is defined
as the direction from the center of the palm to the center
of target O�.

Using coordinates with their origin at the center of the
user’s palm, we can ignore seating position of a user.

In this study, we assume that φ subj, the user’s subjective
pointing direction, is approximated by a linear function as
follows:

φ subj � aφ �b . . . . . . . . . . . . . (1)

where a and b are constants.
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Fig. 3. Arrangement of projected markers.
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Fig. 4. An example of the relation between the direction of
finger and target.

Ideally, the user’s subjective pointing direction φ subj

agrees completely with target direction θ�O��.

2.3. Validation of the Proposed Model of the User’s
Subjective Pointing Direction

To validate the linear model, we studied the relation-
ship between finger direction and target direction via ex-
periments.

Subjects were 7 men and 3 women (n� 10) from 21 to
30 years old who pointed at 40 blue markers (a circle with
a radius of 20 mm) randomly and consecutively projected
onto a desktop at a grid spacing of 100 mm by an LCD
projector (Fig. 3).

The chair was on an extension of the desk centerline
300 mm away from the desk.

Figure 4 shows an example of the relationship between
the direction of finger and target. Table 1 gives determi-
nation coefficients for regression lines for each subject.

As the average of the determination coefficients of the
regression lines is quite high at 0.940, the validity of the
proposed model of a user’s subjective pointing direction
is determined. Based on the model, the average pointing
direction error is 0.0613 rad.

The average regression line gradient is 1.40, exceeding
1.0, meaning that the user’s subjective pointing direction
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Table 1. Determination coefficients of regression lines of
finger direction (φ ) on the target direction (θ �O��).

Subject Regression line
Determination

coefficient

A φ � 1�504θ �0�701 0.979

B φ � 1�494θ �0�713 0.899

C φ � 1�567θ �0�793 0.975

D φ � 1�353θ �0�466 0.955

E φ � 1�321θ �0�334 0.970

F φ � 1�434θ �0�503 0.974

G φ � 1�412θ �0�483 0.965

H φ � 1�213θ �0�268 0.952

I φ � 1�571θ �0�789 0.891

J φ � 1�168θ �0�011 0.842

Average 0.940

Target

Finger direction

Finger direction

Subjective pointing
direction

Subjective pointing direction

Fig. 5. Difference between the finger and subjective point-
ing direction.

does not correspond to the finger direction regardless of
coordinates.

As illustrated in Fig. 5, the difference between the
user’s subjective pointing direction and the finger direc-
tion grows as the target moves to the left when the exper-
imental subject is right-handed.

This is because the right-hander bends the elbow when
pointing to an object on the left.

3. Integration of Sensory and Contextual Infor-
mation

To integrate sensory information obtained from a user’s
pointing and contextual information from a user’s action
sequence, we apply a probabilistic model to the user’s
subjective pointing direction. In concrete terms, we as-
sume that the user’s subjective pointing direction φ subj

follows the wrapped normal distribution [21] with mean
θ�O��, the direction of target O�.

We define the conditional probability density function

for φ subj given target O� � Oi as follows:

ρ�φ subj�O� � Oi�

�
1�
2πσ

∞

∑
m��∞

exp

�
�
�
φ subj�θ�Oi��2πm

�2

2σ2

�

. . . . . . . . . . (2)

where θ�Oi� is the direction of the i-th candidate of target
Oi and σ2 is the variance of the pointing direction.

Applying Bayes’ rule, we obtain the likelihood that the
target is Oi given the user’s subjective pointing direction
φ subj as follows:

ρ�O� � Oi�φ subj� �
ρ�φ subj�O� � Oi�p�O� � Oi�

ρ�φ subj�
(3)

where p�O� � Oi� is the prior probability in which the
target is Oi and ρ�φ subj� is the prior probability in which
the user’s subjective pointing direction is φ subj. Here,
ρ�φ subj� is assumed to follow a uniform distribution.

In this study, each “action” corresponds to an object, so
an “action sequence” becomes a target sequence.

In the target sequence, O�
t , the target at time step t, de-

pends only on O�
t�1, so conditional probability p�O�

t �

Oj�O�
t�1 � Oi� is defined for each combination of Oi and

Oj as follows:

p�O�
t � Oj�O�

t�1 � Oi� �
Ni j�βi j

n

∑
k�1

�Nik �βik�

. . . (4)

where Ni j is the number of times that Oj is the target next
to Oi, and βi j represents an initial distribution of condi-
tional probability. If there is prior knowledge of the rela-
tionship between target candidates, initial βi j is adjusted
to represent prior knowledge. Here, however, the initial
βi j are equal.

Conditional probabilities are described and retained as
a conditional probability table (CPT):

CPTO�

t �O
�

t�1
�

�
��

p�O1�O1� � � � p�On�O1�
...

. . .
...

p�O1�On� � � � p�On�On�

�
	
 � (5)

We integrate sensory information from the user’s sub-
jective pointing directions and contextual information
from the user’s action sequences using Bayes’ rule.

Given that the target sequence from step 1 to step t is
�t

1 � �O�
1�O

�
2� � � � �O

�
t � and the sequence of the user’s sub-

jective pointing directions from step 1 to step t is Φt
1 ��

φ subj
1 �φ subj

2 � � � � �φ subj
t

�
, ρ��t

1�Φ
t
1�, their joint probabil-

ity distribution, is calculated as follows:

ρ��t
1�Φ

t
1� �

t

∏
τ�2

p�O�
τ �O�

τ�1�
t

∏
τ�1

ρ�φ subj
τ �O�

τ�p�O
�
1�

� p�O�
t �O�

t�1�ρ�φ
subj
t �O�

t �ρ��t�1
1 �Φt�1

1 � (6)

where φ subj
τ is the user’s subjective pointing direction at

step τ .
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The target at step t is estimated as follows:

Ô�
t � argmax

Oi
p�O� � Oi�O�

t�1�ρ�φ
subj
t �O�

t � Oi�� (7)

This model assumes that the target at step t can be es-
timated only from the target at step t � 1 and the user’s
subjective pointing direction at step t.

4. Adaptive Placement of Target Candidates

Increasing the difference in directions between each
pair of target candidates is useful in reducing the number
of errors in target estimation.

From a human interface perspective, however, it is un-
desirable to drastically change the placement of target
candidates just to increase this difference, so it is impor-
tant to keep positioning of target candidates as close to the
initial one as possible.

We placed target candidates meeting the requirements
above using a force-directed approach, assuming that tar-
get candidates are square.

The force-directed approach was developed during
studies of a graph-drawing problem [22, 23] in which a
graph was modeled as a spring system whose spring con-
stants are defined based on the relationship of node pairs
and minimizing total system energy.

In the graph-drawing problem, node size and shape is
ignored, making it difficult to apply to our problem. In
the studies of Printed Circuit Board (PCB) floor planning,
a system of springs whose nodes are rectangular was con-
sidered by Quinn et al. [24]. In their method, the proce-
dure of placing modules has two phases. The first is for
determining the relative placement, and the second is for
removing the overlaps of modules. In the second phase, it
is necessary to make drastic changes in the placement of
the modules, which makes it impossible for this method
to meet the requirements for our application.

In what follows, we propose a force-directed method
that meets the requirements mentioned above.

4.1. Error Reduction in Target Estimation
Our system estimates the target using Eq. (7) based on

the product of the following two elements:

� p�O�
t � Oi�O�

t�1�: probability based on a user’s ac-
tion sequence

� ρ�φ subj
t �O�

t � Oi�: probability based on the user’s
pointing direction

We define difficulties to distinguish between the two
candidates as follows:

4.1.1. Difficulty from the User Action Sequences

Given that the target in the previous step is Ok, the dif-
ficulty in distinguishing between Oi and Oj derived from
the user’s action sequence is defined as follows:

DA�k�
i j :�

pki� pk j

�pki� pk j� . . . . . . . . . . . (8)

Fig. 6. Definition of difficulty derived from the user’s point-
ing directions, DFi j .

Fig. 7. Repulsion acting between Oi and Oj .

where pki � p�O�
t � Oi�O�

t�1 � Ok�. The denominator of
the right side represents the proximity of pki to pk j, and
the numerator means the possibility of being selected as
the target.

4.1.2. Difficulty from the User’s Pointing Directions

The difficulty in distinguishing between Oi and Oj de-
rived from the user’s pointing is defined as follows:

DFi j :�
1�
2πσ

∞

∑
m��∞

exp

�
��θ̂�Oj�� θ̂�Oi��4πm�2

8σ2

�

. . . . . . . . . . (9)

where θ̂ �Oi� and θ̂ �Oj� represent estimated object direc-
tions of Oi and Oj based on past data for pointing.

DFi j is defined as the probability density (2) under
the condition that the user’s subjective pointing direction
is the intermediate between the directions of Oi and Oj

(Fig. 6).

4.1.3. Repulsion Based on Difficulty

When the target of the previous step is Ok, the difficulty
of distinguishing between Oi and Oj is calculated from
Eqs. (8) and (9) as follows:

D�k�
i j :� DA�k�

i j �DFi j� . . . . . . . . . . (10)

We assume that repulsion acts between Oi and Oj

(Fig. 7).
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Repulsion is proportional to D�k�
i j and acts on Oi from

Oj in direction ei j � �ex
i j�e

y
i j�.
��

��
ex

i j � cos
�

θ̂�Oi��
π
2

δ
�

ey
i j � sin

�
θ̂ �Oi��

π
2

δ
� . . . . . . (11)

where

δ :�

�
1

�
θ̂�Oi�� θ̂ �Oj�

�
�1

�
θ̂�Oi�� θ̂ �Oj�

�
�

. . . . . (12)

When θ̂�Oi� � θ̂ �Oj�, δ is assigned 1 or �1 randomly.
Repulsion increases the difference between the direc-

tions of Oi and Oj.
From Eqs. (10), (11), and (12), ri, resulting repulsion

acting on Oi is defined as follows:

ri :� ∑
j ��i

ri j

� ∑
j ��i

cD�k�
i j ei j� c � const�

. . . . . (13)

where ri j is repulsion acting on Oi from Oj.

4.2. Dependence on Initial Placement
To maintain the initial placement of target candidates

as closely as possible, we assume the spring of natural
length 0 between vi � �vx

i �v
y
i �, the current position of Oi,

and vinit
i , the initial position of Oi. vinit

i is determined by a
user.

According to Hooke’s law, si, restoring force acting on
Oi, is directly proportional to its extension as follows:

si ��k�vi� vinit
i � . . . . . . . . . . . (14)

where k is the spring constant.

4.3. Constraints
Since, in this study, the location in which the target can-

didates can be placed is restricted to the desktop, we de-
fine potential function P�x�y� so that candidates do not
protrude from the desk as follows:

P�x�y� :� e�x�w�2�l�� e��x�w�2�l�� e�y�h�2�l�

�e��y�h�2�l��P0 . . . . . . . (15)

where the desk size is w� h, l is the offset, and P0 is
the constant value meeting the condition that P�0�0� � 0
(Fig. 8).

Constraint force di � �dx
i �d

y
i � acts on Oi as follows:�

dx
i ��e�v

x
i �w�2�l�� e��vx

i �w�2�l�

dy
i ��e�v

y
i �h�2�l�� e��vy

i �h�2�l��
. . . (16)

4.4. Changes in Placement of Target Candidates
The result of all forces acting on Oi is calculated as the

sum of Eqs. (13), (14), and (16) as follows:

fi � ri� si�di� . . . . . . . . . . . . (17)
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Fig. 8. Potential function derived from the desk size con-
straint (desk size: w � 1500 mm, h � 1200 mm).
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direction

Fig. 9. Collision between Oi and Oj .

k�c is the ratio of spring constant (k) to the coefficient
of repulsion (c). The greater the k�c, the smaller the
movement. The placement of target candidates changes
drastically as k�c approaches 0.

The placement of target candidates changes based on
this model. Oi movement is based on movement vector ai
defined as follows:

ai � a fi� a � const� . . . . . . . . . . (18)

Oi moves based on this movement vector ai from its
current position unless it collides with other candidates.
Given that all target candidates move once in a cycle, the
cycle is repeated until the movement of all candidates con-
verges.

The procedure when Oi collides with Oj during Oi

movement is shown below.

1. For each target candidate Oi:

a. Move Oi until it touches Oj, and this movement
vector is defined as a�

i.

b. Define bi as bi :� ai�a�i, and preserve the vertical
component of it to the contact side as bp

i , where
p 	 �x�y� (Fig. 9).

2. For each pair of Oi and Oj:

a. If Oi touches Oj and �bp
i �bp

j � exceeds the thresh-
old, swap the positions of Oi for that of Oj.
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LCD projector (U5-132, Plus)

Infrared camera (IR-SC1, Mitsubishi)

Desk

Fig. 10. Overview of the experimental setup.

5. Experiments

To verify the usefulness of our proposal, we conducted
the experiments described in the sections that follow:

5.1. Experimental Setup
In our experimental setup (Fig. 10), the desk is 1000

� 800 mm. An infrared camera (IR-SC1, Mitsubishi)
measures the user’s palm and fingers, and an LCD pro-
jector (U5-132, Plus) projects 16 target candidates onto
a desktop. Each target candidate is square, 80 mm on a
side. For image processing, we used a Linux PC (Pen-
tium 4, 2.8 GHz) with a fast image-processing system
(IP7000BD, Hitachi).

Subject A (male, 24 years old), who took part in the
experiment in Section 2.3, took part in this experiment.

5.2. Overview of Experiments
Initially arranging 16 target candidates at discretion,

then he pointed at candidates. The candidates are clas-
sified into four groups:

� Arabic numerals (1 / 2 / 3 / 4)

� Roman numerals (I / II / III / IV)

� Uppercase letters (A / B / C / D)

� Lowercase letters (a / b / c / d)

These groups correspond one to one with four tasks,
with the subject alternating between pointing from A to D,
defined as a task, and pointing to A, defined as a subtask.

The subject repeated the four tasks in sets of 10 in ran-
dom order.

This corresponds to the fact that, in daily life, the or-
der of tasks is not usually fixed, but the order of sub-
tasks within a task is typically fixed. For instance, a cof-
fee drinker usually conducts subtasks in a specific order:

Fig. 11. Initial placement A.

Fig. 12. Initial placement B.

making coffee, adding milk, adding sugar, and stirring
them in.

The system adapts to the subject to estimate targets
based on the procedure in Sections 2 and 3, and arranges
target candidates according to the procedure mentioned in
Section 4.

Offset in the constraint equation (16) is l � 8�0, and the
coefficient of movement vector ai is a� 0�0001. The ratio
of k, the spring constant, to c, the coefficient of repulsion,
is k�c� 10. The initial conditional probability table (5) is
βi j � 1�0.

5.3. Experimental Results

We compared the following three:

� M1: Use of sensory information alone

� M2: Integration of sensory and contextual informa-
tion

� M3: Adaptive placement of target candidates with
integrated sensory and contextual information (pro-
posed)

Two types of initial placement, A (Fig. 11) and B
(Fig. 12), are examined.

Figure 13 shows the change in average rate of correct
estimation of targets.

When using sensory information alone (M1), the sys-
tem learned only the characteristics of the user’s pointing
gesture as the subjective pointing direction, and the rate
of correct estimations of targets was approximately 60%,
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Table 2. Average ratio of correct estimations of targets in task switching.

Method Placement A (%) Placement B (%) Average (%)
M1 55.0 61.3 58.1
M2 71.3 63.8 67.5
M3 85.0 80.0 82.5

Table 3. Breakdown of misestimates in task switching.

Cause Ratio (%)
(i) Error in estimation of subjective pointing direction 17.9
(ii) Experimental setting 25.0
(iii) Tray arrangement 57.1

M3: Proposed method 
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Fig. 13. Change in the rate of correct estimations of targets.

a low rate due to the placement of target candidates when
candidates were placed close to each other.

Compared to the result of M1, the rate of correct esti-
mations of M2 rose to about 90% after the second step.
Contextual information contributed to the high rate in
each task, and sensory information contributed to it in task
switching.

In the second set and after, both M2 and M3 achieved
a high rate of correct estimations, and average rate of
the correct estimations of M3 in the second set and after
(95.3%) was slightly higher than that of M2 (91.8%).

In the first set, the rate of correct estimations of M2
was 56.3%, whereas that of the proposal (M3) was 81.3%.
This difference was due to the fact that the system had not
yet learned the user’s action sequence, and the result of
target estimation depends heavily on pointing.

When the system accumulates experience, whether the
target candidates are placed adaptively or not, it rarely
makes mistakes regarding the estimation in each task. Es-
timation faults mainly occur at the very moment a task is
changed.

For instance, the system can see III as a successor to II
with a high level of credibility, but cannot determine the
successor to IV, which is the last subtask, with only ac-
tion sequences. If the initial placement of the target can-
didates is similar to placement A (Fig. 11), the system dis-
tinguishes the next target from 1, I, A, and a without dif-
ficulty. When initial placement is similar to placement B
(Fig. 12), however, the system cannot determine whether

expand

Fig. 14. An example of increasing the angle between two
candidates.

swap

Fig. 15. An example of swapping two candidates.

the subject points at A or a because the values of the pos-
terior probability of A and a are close and the directions
of A and a are also very close.

On the other hand, in the proposed method, the system
increased the angle between the direction of A and that
of a in the third set and after as illustrated in Fig. 14, so
misestimates rarely occurred.

Furthermore, in initial placement B, the system some-
times swapped the positions of I, II, and III to decrease the
difficulty of distinguishing among 1 and I in the fifth set
and after as shown in Fig. 15.

Average rates of correct estimations of targets in task
switching are shown in Table 2.

Note that the proposed method improves the rate of cor-
rect target estimations, especially in task switching. Nev-
ertheless, misestimates occurred at 17.5% even when the
proposed method (M3) was used.

To identify the causes of the misestimates, we exam-
ined the obtained data, such as positions of palm and in-
dex finger and those of target candidates at each misesti-
mate. Our analysis indicated that the causes were classi-
fied in three (Table 3).

Twenty percent of the first type (i) is due to faults in the
recognition of hands and fingers using the infrared cam-
era. A user’s subjective pointing direction is estimated
from Eq. (1) using the least-squares method, given a set
of 10 pointings. Therefore, when an outlier from fault
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recognition is detected, the outlier adversely affects the
model of a user’s subjective pointing direction. To mini-
mize such influences, it may be necessary to increase the
number of data used for the least squares.

Misestimates from the rest of (i) occurred at the first set.
Because the system had not yet learned the individuality
of the user’s pointing, and the system could not obtain a
good approximation of the subjective pointing direction.
This problem can be resolved as learning progresses.

The second type of error (ii) is due to the particularity
of the experiment. All misestimates are observed at the
first step in each set. In this experiment, prior probabili-
ties of all candidates are equal when each set is finished,
so target estimation depends only on the user’s subjective
pointing direction at the first step in each set. This is rare
in real deskwork.

The third type of error (iii) is derived from the layout
method proposed in this paper. The specific reason for this
is that the extent of the difference between each pair of
trays is insufficient. Such misestimates could be lowered
by reducing k�c to close to zero.

6. Discussion

Although human pointing depends on complex move-
ment of the shoulder, elbow, and other body parts, as
stated in Section 2, the relationship between finger direc-
tion and target direction is accurately approximated by a
linear function. This result supports the idea that human
pointing direction depends on the direction of the bodily
member, such as a finger or arm, as well as on a higher
level of information processing related to eye gaze and
spatial cognition.

Assuming target candidates are placed in front of a user,
the theoretically available number of target candidates is
about 50 (π�0�0613� 51�25). This estimation is based on
the assumption that the system uses only sensory informa-
tion. Therefore, the number may increase depending on
the user’s action sequences and arrangement of target can-
didates. On the other hand, assuming that the proposed
method applies to the Attentive Workbench, the size and
mechanism of the self-moving tray become bottlenecks.
Realistically, the applicable number of target candidates
is about 20.

Skilled people sometimes perform an epistemic action
– a physical action to simplify internal problem solv-
ing [25, 26]. It can be said that adaptive placement of tar-
get candidates in this study is a kind of epistemic action.
If the positioning of target candidates is fixed, the system
has to make estimations only on the basis of the recogni-
tion ability of an infrared camera. The system simplifies
the estimation of the target by changing the placement of
the target candidates that are parts of the system itself.

In addition, adaptive placement can be seen as the shar-
ing of a load. In other words, a user of this system bears
the load as a result of reducing the load on the system by
changing the placement of the candidates.

It is therefore important to consider the system advan-

tages and disadvantages to the user when placement of tar-
get candidates is changed. If the target candidates move
slightly and the phase relation of target candidates does
not change, the load on the user is assumed to be slight.
However, if the travel distance of the target candidates is
long and the phase relation of the candidates changes dra-
matically, the load on the user can increase too much.

The load grows due to the placement of target candi-
dates and differs between users, so it cannot be simply
said that the smaller the k�c, the better the system perfor-
mance. The system must determine k�c considering the
balance of the load between the system and each user.

7. Conclusions

We have proposed a human-adaptive approach for esti-
mating targets of human pointing. We integrated (1) es-
timating the user’s subjective pointing direction, (2) in-
tegrating sensory and contextual information, and (3) ar-
ranging target candidates based on the user’s character-
istics. We demonstrated the usefulness of our proposal
through target estimation experiments.

The primary challenge facing us is the load on the user.
Placement of target candidates likely has some psycho-
logical and cognitive effects on the user. We must exam-
ine such effects through experiments.

We also plan to apply the proposed method to the
Attentive Workbench (AWB), and to use the proposed
method for instructing self-moving trays to deliver ob-
jects.
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