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An optimal fet)dback contro1 of a flexible microactuator
rnade of a bimorph piezoelectric high-polymer material
(PVDF: Poly Vinylidene Fluoride), is proposed in this
paper. This optimal feedback contro1 is based on the
assumption that the fu11 state vector of the system is
available for measurement although practically all state
variables are very diffricult to measure in the case of a
distributed parameter system. An observer is used to
estimate the entire state vector of the system, but the
presence of sensor noise tends to adversely affect the
convergence of the observer. This naturally leads to a
stechastic observer commonly known as the Kalman fi1-
ter. Numerical and experimental results demonstrate the
effectiveness of the proposed contro11er design method.
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I. Introduction

  In simple terms, Micro-robots are automatically control-
1ed fine motion positioners. Although their features may
be substantially bigger than a micron, the motion resolution
sought is on the micron level or smaller. Many operations
in semiconductor manufacturing such as probing and wire
bonding require high-precision controlled motion and deli-
cate forces. Such operations have resisted automation be-
cause of the inherent friction which limits the repeatability
and resolution of robots and other automated tools. Also,

in biomedical research, biosubstance processing, and micro-
gravity material processing, it is of interest to select and
manipulate objects which are microscopic in size, ranging
from a few millimeters to several microns in diameter. The

manipulation of these microscopic objects calls for the de-
velopment of specia! end-effectors which differ greatly from

those in conventional actuators.

  In this paper, we make use of the piezoelectric effect in
polymers to develop microactuators. Although more than
one hundred years ago, the Curie brothers discovered that
quartz crystals produce an elecnical charge when de-
formed,t) they also found that the same crystals change in
dimension when subjected to an e!ectric fietd. One of the
practical applications of this technology was made by
Langevin.2) He built a quartz transmitter and receiver for
underwater sound that became the first sonar. In the follow-

ing decades, piezoe1ecnic activity was found in a number of
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croactuator model. The piezopo1ymer bimorph microactu-
ator consists of two PVDF films cemented with a metal

shim in proper polarity. wnen an electric voltage is applied
to the terminals of the actuator, one film expands while the
other contracts. As a result, the actuator bends as shown in

Fig2. Expanding Kirchhoff's hypothesis, which results in
a plane stress state for a thin beam, to piezoelectric lamina
will yield the following constitutive equations of each lam-

ina.

 £1,2,3= Y02w (x, t)
 Dx2

.......

Substituting Eq.(5) into 

Tl = yEl 02w (x, t)
o"

-dlElvl.

e,= Z' +divi .................(1)   El

e2= Z' ..................... (2)   E2

T2= yEpa'(X    DJt2

 £3= Zt +d3v3 ................. (3)   E3

T3=   02w (x, t)yE3
    DX2

- d3E3v3 . 

1

where the Ei, Ti, Ei, di, vi represent the strain, stress, Young's
modulus, piezoelecnic strainlcharge constants, and electric
field, respectively. The subscript i implies the ith lamina of

the larninate. The bending moment about the y-axis is

M (x) = bJYe'C' "C2 Tyaly       ro-c2-c3
.....(4)

where b is the width of the actuator, and y is the distance in
the y-axis direction from the neutral surface of the actuator.
The relationships between the strains and bending displace-

ment are given by

l

         -----t.---::i,"':'2t･ktg.g,;".:'4-t£,g･ii2i'i,l..k..:k,/.IN,)xs---"-"

         .,PVDFr----------:lierl:--..re
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         --.-'-L.ft'--s-"-:.c.:.L--s--s-.IUxtvCx,t)-.t)v.s"..
         y.〈PVDF.-.-.-.-...-.-----ls-s---"R..-sh-s.--

         M

  Eq.(4) 
and the following equations

where

M(x)

Yo=

. bJVO+Cl+C2 E   Yo-C2-C3

02w (x, t)

-bJ
ro+cl+c2

ro-c2-c3

o"
fdy

aLErydy

= - (EIII + Eof2 + E3t3)

(

 
+

dlElzl

 Cl

jablygn
  ar

" d3E3Z3 )v(t)
   c3 J

E3 (c32 + 2c3c2) - E,(c i2 + 2c!c2)

. (9)

.. (10)

(a) Gcoinetry and co-ordinates.

YdrVti,;.lgre2i-"'Mll.1!!!I!!!!If"-"-w..-di:                    cs

YdiCl+C2 -

(b) Detailed cross secbon A-A.

(Elcl + 2E2c2 + E3c3)
... (11)

X･,i,.",.

Fig. 1. Microactuator model. Fig. 2. Actuator motion.
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z1 . birO+Ct +c2 ycly      ro+ c2

....... (12)

w (O, t) =o "".""

= be1 (Yo+S/ +c2)

Ow (x, t)
Dx

= o..........

Ei a +y8?
Ei2w (l, t) - NV (t) -M=o...

(21)

(22)

z3.bfrO+C2 ydy      ro-e2-c3

........ (13)

El (1 +YIStl)

e"

03w (l, t) +F=O........

(23)

= bc3 (Yo+!}t + c2) o?
(24)

      ro +ce + c2

Ii = bf             fdy
      ro + c2

= be1 (Yi + (cl + 2c2)Yo + S}? + cic2 + ci l........................ (14)

I2 = bfrO'C2 fdy      ro-c2

= 2bc2 (yi+S}?L)      ro + c2

I3= bf             fdy
     VO-C2-C3

........... (15)

                    2

= be3 IYo2 - (c3 + 2c2)Yo + fi;t + c3c2 + c22 l
........................ (16)

  Now considering the end point foroe F, moment M, and
structura1 damping, the equation of motion of the actuator

is given by

aO,,22 IE' (' 'y8,)
+ pA

02w (x, t)

E)2w (x, t)
ar

=o

-- NV (t)l

. . . . (17)

o"

The solution of Eq

 y (x, t) = x (x〉le(t)

s =
l=i

Xi (x  M･(t) ......(25)

where X,〈x) is 
conditions give
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Galerkin method
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 f, (t) + y (Di2 x, (t]th･ (t) + (D,-2f, =
N dX, (D

pA du
V (t)

..........

The ith order mode state vector is

        .
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where p is the equivalent density of the laminate and y is
the structural damping coefficient and

Eili+E2I2+E3I3= EI ........... (18)

dlElzl d3E"3
            = N............. (19)

 Cl C3

b (Picl + 2p2c2 + p3c3) = pA . . . . . . . . (20)

The boundary conditions are
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      i(t)=Ax(t)+bV(t).............(27a) = (A - Hc) S(t) +(31)

and the output equation is given by

y (t) = cx (t) . . . . . . . . . . . . . . . . .(27b)

where y is the bending displaoemenq

A= [Ci A2 ], b= [Sl ], c= [c, c,]
Each of the ith order mode elements is

=b
i

 
']
 
2`ol
.

[

=

4

   o

N dX, (D

where H is a feedb
estimates the state v

output data. The estimation e

S(t) that
input and

           A

£(t)=x(t)-x

Subtracting Eq. (31

e(t) = (A-Hc) £(t) +w 

(32)

. . . . (33)

  The des
selects the 

ci= [Xi(D O]

pA du
Jo=E[E'(t)e((34)

3. 0ptimal
   Filter

Estimation Using the Kalman

The optimal v alue of H is defined by

H= Po c' e-i(35)

  Having designed the contro1 law assuming that the entire
state vector is available, implementing it using the entire
estimated states makes the design of an optimal regulator
comp!ete. However, the entire state vector is practically
very difficult to measure in the case of the distributed-pa-
rameter system. An observer can estimate the entire state
vector when provided with measurements of the system pa-
mmeters indicated by the output. The presence of sensor
noise tends to affect the convergence adversely which leads
natura11y to a stochastic observer.i4) In the presence of
noise, the object system (27a) (27b) can be rewritten as a

linear time invariant stochastic system governed by

i(t) = Ax (t) + bV (t) +w (t) .........(28a)

y(t)= cx(t)+o(t) .............(28b)

where the system noise
random sequences with

defined by Eq. (29).

w(t) and the output noise 6(t) are
zero mean and have covariances

E [w (t)] = E [6 (t)] = O

 E([ll[,'l][,s･ro) ero)]]-[g a]6(t-T) ........................ (29)

where E[*] indicates expectation, G is a positive semi-defi-
nite matrix, e is a positive definite mauix, and 6(x) is Di-

rac's delta function.

  The Kalman fi1ter is given by

470

.
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U= K2ft      o
eaPt - Ki x

= -Kl x+ K2z

.

Z= tX+k

............. (38)

................. (39)

  A block diagram of the system is provided in Fig.4; it
clearly indicates the presence of a pure integrator in the
controller. This is a case of the interna!-model principle,
which requires a model of exogenous signal in the controller

for robust tracking and disturbance rejection.iS)
  One way to formulate the tracking problem is by differ-
entiating the error equation and introducing the error as a
state. To obtain the overa]1 state vector the plant state vector

is replaoed by the state in error space defined by

6x(t)

=[:((tt))--Xu((O.O.))]
Let us consider the steady state error ctt) defined by

e (t)  =y(t)-ut(t).･････････････(40)

where uKt) is the reference input, y(t) is the sensor output.
  The error system for 6 x (t) is then given by

)
i ,Si((t)t 2,",a,x,,ft)+b"v(t)]......... (4i)

definite error w
contro1 weighing matrix.

  The optimal co
formanoe function J is given by

rtt)= -Ribrcpdr((")

where P is the po
equatlon.

A rcp + pA#+ e - pbR(45)

  Consequently, 
ftom Eq. (42) and Eq. (44).

[Kl K2]= R-lbrcpE

Finally, the total system

x

u

is expresse(l as
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=

(46)

 y= [c O] [£]  ..........

5. Results and Discussion
where

v(t) = -FiiSx(t),

A"-[C

Fe= [Kl K2]E

 8]･ ti-
ce= [c O] ,E=

 [?]･

[es]

........ (42)

The commonly chosen performance functional is

;
f

=J

(e'we+vTRv)dt........... (43)

where v is the optimal contro1 input, W is a positive semi-

lt 4.
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Block diagram of LQG controller.
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6. Conclusion

  We proposed an LQG controller design method for a
flexible microactuator with sensor noise. Optimal observer
gains can be computed by adopting a stochastic approach to
the problem, leading to the Kalman filter. Experimental and
numerical results verified that the proposed design method
is effective for flexible microactuator control applications.
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