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VSle propose a six-legged walking robot having two ma-
nipulators which offers added stability, mobility, and
functionality. We studied neuro-based position and
force hybrid motion control for walking on irregular
terrain. Comparison with corrventional position and
force hybrid contro1 demonstrates the high ernciency
of the proposed neuro-based position and force hybrid
control. The neuro-based position and force hybrid
contro1 includes six-axis force sensors in each leg,
which provide contro1 vertically, i.e., in the direction
of gravity, and in the walking direction. This platform
has proven to be very usefu1 on irregular terrain in-
cluding obstacles of random height and random posi-
tion. Consequently, autonomous stable walking in an
unknown emrironment has been realized through ex-
periments.

Keywords: six-legged walking robot, neuro-based posi-
tion and force hybrid control, nonlinear control, irregu1ar
terrain walking, autonomous stable walkmg

1. Introduction

  A legged walking robot, such as a single-legged (hop-
ping machine), two-legged, four-legged, six-legged, or
eight-legged robot, must have at least 4 legs to realize
static stable walking. A legged walking robot has an ad-
vantage over a wheeled robot, in that it can move on
irregular terrain and avoid obstacles. Therefore, legged
robots are expected to find application to dangerous
working environments, such as in nuclear reactors, on
extraterrestrial planets, in mine fields, and under limited
working conditions.i'D
  Our research group had developed a six-legged walk-
ing robot for mine detection. Previously, we built and
reported on COMET-I and COMET-II.8) ln particular, in
view of exploiting the advantages of legged walking ro-
bots, we concentrate our study on irregular terrain walk-
ing, mine detection, mine marking, mine mapping, and
related functions. Position and force hybrid control is
kn(rvvn to be eMcient for irregular terrain walking by a

legged walking robot. However, constructing a mathe-
matical model of a multilegged walking robot and design-
ing a model-based control are very didicult, because of
the complexity of such a large-scale nonlinear system.
Constructing a mathematical model for a legged walking
robot is especially dificult, because of the dynamics of
unpredictable conditions, such as unknovvn changes re-
sulting from co11ision and viscoelasticity between foot
and ground. A conventional position and force hybrid
control is designed on a turning method based on rule of
thumb and trial and error, not based on a mathematical
model, bet preventing realization of good control per-
formance. Of course, because tracing performance of
conventional hybrid control depends on feedback gain
matrices, performance is improved if proper gain can be
obtained, at the expense of a great amount of time. Hovv-
ever, in practice, three unknown gains exist on the diago-
nal of each of the four gain matrices in the case of one
leg, which consists of three joints. It is very diMcult to
determine the twelve unknovvn gains, , when robot walk-
ing in unknown environment, it is impossible to tune
these twelve gains, so that it is impossible to realize the
autonomous walking by using the conventional position
and foroe hybrid control. Therefore, in the present study
we seek to improve control performanoe by means of
building an adaptive learning control that does not relay
on a mathematical model for position and force hybrid
control, The neuro learning method is an edicient method
for this purpose.

  Neuro-based nonlinear control has been applied in the
field of control}ii) but, to the best of our knowledge, no
study has been conducted on applying neuro-based posi-
tion and force hybrid control to a legged walking robot.
Therefore, we have proposed a new control for a robot
walking on irregular terrain; namely, a neuro-based posi-
tion and force hybrid control which enables a robot to
realize autonomous walking by self-learning, Specifically,
first we designed a decentralized position and force hy-
brid control for each joint of each leg by means ofa
turning method utilizing rule of thumb and trial and errot
Next, we designed hierarchical control, which consists of
a centralized neuro-based controller and a decentralized
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Fig, 1. 0verview of six-legged wallcing robot with two
manipulators.
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liig, 2. Size of six-legged walking robot.

position and force hybrid control for three joints of each
leg. Furthermore, by using this neuro-based controller, we
obtained the dynamics of erTvironment after the robot
walking learning, thereby improving control performanoe
of position and force hybrid control. Particularly, by em-
ployment of six-axis force sensors, the proposed control
provides control not only vertically; i.e., in the direction
of gravity, but also in the walking direction. Therefore,
when the swing Ieg comes into contact with a obstacle in
the walking direction, robot can avoid the obstacle by
stepping over it. Tracing performance for target value is
improved by adjusting the bias of a sigmoidal function in
the neuro-based algorithm. Comparison with conven-
tional position and force hybrid control reyeals that the
proposed neuro-based position and force hybrid control
is highly edicient.

x
f

fy fz

Fig 4. 0ontrol
controllet

with neuro-based position/foroe hybrid

and Fig2 shcvvvs its dimensions.i2) The robot has six three-
joint legs, each consisting of a shoulder, a thigh, and a
shank. 'Ibtal weight is about 120 kgf, overall width is
about 13oo mm, and body height is about 6oo mm. SMilk-
ing speed on structured ground is about 150 mh. The
present study employs a six-legged walking robot in
which each leg has 3 degrees-of-freedom (DOF), to en-
sure more stable walking on irregular terrain. Fig.3 shows
the configuration of each leg. The leg mechanism uses a
parallel link for the thigh, and the ball joint of the parallel
link pivots the shank. A povver generator supplies power
suthcient for four hours' continuous operation, and an
external p(Jwer supply supplies power for long-time op-
   .

eratlon.

3. Neuro-Based
  Contro1

Position and Force Hybrid

2. 0verview of Robot

figure 1 shovvs the overall six-legged walking robog

3.1. StructureofContro1

  Figure 4 depicts the control for each leg. Six block
diagrams shcrwn in Fig4, because the six legs have iden-
tica1 controls represent the control for the entire robot.
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The control has three components. The first component
is a position control with a PD feedback controller for
each joint, and the second component is a force control
using a feedforward controller and a PD feedback con-
trollen The first component and the second component
constitute a corTventional position and force hybrid con-
trol. The third component, which is designed based on
neuro learning for attaining idea! control performance
without use of a correct mathematical model of the leg,
is a position and force hybrid control that uses an inverse-
function centralized control compensator for the three
joints of one leg. The third component and the hierarchi-
cal control structure shown in Fige4 are the concepts that
are newly proposed in our study.

  Figure 5 shows an enlarged view of the neuro-based
compensator shown in Fig4. Here, we introduce briefly
the method of obtaining an irrverse-function centralized
control compensator for the three joints of one leg. As
shovvn in Fig4, a man-made neuro-based compensator is
added to the sum of position feedback controller and
force feedback controller. Input signals of the neuro-
based compensator are target orbit for three joints of one
 leg e,, ( i=1･･･ 3 ) and its first order differential
 b,,(i t 3 ･･･ 6). 'Ilie output signal of the neuro-based com-
 pensator T., ( k = 1 ･･･ 3 ), which is combined with the
 output signal of position control T,, (k - 1 ･･･ 3) and the
 output signal of foroe control Tf, (k-1 ･･･ 3), is transmit-
ted to each joint as a control input signal. Here, error
signals of the neuro-based compensator are Tp, and Tfo and
teacher signals are the input torque Tk, which is the sum
of Tn,, Tp, and Tf,. After learning with the above method,
this neuro-based compensator can sense the nonlinear
properties of the controlled object robot such as slip and
co11ision between the robot foot and the floor, and an
irrverse dynamics of actual motion can be obtained. The
construction of the neuro-based compensator has an input
layer, a middle layer and an output layer, as shown in
fig5. The weight between the input layer and the middle
 layer is Wi,･(j=1 ･･･ 12 ), and that between the middle layer
and the output layer is Vjk. In consideration of learning
ime and learning ethciency, providing the middle layer
with 12 units is appropriate when real-time learning is to
be performed. , tracing performance for target value is
 improved by adjusting the bias of a sigmoidal function in
 this neuro-based algorithm. Both the design method and
 the algorithm of the neuro-based compensator are dis-
 cussed in section 3.3.

   Figure 6 shovvs an example of irregular terrain. A
 walking robot, which is to move on such an unstructured
 ground surfaoe generally, requires a hybrid control, which
 provides position and foroe control. In Fig6, which de-
 picts al1 legs as being in the support phase, the force of
 each leg vertically z equals the specified force for stabi-
 1izing attitude. Position control is applied to x and y
 clirections.

   In the swing phase ofa leg, as shown in Fig7, when
 the height of an obstacle is greater than the height from
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Fig,7. Avoidanoe for high obstacle.

the ground to the swing leg of the robot, position control
is performed in the z direction, whereas force control is
in the y direction; that is, the walking direction. As soon
as the leg comes into contact with the obstacle in the
walking direction, the leg accepts a force signal, and in
response the swing leg retreats and rises again in an effort
to step over the obstacle. Particularly, in the case where
the oenter of gravity of the robot is raised, the swing leg
can be raised higher to step over the higher obstacle. In
this manner, the robot can walk over obstacle up to 15cm
in our study.

32. Comrentional POsition and Forte Hybrid Con-
    Ml

  First, corTventional position and force hybrid control
are introduced, where e,, - [e,i, e.2, e,3]r is the reference
position, f,,- [f,.,f,,,f,JT is the reference force, and
ei - [ei, th, a]randfi s if.,f,,f,]T are the present position
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and the present foree. Position error and force error are
expressed as

e.(t) e
 i

a- T)(e,(t)- e,(t)) ......... (1)
      t

fe (t) ' Tif, (t) '-
 it

wnere,
foroe.

f`(t)) ............. (2)

T is the transform matrix conoerning position and
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...
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 if. 〉 O, swing phase) . . . . (3)

if? O, swing phase)

 ifz 〉 O, suppart phase)

.... (4)

... (5)

o
l

O1 if.-O,f,-O, f,-O, swing phase)o
l

................... (6)

  Using vector Jf for ei, the relation between torque and
foroe is given by

]k 
J
2i
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J
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J
f

Jn2 = -tsoste"
J],, = -(l"in(eD + IFos(eD)
Jp, = -(l,cos(e2) + lksin(es) cos(eD)

----------------------- (7)

 T.(t) ' Jrf,(t) ･ ･ ･ ･ ･ ･ ･ ･ ･ ･ ･ ･ ･ ･ ･ ･ (8)
      `

control torque is expressed as follows:

dt) - r,(t) + iKt)
  - ii,(t) + iib(t) + ii,(t)
  s K,, e.,(t) + Ki,,e,,(t) + Kf,le(t) + Kr,T,(t) + JfTf,,
  " Kp,ee,(t) + Kp,ee,(t) + JKKf, fe,(t) + Kf, fe,(t) + Tfr)

------t-t----------e--- (11)

  This foroe control rule is based on the proposal of
Raibert and Craig.'3)

33 Neuro-based Pbsition and Force Hybrid Con-
   tro1

  Equation (11) expresses the control input of corrven-
tional position and force hybrid control. H(Jvvever, be-
cause the four feedback gain matrices
Kp,,Kp,,Kf, and Kf, in Eq.(11) are obtained by rule of
thumb and trial and error, good control performance can-
not be realized. In this study, we propose a new position
and force hybrid control that is based on a neural net-
work, which can realize good control performance with-
out a correct mathematical model of the leg.

  Using the hybrid control input Tp + Tfo, the neuro con-
troller can determine the actual control input by feedback
error learning. Eq.(12) expresses the desired control input
of the neuro controller for each motot

zk(t) - ptjolKIV?,2pt,) + Kh,ee,(t) + Kp,ee,(t) + JKKt,fe,(t) + Kt,fe,(t))

....................... (12)

   The input layer xi( i=1･･･ 6) shovvn in fig5 consists
of the position and velocity of reference trajectories of
 the three joints of one leg. The output layer zk(k =1 ･･･ 3
) consists of the input torque T. for three motors of the
one leg as determined from inverse dynamics of the neuro
compensator.

  The relations among units of layers are as follows:

 xi(M ' e,i (M, b,i (to, "' , e, (M, O, (to ･ (13)
                  at

  In Eq.(7), lt is the length of the thigh, and ls is the
length of the shank. Ib compensate position error and
foroe error, a torque T, and T]b should be applied, as
follows:

Tp(t) " Kp
      '

e,,(t) + Kp,e,(t) .......... (9) i

y,(M -f(2 W,(K)x,(to).......... (14)
      V1

zk(K) " T.,(K) s f(2 Vjk(K)yj(K))
           V1
is1 "' 6, j-1 '"12, kt1 "'3

Tfo(t) e Kt,T,(t) + Kf,Te(t) ' ' ' ' ' ' ' ' ' ' ' (10) ....................... (15)

where Kp., Kp,, Kfp are feedback gain mauices. Hybrid where, the sigmoidal function is defined as follovvs:

Joumal of Robotics and Mechatronics Vol.14 No.4, 2002 327



s

Huang, Q. and Nonami, K.

           2
              -1.........(16)   Ku(K)) .
        1 + eKu(K)+ofm)

where, b(K) is the item for improving learning ability.
 The error convergence equation derived by the method
of steepest descent is given by:

E(K) ' }"i (Tnh(K) - T4(K)Y
   ' llpt(-Tp,(to -- JKTf,(to - Tf.(K)))2
   ' Ssti(-Kp,ee,(t) - Kp,be,(t) -' JKKf,fKt) - Kf,f,(t)))2
    -- -- ---- -- -t-- --- t-- ---(17)

 The relations between weights Wij, Vjk and error E are
as follows:

   dV,, 0E
    TS ev.'''''''''''･･････(18)

   `tlV,., OE
    7t ' ow. '''''''''''･････(19)
 Error signal E is difirerentiated by weighting Wij and
Vjk,

    ,SFili,-igFlt-8,Z:････････.......(2o)

    z::Ft-igFltg'Sk,illtlit.･････････････(2i)
 ln this case, zKK), yKK), E(K) can be solved from
Eqs.(14) ,(15), and (ID.
 According to Eqs.(18), (19), (20), and (21), renewing
equations of weights Wih Vjk are as follows:

   AVpt(K) ts -E6,,(K)y,(K) + atiSVpt(K - 1) . . (22)

   AW,(lgO --s6,i(K)x,(K) + aZSwij(K- 1) . . (23)

   bu ' -KS -K.,e,,(') - K,,b.,(t) - JXKt,f,(t) - Kt.i.(t))) (1 - t.,(n5
    .......................(M)

   b,,(K) s KS st, 6.(K) g,(K)) (1 - y,(K)2) . . . (2s)

   Vpt(K) - V,,(K - 1) + A V"(K) . . . . . . . .(26)

   W,(K) s W,(K - 1) +AW,(K)........(27)

328

 lb improve the performance in tracing target value,
bias b(K) is introduced into the signoidal function Ku(K)
of Eq.(16). The Adjustment method for bias is the same
as that for obtaining the weighting wrj(K) and VjKK) by
the method of steepest desoent. First, the relationships
between the input layer and the middle layer, and the
signoidal function are

   Y,(M -f,(2 W,,(K)x,(M).......... (ns)
            2

    fi(Ui(K)) S 1 + e-(,,(".,,(") - 1 ･･..... (29)

 The relationships between the middle layer and the
output layer, and the signoidal function are

    U.,(tosf2(¥V,k(My,(to) ･･････... (30)
            2

    f2(U2(K))"1+,eKu,(jr)+b,(ic)) -1 ''''..･ (31)

where, bias b2(K) can be obtained from Eqs.(30) and (31):

         OE

   Ab2(K) s -E sstJ + ctAb2(K - i)

       --ei:III17-O,",f+aAb,(K-i)
          t

       =-si:II:1-,OL,t+ctAb,(K-i)
          k

     ････････････････....... (32)

  b,(K) a b,(K - 1) + Ab,(K) . . . . . . . . (33)

and bias bi(K) can be obtained from Eqs.(28) and (29):

        OE

  Abi(K) s -ssTt, + aAbi(K - i)

     --eilllll;-O,",nt,iOi:l,+ctAbi(K-1)
         t

     - -silIll -g'S,. igl'iii + ctAb,(K - i)
         t

  ....................... (34)

  b,(K)-b,(K-1)+Ab,(K) ........ (35)

wnere, K is the renewving frequency e, which is called

 Joumal of Robotics and Mechatronics Vol.14 No.4, 2002
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learning rate, a is a constant falling within the range of
O to 1. ct is a small positive constant. Let the initial value
of the output signal of the neuro compensator be zero,
and let all of the weightings Vjk between the middle layer
and the output layer also be zero. The weightings Wiij
between the input layer and the middle layer are initial-
ized randomly. With these initial values of parameters Wiij
and Vjb the parameters can be renewed by self-learning
of Eqs.(23)-(27) and Eqs.(32)-(35).

4. Experiment

4.1. Experimental Conditions
  An experiment was performed on an unstructured
ground surface as shown in Fig8. NMilk gait is shcrwn in
fig.9. This walk gait, which is called pentapod, is a walk-
ing pattern including only one swing leg and five support
legs. walking cycle for a single leg is 36s, average moving
speed is approximately O.oo83m/s, and walking space is
O.30m. If obstacle height is exoessive, in the initial period
of learning the robot will yield a large error between the
desired target value and the actual value of each joint;
therefore, we selected a relatively 1ow obstacle height of
6cm.

  ln relation to learning frequency, in 1 learning cycle of
216s, all the robot legs pass over an obstacle. In 1 learning
cycle sampling frequency is 108oo, and renewal fre-

i

:

g
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Fig. 10. Position reference response of Legl.
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Flg, 11. ()ontro1 input of Legl.

quency of weighting is also 108oo. Computer hardware
used for the experiment includes an Intel Pentium II CPU
(450Hz, 128MB). Although the fastest sampling time for
the program is 20ms, we set sampling time to 25ms, to
provide a buffer for calculation time. The error corrver-
gence status of learning is judged from the error corTver-
gence between system response and target value. In this
study, after 20 learning cycles, the error between system
response and target value is suthciently small and ap-
proximates a constant; therefore, we treat the 2orh learn-
ing cycle as the final convergence learning cycle.

42. '1hacing Pertbrmance for Pbsition 'Ilirget Milue
    on Hybrid Contro1

  In this study, we compare corTventional position control
with neuro-based position control. Some studies, such as
Ref.11), have reported the excellent orbit tracing perform-
anoe of neuro-position control, and we obtained the same
result. Fig.10 sh(rws the target values (dotted lines), re-
sponses of neuro position control (solid lines), and re-
sponses of position control (broken line) of three joints
of Leg 1 during walking over a structured ground surface.
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The results suggest that neuro position control of al1 three
joints attains exoe11ent performance for tracing the target
value. The results for the other five legs are the same as
those for Leg 1 (omitted due to space limitations). Figll
shows the control input corresponding to Fig.10. The re-
sults shcrvv that the control input of neuro position control
is smal1, and the vibration of the control input is con-
strained. Nso, in the case of neuro position control, trac-
ing performance for target value is excellent, enabling
realization of the desired walking space of 30cm. Hovv-
ever, in the case of position control, the desired walking
space cannot be realized, and is no more than 28cm.

43. 'Ihicing Peribrmance for Fome 'Birget Milue on
    Hybrid Contro1
  ln this section, we introduce the experimental results
for the neuro-based position and foroe hybrid control pro-
posed in this study.
  Figures 12-17, show, for legs 1 to 6, force taiget values
(dotted lines), responses of neuro-based position and

force hybrid control (bold solid lines), responses of con-
ventional position and force hybrid control (broken lines),
and responses of solely position control (solid line).
Fig.12(a) shows that the response of neuro-based position
and force hybrid control most closely approximates the
force target value, foll(Jwed by response of conventional
position and force hybrid control, and response of solely
position control. Tracing performance for force target
value of neuro-based position and foroe hybrid control
exceeds 929o, whereas that of corTventional position and
force hybrid control reaches only 509o. Of course, be-
cause tracing performance of conventional hybrid control
depends on feedback gain matrices, performance is im-
proved if proper gain can be obtained, at the expense of
a great amount of time. However, in practice 3 unknovvn
gains exist on the diagonal of each of the four gain ma-
trices Kp,, Kp,, Kt, and Kr, in Eq.(11). It is very didicult to
determine the twelve unknown gains. Therefore, the new
algorithm proposed in this study is required for the mul-
tilegged walking robot. Fig12(b) shows the control input
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corresponding to (a), in comparison with corTventional
hybrid control; in neuro-based hybrid control the vibra-
tion of control input is almost zero, and the control input
itself is quite smal1. In other words, Fig12 shows that
control input is very small and that control performance
is excellent.

  Figure 13 shovvs the experimental results for Leg 2,
which shows the same tendency as does control perform-
ance of Leg 1. Fig13(a) shows that the response of con-
ventional hybrid control doviates from the target value
near 30s, resulting in a large posture change of pitch
angle and roll angle of the robot, as shown in Fig18(a)
and th). Nso, in neuro-based hybrid control, posture
change of the robot is restrained. Figures 14-17 are the
same as Figs.12 and 13.

4.4. lh1king on Unstructured Ground Using Gen-
    eralization Ability, and Projected Vfork
  As soon as the neuro-based position and force hybrid
control is built, the desired output can be obtained for an
arbitrary target value pattern. This is ca11ed "generaliza-
tion ability" of neural network learning. Here, an unstruc-
tured ground surfaoe walking experiment was conducted
against a unknovvn walking orbit with obstacles of height
ranging from 6 cm to 20 cm, by using 20 learning cycle
weighting, Figures 19-21 show the experimental results
for Leg 1. Figs.19 and Fig21(a) sh(rvv that the tracing

performances for position and force target orbit are ex-
cellent, oven in the absence of learning.
  The experimental results show that if the ponion of the
foot bottom of the robot that comes into contact with the

obstacle is less than half the area of the foot bottom, the
leg falls from the obstacle to the ground. At that time,
with force control offz, although robot will not fall, its
foot wil1 receive impact. In this case, landing position
should be changed by controlling moment Mx, My in the
foot. , posture control based on neuro-based position and
force hybrid control should be effective for walking on a
slope and for unstable walking, such as dynamic walking.

5. Conclusions

  ve proposed a new control for a walking robot walk-
ing on an unstructured ground surfaoe. This is a neuro-
based position and force hybrid control, with which robot
can realize autonomous walking by self-learning. Particu-
larly, by employment of six-axis force sensors, the pro-
posed control provides control not only vertically; i.e., in
the direction of gravity, bet also in the walking direction.
Therefore when the swing leg comes into contact with an
obstacle in the walking direction, the robot avoids the
obstacle by stepping over it. Tlracing performance for tar-
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get value is improved by adjusting the bias of the sigrnoi-
dal function in the neuro-based algorithm. Comparison
with corTventional position and force hybrid control dem-
onstrates that the neuro-based position and force hybrid
control proposed in this study is highly eficient.

  In the future, for walking over unstructured ground, in
addition to performing foroe control in the x, y, z direc-
tions, we plan to perform moment control in the x, y, z
directions, by means of the six-axis force sensors pro-
vided in each leg. Furthermore, for walking on a slope
and unstable walking, such as dynamic walking, we plan
to realize walking control consisting of position control,
posture control, and force control, by employment of the
proposed control.
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