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An optimal feedback control of a flexible microactuator
made of a bimorph piezoelectric high-polymer material
(PVDF: Poly Vinylidene Fluoride), is proposed in this
paper. This optimal feedback control is based on the
assumption that the full state vector of the system is
available for measurement although practically all state
variables are very difficult to measure in the case of a
distributed parameter system. An observer is used to
estimate the entire state vector of the system, but the
presence of sensor noise tends to adversely affect the
convergence of the observer. This naturally leads to a
stochastic observer commonly known as the Kalman fil-
ter. Numerical and experimental results demonstrate the
effectiveness of the proposed controller design method.

Keywords: Motion control of an actuator, Kalman filter,
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I. Introduction

In simple terms, Micro-robots are automatically control-
led fine motion positioners. Although their features may
be substantially bigger than a micron, the motion resolution
sought is on the micron level or smaller. Many operations
in semiconductor manufacturing such as probing and wire
bonding require high-precision controlled motion and deli-
cate forces. Such operations have resisted automation be-
cause of the inherent friction which limits the repeatability
and resolution of robots and other automated tools. Also,
in biomedical research, biosubstance processing, and micro-
gravity material processing, it is of interest to select and
manipulate objects which are microscopic in size, ranging
from a few millimeters to several microns in diameter. The
manipulation of these microscopic objects calls for the de-
velopment of special end-effectors which differ greatly from
those in conventional actuators.

In this paper, we make use of the piezoelectric effect in
polymers to develop microactuators. Although more than
one hundred years ago, the Curie brothers discovered that
quartz crystals produce an electrical charge when de-
formed," they also found that the same crystals change in
dimension when subjected to an electric field. One of the
practical applications of this technology was made by
Langevin.? He built a quartz transmitter and receiver for
underwater sound that became the first sonar. In the follow-
ing decades, piezoeiectric activity was found in a number of
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natural and synthetic single-crystal materials and the effect
was widely utilized. By the 1960s, attention was first given
to piezoelectric effects in organic materials. In 1969, Kawai
discovered the strong piezoelectric effect in PVDF or PVF,
(poly vinylidene fluoride).” Compared to other piezoelec-
tric materials, PVDF has certain unique properties such as
high levels of piezo activity, an extremely wide frequency
range, a broad dynamic response, and low acoustic imped-
ance.*” This makes it attractive for many sensor and
transducer applications. In simple terms, a bimorph is com-
posed of two pieces of metallized PVDF layers glued to-
gether to form a laminate. When a voltage is applied across
the elements, one element elongates and, the other shorten
producing a deflection. PVDF bimorphs provide answers
to many of the problems associated with implementing light-
weight compact, and simple electromotional devices. To
model the piezopolymer microactuator under applied elec-
tric fields, we applied the classical laminate beam theory.
We assumed that the laminate is perfectly bonded, and that
Kirchhoff’s conditions are satisfied.

An optimal feedback control of a flexible microactuator
made of a bimorph piezoelectric high-polymer material is
proposed in this paper. This optimal feedback control is
based on the assumption that the full state vector of the
system is available for measurement, although practically all
state variables are very difficult to measure in the case of a
distributed parameter system. An observer is used to esti-
mate the entire state vector of the system. For fast conver-
gence, the observer poles should be deep in the left half of
the complex plane, which implies a large gain matrix. How-
ever, a large gain matrix makes the observer sensitive to
sensor noise which is superimposed to the original system
output vector. Noise is stochastic in nature, and its charac-
teristics are generally described in terms of statistical quan-
tities. The presence of sensor noise tends to adversely affect
the convergence of an observer. This naturally leads to a
stochastic observer known as the Kalman filter that not only
can handle noise better but also is characterized by observer
gains that are optimal in some sense.

The step response of the system indicates that the output
quickly tracks reference input without overshooting, Nu-
merical and experimental results illustrate the effectiveness
of the proposed controller design method of a flexible mi-
croactuator.

2. Modeling of the Flexible Microactuator

Figure I shows the piezopolymer bimorph fiexible mi-
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croactuator model. The piezopolymer bimorph microactu-
ator consists of two PVDF films cemented with a metal
shim in proper polarity. When an electric voltage is applied
to the terminals of the actuator, one film expands while the
other contracts. As a result, the actuator bends as shown in
Fig.2. Expanding Kirchhoff’s hypothesis, which results in
a plane stress state for a thin beam, to piezoelectric lamina
will yield the following constitutive equations of each lam-
na.

/ §

E| = F:'l'dlw ................. (D
T>
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2= g, (2)
T

g_‘: E::d-d_\l'_‘ ................. (3)

where the g;, T}, E;, d;, v; represent the strain, stress, Young’s
modulus, piezoelectric strain/charge constants, and electric
field, respectively. The subscript i implies the ith lamina of
the laminate. The bending moment about the y-axis is

Yoty te
M=b] Tydy

Yo—cr—cy

where b is the width of the actuator, and y is the distance in
the y-axis direction from the neutral surface of the actuator.
The relationships between the strains and bending displace-
ment are given by

(a) Geometry and co-ordinates.

}‘B+§J+c:z
Yo --

Yo+c1+cz -k

(b) Detailed cross section A-A.

Fig. 1. Microactuator model.
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Substituting Eq.(5) into Egs.(1)-(3) yields:
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Eq.(4) is integrated through the thickness of the laminate,
and the following equations are obtained:
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Moment
g\\ M¢ = NV(t)
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Fig. 2. Actuator motion.
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Now considering the end point force F, moment M, and
structural damping, the equation of motion of the actuator
is given by

5 9. w(x, 1)
EI (1 +y=)————=-=NV (1)}
2 ET( Yar) P (1)
17)
Pw (x, 1)
— 0
+ pA Py

where p is the equivalent density of the laminate and vy is
the structural damping coefficient and

E\ly+ Exly + Esly = Bl o o o w5 e (18)

d\E\z Esz

LI (19)
Ci C3

b(pici+2pc2+p3ca)=pA ... .. ... (20)

The boundary conditions are
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The solution of Eq.(17) is assumed to be of the form

Y= X@f 0= 2 X @i . ..... (25)

i=1

where X;(x) is the ith mode function satisfying the boundary
conditions given by Eqgs. (21)-(24), and fi(1) is the corre-
sponding time function.

For simplicity’s sake, we let F and M be equal to zero.
Substituting Eq.(25) into Eq.(17) and then applying the
Galerkin method and adopting orthogonality of the normal
function, yields a set of uncoupled model equations:

N dX; ()

’ 2w (I 2. _ N
fi +y07 X; () () +ofi= oA dx

Vin

The ith order mode state vector is
x= i) f; ()"

This model is an infinite degree of freedom system. It is
generally difficult to design a control system for such a
model, and it is impossible to make such a complete mathe-
matical model of it.

Figure 3 illustrates the power spectrum of the response
of the actuator after subjecting its input to a random signal.
From this figure it can be seen that the Ist and 2nd mode
are well pronounced. Consequently, the Eq.(26) is rewritten
in the form of a state equation by truncating the model to
the 2nd mode.'” The state equation is

m o
2

E

g-mo :
3

Y

Frequency [Hz]

Fig. 3. Power spectrum of the object system under random
input. (Experimental results)
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x(=Ax(O+bV (D). . . . ... ... .. (27a)

and the output equation is given by

2 4 (3 e 1 ¢ TS WS (27b)

where y is the bending displacement,

AL 0 L N )
A—[o A;]’ b—[bzl. c= [ ¢

Each of the ith order mode elements is

ci= [Xi() 0]

3. Optimal Estimation Using the Kalman
Filter

Having designed the control law assuming that the entire
state vector is available, implementing it using the entire
estimated states makes the design of an optimal regulator
complete. However, the entire state vector is practically
very difficult to measure in the case of the distributed-pa-
rameter system. An observer can estimate the entire state
vector when provided with measurements of the system pa-
rameters indicated by the output. The presence of sensor
noise tends to affect the convergence adversely which leads
naturally to a stochastic observer.'” In the presence of
noise, the object system (27a) (27b) can be rewritten as a
linear time invariant stochastic system governed by

x(=Ax(O+bV (O +w(@) . ........ (28a)
y)=ex(H+o ()

where the system noise w(r) and the output noise o(r) are
random sequences with zero mean and have covariances
defined by Eq. (29).

Elwn)=Elo()=0
w (1) v T |G o0 B
E{[c(f)] [w' (1) © (‘I.')]}— [0 Q]ﬁ(l T)

where E[*] indicates expectation, G is a positive semi-defi-
nite matrix, Q is a positive definite matrix, and 8(x) is Di-
rac’s delta function.

The Kalman filter is given by

2= AXO+BV (O +HY () -cx (@) . . (30)
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= A-H)X(O)+bV () +Hy () . . . .. (31)

= i A . A
where H is a feedback gain which gives vector x (r) that
estimates the state vector x(f) using the system input and
output data. The estimation error € (f) is

OEE 1055 10 I (32)

Subtracting Eq. (31) from Eq. (28a), we obtain

E()= A-Hoe®)+w(@)-Ho (). ... (33)

The design of the Kalman filter is optimal because it
selects the value of H which minimizes the cost function

Jo=ElETWe®]......0c0000... (34)

The optimal value of H is defined by

where P, is the variance matrix of € (1) satisfying the Riccati
equation.

APy+ PgAT—Poc"G ' cPy+ Q=0 . ... (36)

4. Tracking Controller Design for the Actua-
tor

We now present an analytical approach to give a control
system the ability to track (with zero error) a nondecaying
input and to reject (with zero error) a nondecaying distur-
bance such as a step function. The method is based on the
inclusion of the equations satisfied by these external signals
as part of the problem formulation and solving the problem
of control in an error space so that we are assured that the
error approaches zero even if the output is following a step
command.

Suppose we have the state Eqs.(27a) and (27b) and we
wish to accomplish an optimal regulator design; and at the
same time, we design a controller so that the closed-loop
system can track an input with zero steady-state error and
reject disturbances without error. Consider the case of
tracking a constant input. In terms of u and x we have the
control law.

u= -K ) x+K>z

= K, Kl [’: g] [j]mz "

We only need to integrate (37) in order to reveal the
control law and the action of integral control.
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A block diagram of the system is provided in Fig.4; it
clearly indicates the presence of a pure integrator in the
controller. This is a case of the internal-model principle,
which requires a model of exogenous signal in the controller
for robust tracking and disturbance rejection.'?

One way to formulate the tracking problem is by differ-
entiating the error eqguation and introducing the error as a
state. To obtain the overall state vector the plant state vector
is replaced by the state in error space defined by

_[r0-x()
o [u (r)—u(w)]

Let us consider the steady state error e(f) defined by
eM=yw@ =D s v v m wssma s (40)

where w,(¢) is the reference input, y(¢) is the senisor output.
The error system for & x (¢) is then given by

Sx(n) = A*dx (1) + b v(1) @n
e =c*'dxy [T
where
wr) = —F,Bx(f), Fe= (K, K E
#_ 1A b #_ 10
fii} ]
........ (42)

#_ _|A b
c¢'=[e 0], E_[c 0]

The commonly chosen performance functional is

J=| (@We+vRvdr. .. ........ 43)
0

where v is the optimal control input, W is a positive semi-

u
Uy 4 z & onect 1Y’ 2 ¥
> ject Kalman
- K, it Plant Filter ! .
Kl

Fig. 4. Block diagram of LQG controller,
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definite error weighing matrix and R is a positive definite
control weighing matrix.

The optimal control input v(r) which minimizes the per-
formance function / is given by

W)= -RO¥PSx(1) .. .......... (44)

where P is the positive semi-definite solution of the Ricaati
equation.

AP+ PA*+ Q-PBR'b¥P=0 . . .. .. (45)

Consequently, the feedback gains [K, K| are determined
from Eq. (42) and Eq. (44).

e M B . s i ves e (46)

Finally, the total system is expressed as

A A
x| A B 1[x],[0],
n —KIA - ch —K1b u Kz 4

5. Results and Discussion

Recently, stimulated by micro-processor technology,
there is an increasing interest in issues related to digital
control implementation. For the implementation of the de-
signed LQG controller, we routinely use the TMS320C31-
based digital signal processing system DSP-CIT, along with
a set of design and implementation software tools, including
an automatic code generator. The DSP-CIT combines the
TMS320C31°s tremendous computing performance of up to
40[MFlops] with a versatile set of on-board 1/0: four ana-
log input channels (16bit, 10[usec] and 12bit 3[usec]), four
analog output channels (12bit), two incremental encoder
channels and a complete subsystem for digital 1/O.

We performed the design in the analogue domain using
MATLAB,'® and discretized the controller, after checking for
the discretization, computational delays, and A/D- and D/A-
quantization, the signal processor code was generated and
downloaded. The sampling period was about 1[msec]. A
reference signal is a square wave of 5.00[um] height and a
4 second period. Figure 5 presents the experimental setup
of the discrete optimal servo system.

Figure 6(a) shows the experimental step response of the
system without a controller. This result has a large over-
shoot and residual vibrations. It is apparent from the figure
that the first natural frequency is predominant over other
modal frequencies. The output signal contains white noise
and the covariance is 6.20 x 10.7% Figure 6(c) illustrates the
numerical step response of the system without a controller.
Figure 7(a) shows the experimental step response of the
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Fig. 5. Discrete optimal servo system.
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Fig. 6. Results of the system without a controller.
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system using the LQG controller with the weighing matrix
W=1.0and R =5.0 x 10.™* Figure 7(b) presents the power
spectrum of the system. Figure 7(c) illustrates the numeri-
cal step response of the system using the LQG controller. It
is found that the result has a flat spectrum over the visible
range. It is apparent that the experimental and numerical
results are in good agreement with each other. The response
in Fig.7(a) and (c) are identical to those of the input signals
and in fact, almost indistinguishable from them.
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0 2.5 5.0
Time [sec]

(a) Step response - Experimental results.

@ ° ;
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g 1 i
-100 i
g :
o 3 i
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(b) Power spectrum - Experimental results.
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A — |
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(c) Step response - Theoretical results.

Fig. 7. Results of the system with an LQG controller.
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6. Conclusion

We proposed an LQG controller design method for a
flexible microactuator with sensor noise. Optimal observer
gains can be computed by adopting a stochastic approach to
the problem, leading to the Kalman filter. Experimental and
numerical results verified that the proposed design method
is effective for flexible microactuator control applications.
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