Oikawa, K. et al.

Paper:

https://doi.org/10.20965/jrm.2007.p0298

Decision Making for a Mobile Robot Using Potential Function

Kazumi Oikawa*, Hidenori Takauji**, Takanori Emaru***,
Takeshi Tsuchiya™**, and Shigenori Okubo*

*Yamagata Univ., 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
E-mail: okazu@yz.yamagata-u.ac.jp
**Hokkaido Univ., Kita 14 Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0814, Japan
***Hokkaido Univ., Kita 13 Nishi 9, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
****Hokkaido Ingtitute of Technology, 7-15-4-1 Maeda, Teine-ku, Sapporo, Hokkaido 006-8585, Japan
[Received October 20, 2006; accepted February 26, 2007]

Wediscussdecision making for abehavior-based robot
with modules which determining robot action. The
subsumption architecture (SA) arranges modules in
layers, giving upper-layer module action priority over
lower-layer modules. Although implementation is
easy, resultsin many inefficient actions because upper-
layer module areused regardlessof other modules. We
solvethisproblem by representing actions by Potential
Function (PF), in which maximum votes are collected
from modules. Using event-driven statetransition, the
robot decides its action with appropriate sets of mod-
ules changed based on the situation. We apply thisto
navigation tasksin a corridor and show simulation re-
sults. When we give a map and path designation to
the robot, we use a handwriting map interface. We
compar e object-oriented design SA and PMF with our
proposal and show how inefficient actions are reduced
using our proposal.

Keywords. potential function, autonomous mobile robot,
indoor navigation, behavior-based robotics, graph map

1. Introduction

We discuss how a robot with a network of multi-
ple modules adjusts competing modules for different de-
cisions and develops behavior. Brooks [1] proposed
the subsumption architecture (SA) using a layered net-
work consisting of upper-layer modules having priorities
among competing modules. Many behavior-based meth-
ods [3, 4] select behavior from if-then routines based on
sensor information as a conditiona clause. We propose
an object-oriented design [8] using this framework, and
applied it to a navigation task [6]. We classify SA in
object-oriented design into two types, i.e., interference
and noninterference, and take an approach that changes
layered control based on conditionsto solved problemsin
which noninterference SA is not suitable for tasks requir-
ing planning, while programming is easier than in inter-
ference SA. This does not, however, basically solve the
problem of developing inefficient behavior. Noninterfer-
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ence SA is simply structured but tends to develop ineffi-
cient behavior because upper-layer modules are automati-
cally prioritized in intermodul e competition without over-
all efficiency being considered. This is due to fixed lay-
ered control implying that changes of layered control will
not be able to solve the problem as long as noninterfer-
ence SA isinvolved.

In contrast to behavior-based approaches, Nakamura et
al. [5] proposed integrative reactive behavior (modules)
using a smooth nonlinear function of sensor signals in-
stead of selecting behavior discretely and selectively us-
ing if-then rules, and demonstrated object grasping using
amulti-fingered hand. The intensity of reactive behavior
is obtained by learning to improve robustness against en-
vironmental changes. Other proposed approachesinclude
selecting appropriate behavior by learning, using a neu-
ral network [11], and using reinforcement learning [10],
but Nakamura's approach is integrative, rather than se-
lective, making it different from others. Calculation for
expression intensity requires smooth nonlinear functions
of sensor signals, and it is difficult for our system, using
amicrocomputer poor in processing power, to make real-
time floating-point calculation using mathematical func-
tions for all sensor signals. We found it effective to in-
tegrate modules rather than to select them in intermodule
competition. When parameters are given by users rather
than by learning, robustness against unexpected environ-
mental changeis decreased, so we focused on fuzzy logic
giving moderate performance but enabling vague design.
Although Nakamura's approach does not explicitly touch
onfuzzy logic, it handles continuouslogic valuesof [0, 1].

Using fuzzy logic, Tsuzaki et a. [13] expressed mul-
tiple rules with a potential membership function (PMF),
and proposed fuzzy potential by integrating them, apply-
ing this to a RoboCup soccer robot demonstrating robust-
nessin dynamic and complex environments. Otsukaet al.
[9] realized running-round behavior corresponding to the
speed of the ball by changing the PMF to match the envi-
ronment. PMF, which determines the direction and speed
of movement, is applied easily to our rabot.

We propose determining behavior expression by com-
posing potential functionsfrom individual modulesfor in-
termodul e competition. For activation and restraint func-
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tions, a problem arises in that logical OR results for acti-
vation functions differs from intuition. We studied com-
posing potentials apart from fuzzy logic. PMF does not
handle logical OR because only one activation function
is involved and others are al restraint functions. Naka
mura’'s study includes logical OR and AND of activa
tion and restraint functions, but does not discuss either
the meaning of composition results nor the problem in
composition using logical OR. Wefirst describe the robot,
then we discuss problems in selective behavior decisions
by clarifying why noninterference SA selects inappropri-
ate behavior. We then discuss problems with fuzzy com-
position and propose the potential function (PF) for com-
position without using fuzzy logic. We demonstrate PF
effectiveness over other approaches in a navigation task
for an autonomous mobile robot.

2. System Configuration and Working Envi-
ronment

In study a navigation task problem, we use graph ex-
pression as an internal map held by the robot for solving
the problem. Due to a lower amount of information com-
pared to absol ute coordinate expression, graph expression
may be inferior in detailing but this factor reduces calcu-
lation because it does not require detailed path planning.
Graph maps are effective in man-robot interfacing. When
we navigate in daily life, we are not conscious of detailed
coordinates. This is aso true when indicating a destina-
tion to another person. Features (local landmarks) in en-
vironments are mostly used to indicate a destination. Al-
though there may be some exception, those being given
instructions also draw graphic maps in their minds con-
necting features for planning. Detailed planning and be-
havior decisions are conducted on an arc when a plan is
executed. In short, the graph map is easy for people to
use. For these reasons, we use graph map expression for
a corridor environment with local landmarks. The local
landmark, or ssimply landmark, is defined as being observ-
able only from neighboring areas.

2.1. Mobile Robot

We conducted simulation assuming an independent
wheel-driven mobile robot with 8 position-sensitive de-
tectors (PSDs) as distance sensors, 1 electronic compass,
and a landmark sensor for receiving landmark signals
from 7 directions, including directly above itself. The
CPU isan H8/3064. The robot is assumed not to use dead
reckoning and cannot locate itself precisaly (Fig. 1).

2.2. Working Environment

As in previous studies [6,8], crossroad and T-
intersections and landmarks at endpoints are distributed
inacorridor (Fig. 2). Although landmarks are preferably
any arbitrary features in the environment, we used special
artificial objects easy for robots to detect, considering the

Journal of Roboticsand MechatronicsVol.19 No.3, 2007

Decision Making for a Mobile Robot Using Potential Function

Directio%aof PSDs

Fig. 1. Mobilerobot.

Fig. 3. Graph map.

technical issues of sensors and microcomputers incorpo-
rated. We assume that landmarks emit infrared ID signals
and that the robot recognizes | Ds within the reach of sig-
nals. ID isexpressed in hexadecimal in figures and bel ow.

2.3. Graph Map

The graph map for Fig. 2 is shown in Fig. 3. Arcs
in the graph indicate corridors and nodes indicate land-
marks. The node degree is a maximum of four and re-
striction arise from the sensor issue on the robot. To lead
the robot toward intended corridors without choosing in-
correct way at cross-road and T-intersections, directional
information is given in arcs. The direction may, however,
differ from the actual direction. When a robot uses this
map, it must be able to make its actual directions corre-
spond to directions on the map.
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Fig. 4. Layered control.

obstacle

' Direction of travel
B @ A

Fig. 5. Example of problem of SA.

3. Problemsin Noninterference SA

Noninterference SA is a behavior decision in layered
control (Fig. 4), and modules outputting behavior are free
from interference from other modules. For this reason, it
does not require complex processing because upper-layer
modules have priority even when module behavior is mu-
tually contradictory. With this simplified control, how-
ever, optimized behavior at the modulelevel oftenleadsto
inappropriate behavior overall. When the robot (Fig. 4) is
placed in acircumstance (Fig. 5) such as“Avoid Module”
for avoiding obstacles, it can only select avoidance behav-
ior in direction A or B. “Compass Modul€e” for traversing
the corridor, however, selects direction A. “Avoid Mod-
ule” isolated from information from other modules, must
decide A or B on its own. Assuming that it selects direc-
tion B, the decision conflictswith “ Compass Module,” but
decision B from an upper-layer module, “Avoid Module,”
is prioritized and selected.

As stated above, layered control in which the upper
layer is prioritized tends to produce inappropriate behav-
ior due to the dogmatic decision by the upper layer ignor-
ing intentions of lower layers. Metaphorically speaking,
noninterference SA is feudalistic behavior, as opposed to
integrative methods including PMF that are democratic.
Studies 6, 8] solvethis problem by changing layered con-
trol based on the individual situation. Corridor behavior,
however, is often ignored by obstacl e-avoidance behavior,
leaving the problem of inappropriate behavior unsolved.

4. PMF Logical OR

A problem arises when PMF logical OR results differ
from intuition. We define PMF below. The lateral axis of
PMF is the direction of robot movement, and the mem-
bership grade represents direction priority. When (6)
meanspriority of 6 asis, PMF isdefined asactivation, and
when it means restraint ratio, PMF is defined as restrain-
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ing, expressed by symbol [i(60). The restraint ratio varies
in its meaning by arithmetic operation, but generally in-
volves reducing priority by operation. Specifically, the
restraint ratio of 1 does not reduce priority, and O causes
priority 0, so activation and restraint PMFs are meaning-
ful only in the following three operations:

p(0) = ua(6)V uz(0)
u(0) = (O B(0) . o 1)
1(6) = ua(0) A u2(0)

where, in composing potentials, v, A can be s-norm, t-
norm defined in fuzzy logic other than logical OR, AND.
Consider the case of logical OR of two activation PMF
w1 and up for 61 and 6. When p1(61) = ua(61) =
u1(62) = 1.0, u(62) = 0.0, logical OR isasfollows:

n1(61) Vv p2(61) = 1.0
u1(62) V uz(62) = 1.0.

The same results are obtained in agebraic sum, limit-
ing sum, and drastic sum. Because p»(62) = 0.0, it is
intuitively natural that priority may higher with 6, than
61. The discrepancy between the operation result and in-
tuition is because fuzzy logic uses a continuous logical
value of [0,1], i.e., the problem arises because results of
logical OR saturate at 1.

5. Potential Function Approach

Taking the above example into account, a simple sum
operation matches our intuition for operation between ac-
tivation PMFs. The result of operation may exceed the
range [0, 1], so we do not handle fuzzy logic here. We
propose PF in which where potential functions are not ex-
pressed with membership functions.

5.1. Potential Function

We discuss composing operations from activation and
restraint function output from individual modules. If
we handle activation and restraint functions separately, it
could produce a design that may produce contradictory
output such as priority 1 and restraint ratio O for acertain
0, so we integrated the two functions.

Asin PMF, the lateral axisindicatesrelative angle © =
{64, ...,6n} iINPF. Thevertical axisrepresentspriority and
restraint ratio as follows:

f:0—[-11; f(@)e[-11,6€0. .. (2

When f(6,) > 0, f becomes active. When f(6;) <0, it
becomes restraining, and the resulting value subtracting
the absolute value of it from 1 is equal to the restraint
ratio.

5.2. Composing PF

In addition to PF, activation function F and restraint
function F for composing operation are defined as fol-
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lows:
F:0—[0,); F(6)€[0,),6€0 . . (3
F:0~1[0,1; F(6)€[0,1,6€0.. .. (4
We define the following functions:
s _ x (x>0
+(x)_{ 0 (x<0) C e )]
5_(%) :{ ° Eiigg ....... ©)

The composing operation with m sets of PFs is defined as
follows:

F(6)= zml&(f,-(ei)) ......... @)
j=

F(6) =_1'[1{1—67(fj<9i)>} ------- ®)
j=

F'(0)=F(6)xF(6) . . . ... ... 9)

where F* represents a composed PF with the value of
[0,m], and F*(6;) representsthefinal priority of 6;.

Direction of movement 6 of the robot is obtained using
appropriate functions. Herewe use defuzzification BADD
used el sewhere [13] and expressed as follows:

_ I (Fr(8)e
XL (F(6)*
Defuzzification adjusts the degree of evaluation for the
maximum vaue by A, in which the greater the A val-
ues, the greater the weight of the maximum value. While
the mean of maxima evaluates only the maximum value,
BADD evaluates other candidates around the maximum
value, whichiswhat we used BADD for. Weused A = 20
based on the study [13].

5.3. Application to Mobile Robot

Parameters required for an independent wheel-driven
mobile robot to operate are forward speed v and turning
speed . To decide these independently, direction 6 and
distance ¢ in open space are used [2]. 0 is obtained from
the result of composing PF, then ¢ is obtained from 6.
Transform function (TF) form 6 to ¢ isdefined asfollows:

G:0[0,); G(6)€[0,0),6€0. . . (11)

TF is obtained from a composing operation asin PF. TF
output from modules is defined in the same way. To dis-
tinguish between them, the composed TF is expressed in
uppercase and the TF from modulesin lowercase. A com-
posing operation with m sets of TF is defined as follows:

G'(6) = min(g(6),92(61),...,am(61)). . . (12)
Distance ¢ is obtained from the composed TF as follows:
¢=G(0).

Forward speed v and turning speed w are then obtained as
follows:

V= Kv(P
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Avoi d State
- MR
Rotate State
A4 A
Narrow State

Fig. 6. Statetransition diagram of Avoid Module.

where Ky and K, represent gain constants.

5.4. Module Design

Modules designed for executing navigation tasks are
described here. As stated earlier, we assume the use of a
robot we built in our laboratory, and prepared an Avoid
Module for avoiding obstacles, a Compass Module for
traversing the corridor, and a MapNavi Module for nav-
igation, as outlined below for PF and TP,

5.4.1. Avoid Module

Obtains directions for obstacles and open space from
information from distance sensors, generating PF to avoid
obstacles (Fig. 6).

Avoid State: The state in which basic obstacle-
avoidance behavior is generated. When detecting
a wall ahead, the robot transits to the Rotate State.
When detecting a wall on both sides, it transits to
Narrow State.

Rotate State: The state in which the robot rotates un-
til it faces an open space, at which point it transits to
Avoid State.

Narrow State: The state in which behavior is gen-
erated for passing through a narrow space. When
detecting a wall ahead, the robot transits to Rotate
State.  When no longer detecting a wall on either
sides, it transits to Avoid State.

In generating PF, potential p is transformed from dis-
tance x [cm] to an obstacle using the following eguation:

1 (x<20)
(x—25)
p={ o5y \XSX<B (16)
02 (25 < x < 40)
T (40<x).

PF is processed based on the environment. To avoid con-
flict with obstaclesduring turning, TF istransformed with
aweight using Table 1. Thisis donein other than Rotate
State, in which TF becomes 0 in all directions to makes
rotation.

5.4.2. Compass Module

The robot incorporatesfar fewer sensorsto traverse the
corridor, unable to detect longitudinal directions. This

301



Oikawa, K. et al.

Table 1. Weighting function.

Olrd] || —m | —3n/4 | —n/2 | —/4
W(6) || 0.00 | 0.25 050 | 0.75
O[rad] 0 /4 /2 | 3n/4
W(6) || 1.00 | 0.75 050 | 025

ARRIVAL
»

Start State No Plan State

GOAL l

Arrival State

FOUND

Next LM State 1

4 Approach State

LOST
< ' 4
FOUND
<

Near State

Lost State

ARRIVAL

ARRIVAL
Detect State <J L Recovery State

v GOAL

Stop State

Fig. 7. Statetransition diagram of MapNavi Module.

module uses the earth’s magnetism to lead the robot to the
destination, enabling to traverse the corridor. The desired
direction is set to the compass value when the module is
initialized. The module does not conduct state transition.
PF simply gives the maximum value to the desired direc-
tion. TF gives the maximum value to the front and thisis
fixed.

5.4.3. MapNavi Module

L eads the robot to destinations based on the instructed
path using a graph map given by the manuscript map in-
terface (Fig. 7).

Start State: The state in which initial settings are
done. If a path instruction is given, the robot tran-
sits to Arrival State. If not, it transits to No Plan
State generating event ARRIVAL. At this moment,
if the robot is at the destination, it transits to Stop
State generating event GOAL.

Arrival State: The state in which the robot has
reached alandmark. After rotating to the next land-
mark, the robot transits to Next LM State generating
event NEXT.

Next LM State: The state in which the robot is on
the way to the next landmark. When entering a
landmark-observable area, the robot transits to Ap-
proach State generating event FOUND.
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Approach State: The state in which the robot moves
toward a near zone in the observable area. When de-
tecting a near zone of a landmark, the robot transits
to Near State. When losing the landmark, it transits
to Lost State.

Near State: The state in which the robot is approach-
ing the landmark identifying ID detected by the sen-
sor for near zones. When detecting the next land-
mark 1D, the robot transits to Detect State. When
other IDs are detected, it transits to Recovery State.

Lost State: The state in which the robot has lost the
landmark while approaching the landmark. If unable
to detect in acertain period, the robot transitsto Next
LM State generating event LOST. If detected, it tran-
sitsto Approach State.

Detect State: The state in which the robot identified
alandmark ID and is making a subplan for the next
landmark. If the robot has reached the final destina-
tion, it transitsto Stop State generating event GOAL.
If not, it makesa subplan and transitsto Arrival State
generating event ARRIVAL.

Recovery State: The state in which the robot is re-
covering from an error such that it reached an un-
intended landmark. After making a subplan to the
intended landmark, the robot transitsto Arrival State
generating event ARRIVAL.

Stop State: The state in which the robot has reached
the destination and stops.

No Plan State: The state in which no path instruction
isgiven.

PF is generated to become 0 in al directions when the
robot is outside landmark-observabl e areas, and becomes
maximum in the direction of alandmark when inside the
zones. TF is generated in the same way as in Compass
Module.

5.5. Example of PF and TF Operations

With the modules above, we describe how PF and TF
are output and composed in examples. Fig. 8 shows a
simulation scene. The square with atriangle mark means
the robot and its posture. The direction of the triangle
mark indicates the front of the robot. A cluster in black
indicates awall or obstacle, and the remainder corridors.
A number in a corridor indicates a landmark 1D and the
location. Area in gray around the landmark means the
landmark-observable area. The white arrow indicates the
desired direction for the robot. With these conditions,
PF output from each module and activation and restraint
functions F, F obtained from PF are shown in Table 2.
TF and composed results are shown in Table 3. Finally-
obtained composed function F * is shown in Table 4. For
comparison to PMF, composed functions obtained from
activation functions using fuzzy logical OR (V), algebraic
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Diiectionof travel

Fig. 8. A scene of navigation.

Table 2. PFs of each module.

O[rad] - | -3n/4| —rn/2 | —n/4
favoid 0.00 | —1.00 | —1.00 | 0.80
fcompass 0.00 0.00 0.00 0.20
fmapNavi || 0.00 0.20 050 | 1.00
F 0.00 0.20 050 | 2.00
F 1.00 0.00 0.00 | 1.00

O[rad] 0 /4 /2 | 3n/4

favoid —-1.00 0.60 0.50 0.00
fcompass 0.50 1.00 0.50 0.20
fMapNa,i 0.50 0.20 0.00 0.00

F 1.00 1.80 1.00 0.20

F 0.00 1.00 1.00 1.00

Table 3. TFsof each module.

Olred] | -7 | —3n/4 | —n/2 | —n/4
Oavoid 0 0 9 40
OCompass 0 0 5 75
OMapNavi 0 0 3 53
G* 0 0 3 40

O[rad] 0 /4 w/2 | 3n/4
OAvoid 20 64 25 0
Ocompass || 100 75 5 0
OMapNavi 70 53 3 0
G* 20 53 3 0

sum (+), and limiting sum (). Consequently, 6 [rad] ob-
tained from each composed function using Eq. (10) is as
follows:

Or+ ~ —0.615 (PF)

6y =~ 0.000 (logica OR)
0, ~0.002 (agebraic sum)
0p ~ 0.524 (limiting sum).

As results indicate, PF selects a left turn evaluating
large potentials from Avoid Module and MapNavi Maod-
ule, while a method using fuzzy logic causes a straight
forwarding because the large potentials on the left and

right are saturated and evaluated in the same degree caus-
ing the middle way to be selected. Limiting sum selected
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Table 4. Composition results.

Olrd] | —m | —3n/4 | —m/2 | —/4
F* [[0.00| 000 | 0.00 | 2.00
v 000 | 000 | 000 | 1.00
+ 0.00| 0.00 | 0.00 | 1.00
@ 000 | 000 | 000 | 100

O[rad] 0 /4 n/2 | 3m/4
F* [[0.00]| 1.80 | 100 | 0.20
v 000 | 1.00 | 050 | 0.20
+ 000| 100 | 075 | 020
@ 000 | 1.00 | 100 | 0.20
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.| Found State l—LOST
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3INPOIN PIOAY

4—' FOUND
J

Fig. 9. Event driven state transition diagram with PF.

even aright turn. As apparent from Fig. 8, these selec-
tions are not the desired decision. These results demon-
strate that total sum gives better results in operations for
multiple activation functions.

5.6. Event-Driven Layered Control Change

To execute tasks smoothly, modules must be selected
based on the situation. For this, we use the event-driven
state transition used in object-oriented design SA [§].
Navigation design is shown in Fig. 9. A word at the base
of an arrow in the picture indicates the name of an event
that triggers a state transition.

Arrival State: The state in which the robot has
reached a landmark. The state consists of MapNavi
Module aone to diminate the influence of other
modules, enabling the robot to rotate to the direction
of the next landmark.

Next LM State: The statein which therobot is on the
way to the next landmark. When entering this state,
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Arrival State GOAL

4 NEXT 4+

MapNavi Module
v ARRIVAL

Next LM State A

Avoid Module

Compass Module

MapNavi Module

ARRIVAL

FOUND Lost State

Avoid Module

ARRIVAL v

.| Found State l—'—OST
—>

Compass Module

MapNavi Module

Avoid Module
MapNavi Module 4_| FOUND

J

Fig. 10. Event driven state transition diagram with SA.

it initializes Compass Module setting the direction to
the desired direction.

Found State: The state in which the robot enters a
landmark-observable area. Because no corridor need
be traversed, Compass Module is not incorporated.

Lost State: The state in which the robot has lost the
landmark.

Goal State: The state in which the robot reached the
final destination. Upon arrival at the destination, nei-
ther avoiding obstacle nor traversing acorridor isre-
quired, so only MapNavi Module isincorporated.

6. Simulation

To verify the effectiveness of PF, we conducted a com-
parison experiment with PMF and SA on a compulter,
comparing the three approaches for efficiency. The num-
ber of steps from start to goal is used as the index. The
step means the sampling cycle, which is 50 ms here. The
number of steps, however, is influenced by travel speed,
and attention must be paid so that efficiency is not deter-
mined by the number of stepsalone. The comparison here
involves the judgment of whether it chooses the appropri-
ate speed. It holdsherethat the fewer the steps, the greater
the efficiency.

6.1. Settingin SA and PMF

SA is designed based on the object-oriented design re-
ported in [8]. To increase comparison precision, modules
designed by PF are adapted to layered control. The state
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Fig. 11. Corridor environment of simulation.

Table 5. The simulation result of each approach.

Ave. SD min | max

PF | 1534.1 | 103.0 | 1431 | 1726
PMF | 1758.4 | 96.7 | 1626 | 1985
SA | 1975.3 | 534.5 | 1623 | 3679

transition designed hereis shownin Fig. 10. In the opera-
tion for obtaining activation functionsin PF for PMF, we
used fuzzy algebraic sums to include summation. Other-
wisg, itisthe sameasin PF.

6.2. Navigation Task

Figure 11 shows the working environment. The solid
black circle representsthe position of alandmark, and the
number (hexadecimal) in white indicates a landmark ID.
The triangle near the word “ Start” indicates the initial |o-
cation of the robot. Numbers on both sides of the map are
the sequence of landmarks for the robot to follow. The
graph map for the environment was created from a hand-
written linear drawing using automatic conversion [7].

6.3. Resultsand Discussion

Average, standard deviation, and maximum and min-
imum numbers of steps are shown in Table 5 with PF,
PMF, and SA for 20 trials each. Welch's t-test showed
that PF results are significant against that of PMF and SA,
proving that PF requires fewer steps to a destination than
the other two. Worst results taking the maximum number
of steps with PF, PMF and SA are shown in Figs. 12-14.
L ocations and directions of the robot every 5 steps are in-
dicated. Numbers indicate the same asin Fig. 11 and O
means the initial location.

The difference between PF and PMF is observed at A
and B pointsin Figs. 12 and 13. With PF, the robot goes
straight to the landmark within the landmark-observable
area, while it approachesthe landmark following around-
about tragjectory with PMF due to the fact that activation
potentials saturated at 1, as observed in section 5.5, and
all peaks are evaluated as the same. This caused higher
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Fig. 13. Horrible result with PMF.

efficiency with PF. SA did the worst occasionally enter-
ing incorrect corridors. At point A in Fig. 14, Avoid
Module was preferentially selected, ignoring output from
Compass Module, resulting in entering incorrect corri-
dors. The proposal in the study [6, 8] results in such sit-
uations, which, as stated in section 3, is caused by se-
lective module decisions. PF did not cause this problem
in this environment. This aso demonstrates the superi-
ority of the integrative approach. In short, simulation re-
sults proved that the integrative approach effectively ad-
justs competing modules, and that the method summing
priorities will develop more appropriate behavior, which
also matches our intuition, than a fuzzy logic framework,
in composing operation from activation potential func-
tions. PF also develops inefficient behavior as observed
at Cand D in Fig. 12, partly due to the low angular reso-
[ution of distance sensors (only 8 directions for surround-
ing areas), meaning using higher-resol ution sensors could
improve its performance. Another reason is that this ap-
proach determines behavior only with partialy observ-
able information. Based on a combination of obstacles,
the robot may enter an incorrect corridor, which did not
happen this time. Thisis a big problem when relying on
graph maps with less information and partial observation.
Using information-rich map expression as in study [12]
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Fig. 14. Horrible result with object-oriented deign SA.

Table 6. The simulation result of PF(MOM).

Ave, SD min | max
1542.3 | 61.3 | 1445 | 1661

PF(MOM)

may solve the problem. We consider a casein which only
relations between features are given as was given in ver-
bal instructions, and will continue our study to achievethe
objective with less information or find limitations.

We used BADD defuzzification to obtain direction of
movement 6, which is difficult to calculate in real time
with our robot’'s CPU. Since composed functionisF* <m
for module number m, there may be a way to normalize
F* by mand place results calculated offline into an array.
This may cause a problem if memory capacity is insuf-
ficient. As areference, we present results of 20 trials of
the above task using the mean of maxima (MOM) in Ta-
ble 6. MOM, which does not require exponential opera-
tion, could be realized on our robot, and no big difference
isfoundinresults. Although evaluation for maximumval-
ues can be adjusted by A to reflect the designer’sintention
in BADD defuzzification, MOM may be a choice when a
less powerful CPU is used.

7. Conclusion

We have proposed integrating decisions from individ-
ual modules to solve the problem in SA that developsin-
efficient behavior caused by selective decisions in which
decisions from upper-layer modules are prioritized. We
defined activation and restraint functions, and pointed out
that results from fuzzy logic operation do not match in-
tuition in composing operation from activation functions.
For a solution of the problem, we proposed PF that de-
velops behavior by composing potential functions rather
than by fuzzy logic. We demonstrated in simulation that
PF is superior to PMF and object-oriented design SA.

We will apply the outcome to a mobile wheeled robot
to study the possibility of realize it method on real robots.
We will continue to expand application fields, includ-
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ing quadrupedal walking robots, which we have aready
started, and further study the possibility for applications
beyond navigation.

References:
[1] R. A. Brooks, “A Robust Layered Control System For A Mo-
bile Robot,” IEEE Journal of Robotics and Automation, RA-2(1),
pp. 14-23, 1986.

[2] T. Emaru, K. Tanaka, and T. Tsuchiya, “Speed control of a sonar-
based mobile robot with considering the self-localization,” In IEEE
International Conference on Mechatronics & Automation, pp. 125-
130, 2005.

[3] J.L.Jonesand A. M. Flynn, “Mobile Robots: Inspiration to Imple-
mentation,” A K Peters, Ltd, 1993.

[4] M. J. Mataric, “Integration of Representation Into Goal-Driven
Behavior-Based Robots,” |EEE Transaction on Robotics and Au-
tomation, 8(3), pp. 304-312, 1992.

[5] Y.Nakamuraand T. Yamazaki, “The Integration Theory of Reactive
Behavior and Its Application to Reactive Grasp by a Multi-Fingered
Hand,” Journal of the Robotics Society of Japan, 15(3), pp. 448-
459, 1997 (in Japanese).

[6] K.Oikawa, H. Takauji, T. Emaru, S. Okubo, and T. Tsuchiya, “Nav-
igation Using Local Landmarks in a Corridor Environment,” Jour-
nal of Robotics and Mechatronics, Vol.17, No.3, pp. 262-268, 2005.

[7] K.Oikawa, H. Takauji, T. Emaru, S. Okubo, and T. Tsuchiya, “Nav-
igation Instructions Using Handwriting Map Interface,” in Proceed-
ings 2006 JSME Conference on Robotics and Mechatronics, 2006
(in Japanese).

[8] K. Oikawa, T. Tsuchiya, and S. Okubo, “Object-Oriented Design
of Subsumption Architecture,” Journa of the Robotics Society of
Japan, 23(6), pp. 697-705, 2005 (in Japanese).

[9] F Otsuka, H. Fujii, and K. Yoshida, “Action Control Based on Ex-
tended PMF for an Autonomous Mobile Robot,” in Proceedings
of the 23rd Annua Conference of the Robotics Society of Japan
(CDROM), 2005 (in Japanese).

[10] Y. Takahashi and M. Asada, “State-Action Space Construction for
Multi-Layered Learning System,” Journal of the Robotics Society
of Japan, 21(2), pp. 164-171, 2003 (in Japanese).

[11] J. Tani, “Model-Based Learning for Mobile Robot Navigation from
the Dynamical Systems Perspective,” |EEE Transactions on Sys-
tems, Man, and Cybernetics, Part B: Cybernetics, 26(3), pp. 421-
436, 1996.

[12] M. Tomonoand S. Yuta, “Indoor Navigation based on an Inaccurate
Map using Object Recognition,” Journal of the Robotics Society of
Japan, 22(1), pp. 83-92, 2004 (in Japanese).

[13] R.Tsuzaki and K. Yoshida, “Motion Control Based on Fuzzy Poten-
tial Method for Autonomous Mobile Robot with Omnidirectional
Vision,” Journal of the Robotics Society of Japan, 21(6), pp. 656-
662, 2003 (in Japanese).

306

Name:
Kazumi Oikawa

Affiliation:
Assistant Professor, Yamagata University

Address:

4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan

Brief Biographical History:

2000- Received Ph.D. from Hokkaido University

2000- Research Associate, Yamagata University

2007- Assistant Professor, Yamagata University

Main Works:

* “Navigation Using Local Landmarksin a Corridor Environment,”
Journal of Robotics and Mechatronics, Vol.17, No.3, pp. 262-268, 2005.
o “Object-Oriented Design of Subsumption Architecture,” Journal of the
Robotics Society of Japan, Vol.23, No.6, pp. 697-705, 2005 (in Japanese).
Membership in Academic Societies:

o The Japan Society of Mechanical Engineers (JSME)

* The Robotics Society of Japan (RSJ)

Name:
Hidenori Takauji

Affiliation:
Graduate School of Information Science and
Technology, Hokkaido University

Address:

Kita 14, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0814, Japan

Brief Biographical History:

1997- The B.E. degree in Electrical Engineering, Hokkaido University,
Japan

1999- The M.E. degree in Systems and Information Engineering,
Hokkaido University, Japan

2006- The Ph.D. degree in Systems and Information Engineering,
Hokkaido University, Japan

Main Works:

o “Robust Tagging in Strange Circumstance,” |EEJ Trans. EIS, Vol.125,
No.6, 2005 (in Japanese).

o “Scalable Image Searching Method based on Orientation Code Density,”
JSPE, Vol.72, No.4, 2006 (in Japanese).

Member ship in Academic Societies:

* The Robotics Society of Japan (RSJ)

o The Japan Society for Precision Engineering (JSPE)

Journal of Roboticsand MechatronicsVol.19 No.3, 2007



Decision Making for a Mobile Robot Using Potential Function

Name:
Takanori Emaru

Affiliation:
Associate Professor, Hokkaido University

Address:

Kita 13 Nishi 9, Kita-ku, Sapporo, Hokkaido 060-8628, Japan

Brief Biographical History:

2002- Postdoctoral Research Fellow at Hokkai-Gakuen University
2003- Postdoctoral Research Fellow of the Japan Society for the
Promotion of Science

2006- Assistant Professor at Osaka Electro-Communication University
2007- Associate Professor at Hokkaido University

Main Works:

o “Research on Estimating Smoothed Value and Differentia Value by
Using Sliding Mode System,” |EEE Trans. on Robotics and Automation,
Vol.19, No.3, pp. 391-402, 2003.

M ember ship in Academic Societies:

e The Ingtitute of Electrical and Electronics Engineers (IEEE)

o The Japan Society of Mechanical Engineers (JSME)

e The Ingtitute of Electronics, Information and Communication Engineers
(IEICE)

Name:
Shigenori Okubo

Affiliation:
Professor, Yamagata University

Address:

4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan

Brief Biographical History:

1980- L ecturer, University of Tokyo

1987- Associate Professor, University of Tokyo

1988- Associate Professor, Yamagata University

1990- Professor, Yamagata University

Main Works:

» “Design of Nonlinear Regulators Using Genetic Algorithms,”
Transactions of the Society of Instrument and Control Engineers, Vol.33,
No.11, pp. 1072-1080, 1997 (in Japanese).

Membership in Academic Societies:

o The Society of Instrument and Control Engineers (SICE)

o The Ingtitute of Electrical Engineers of Japan (IEEJ)

o The Japan Society of Mechanical Engineers (JSME)

Name:
Takeshi Tsuchiya

Affiliation:
Professor, Hokkaido Institute of Technology

Address:

7-15-4-1 Maeda, Teine-ku, Sapporo, Hokkaido 006-8585, Japan

Brief Biographical History:

1966- L ecturer, Hokkaido University

1967- Associate Professor, Hokkaido University

1987- Professor, Hokkaido University

2004- Professor, Hokkaido Institute of Technology

Main Works:

e “Modern Control Engineering,” Sangyo-Tosho Pub., 1991 (in Japanese).
e “Digital Preview & Predictive Control,” Sangyo-Tosho Pub., 1992 (in
Japanese).

¢ “Basic System Control Engineering,” Morikita-Pub., 2001 (in Japanese).
e “Mechatronics 2nd Ed.,” Morikita-Pub., 2004 (in Japanese).

M ember ship in Academic Societies:

e The Ingtitute of Electrical and Electronics Engineers (IEEE)

o The Japan Society of Mechanical Engineers (JSME)

e The Ingtitute of Electrical Engineers of Japan (IEEJ)

o The Robotics Society of Japan (RSJ)

e The Society of Instrument and Control Engineers (SICE)

Journal of Roboticsand MechatronicsVol.19 No.3, 2007

307


http://www.tcpdf.org

