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This paper introduces an improved algorithm for
texture-less object detection and pose estimation in
industrial scenes. In the template training stage, a
multi-scale template training method is proposed to
improve the sensitivity of LineMOD to template depth.
When this method performs template matching, the
test image is first divided into several regions, and
then training templates with similar depth are se-
lected according to the depth of each test image re-
gion. In this way, without traversing all the templates,
the depth of the template used by the algorithm dur-
ing template matching is kept close to the depth of
the target object, which improves the speed of the al-
gorithm while ensuring that the accuracy of recogni-
tion will not decrease. In addition, this paper also
proposes a method called coarse positioning of ob-
jects. The method avoids a lot of useless matching
operations, and further improves the speed of the al-
gorithm. The experimental results show that the im-
proved LineMOD algorithm in this paper can effec-
tively solve the algorithm’s template depth sensitivity
problem.

Keywords: computer vision, object detection and pose
estimation, LineMOD algorithm

1. Introduction

Object detection and pose estimation are important
components in computer vision systems and research
problems in the field of computer vision. Research on
object detection and pose estimation algorithms is also
crucial to the field of robotics and augmented reality. In
order to improve the degree of automation and production
efficiency, many factories use a large number of robots in-
stead of manual workers [1]. For example, in the mutual
fields of augmented reality and object sorting, robots are
already the most important part. Augmented reality is a
hot research field in recent years. Its purpose is to fuse
and interact the virtual world with the real world. The
realization of augmented reality technology is based on

object detection and pose estimation, and on this basis, a
virtual world is established and enabled to interact with
the real world. Although robots have high demands in
the industry, there are still some technical problems in the
robot system that need to be effectively solved, such as the
robot grabbing scattered and disordered objects. A good
vision system is the prerequisite for the robot to complete
any operation, and the robot’s vision system mainly in-
cludes the recognition and pose estimation technology of
the target object.

Due to the wide application of object detection and
pose estimation, in recent years, many scholars have con-
ducted in-depth research on it and proposed many excel-
lent algorithms. For example, Guo et al. [2] proposed
the method of local features, Rusu et al. [3] proposed the
VFH feature descriptor method, Brachmann et al. [4] pro-
posed a method based on dense feature learning. How-
ever, most of these algorithms are for the detection and
pose estimation of textured objects. There are still many
problems to be solved for the detection and pose esti-
mation of texture-less objects. Because of the rich pat-
tern information on the surface of textured objects, ef-
fective features can be extracted from these rich patterns,
so the detection and pose estimation of textured objects
is relatively simple. Texture-less objects cannot extract
effective features from their surfaces because their sur-
faces are smooth and non-textured. Therefore, this pa-
per mainly studies the detection and pose estimation of
texture-less objects. LineMOD method was proposed by
Hinterstoisser et al. [5] in 2011. It mainly solves the prob-
lem of real-time detection and positioning of 3D objects in
complex background. It uses the information of RGB-D,
and can deal with the situation without texture, and does
not need lengthy training time. Based on the LineMOD
algorithm, an improved strategy is proposed for the depth
sensitivity of its template, which enables it to perform ob-
ject detection and pose estimation quickly and accurately
in scenes with a wide range of object depth variation.

This research has two main contributions. First, the
template invocation method of LineMOD algorithm was
improved to solve the template depth sensitivity problem,
and the template invocation strategy based on the Scene-
Patch (Scene area) was proposed. The strategy of tem-
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Fig. 1. Overview of the proposed recognition algorithm.

plate invocation based on Scene-Patch is firstly to train
the multi-scale template of the object. Then, according
to the depth value of the scene image, the scene image is
divided into several areas. The depth of images in these
areas is kept within a certain range, and the multi-scale
template is flexibly called in each scene image area when
template matching is carried out. In the case that the depth
of the target object in the scene can always be similar to
the depth of the template, the target object can still be
quickly and accurately identified.

And then in order to reduce the number of template
matching to improve the speed of the algorithm, we pro-
posed a method called coarse positioning of objects. It
can filter out the scene image area which obviously does
not contain the target object, and can locate the possi-
ble location of the target object in the scene image, sub-
sequent template matching operations will only be per-
formed at these locations to achieve accurate identifica-
tion of the target object. Experimental results show that
the improved strategy in this paper enables the LineMOD
algorithm to perform object detection and pose estima-
tion quickly and accurately in scenes with a wide range
of object depth variation. The overview of the proposed
algorithm is shown in Fig. 1.

2. Related Work

At present, object detection and pose estimation tech-
niques are mainly divided into four categories: methods
based on local features, methods based on deep learning,
methods based on point pair and methods based on tem-
plate matching. This section will summarize and explain
the advantages and disadvantages of these four categories
of methods.

2.1. Methods Based on Local Features
Local features have been widely applied in object de-

tection. SIFT [5], SURF [6], and ORB [7, 8] are the com-
mon local features. These features are carefully designed,
and have some unique advantages, such as rotation, light-
ing and scale invariance, so these features have good ro-
bustness when dealing with scenes with occlusion and

lighting changes. However, these features are only suit-
able for the recognition of textured objects, and the recog-
nition effect for texture-less objects is not good. In many
fields, such as industrial robot operation and augmented
reality technology,operation objects are often texture-less
artifacts, so these methods based on local features are not
applicable to actual industrial scenes.

2.2. Methods Based on Deep Learning
Since deep learning technology can break through

the limitations of some traditional methods, it has been
widely applied in the field of object detection and recog-
nition. In 2D object detection and recognition, more
representative methods include CNN [9], RCNN, faster-
RCNN [10], YOLO [11, 12], SSD [13]. On the basis of
these 2D object detection and recognition methods, ob-
ject detection and 6D pose estimation techniques have
been gradually developed, which are mainly divided into
two categories: SSD-6D and YOLO-6D. SSD-6D [14] is
composed of two basic network structures, namely SSD
network and automatic encoding network. Among them,
SSD network is mainly responsible for object recognition
and pose estimation with a single RGB image as input.
The automatic coding network takes the CAD model of
the object as the input to extract the high dimensional fea-
tures of the object. The YOLO-6D [15] network takes
RGB images as input and outputs the 3D bounding box
and classification prediction of the target object in the test
image. After obtaining the 3D bounding box of the ob-
ject, the posture of the target object can be calculated by
the PNP algorithm [16]. The advantage of the method
based on deep learning is that the speed of object detection
and pose estimation is fast and the accuracy is high. The
disadvantage is higher requirements for hardware equip-
ment.

2.3. Methods Based on Point Pair
Drost et al. [17] proposed a method based on matching

directional point pairs between the point cloud of the test
scene and the object model, which has become one of the
classical 6D pose estimation methods. Prior to this, the
accuracy and speed of the global-based method did not
meet the satisfactory requirements, and was mainly lim-
ited to the classification and recognition of certain specific
objects; in contrast, the local matching method based on
local invariant features was proved very effective, but the
production of local invariant features depends largely on
the quality of the acquired data and model data. Com-
pared with these methods, the method [17] adopts the idea
of global modeling and local matching. During training,
the points of the model are sampled, and similar features
are grouped together and stored in a hash table; during the
test, random reference points are found in the scene, sim-
ilar model point pairs are searched in the hash table, and
a fast voting method similar to Hough transform is used
to vote for each matching point pair, the peak value in the
accumulator is extracted as the candidate of pose, and the
best pose is finally selected through ICP optimization.
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Table 1. Pose estimation accuracy of LineMOD algorithm
in different situations.

The depth of
The accuracy of pose estimation (%) template (cm)

70 90

The depth range of target object [cm] 68–72 98.2 63.2
88–92 66.5 98.9

2.4. Method Based on Template Matching
LineMOD algorithm [18] is the most representative

template matching algorithm and the algorithm with the
best effect. Different from traditional template matching
methods, in the template trained by the LineMOD algo-
rithm, its features are discretized, so not all feature points
participate in the template matching operation, which will
greatly reduce the computational complexity of the algo-
rithm. In the detection stage, the template and the test
image are tested for similarity using a sliding window.
If the similarity is higher than the set threshold, it indi-
cates that there is a target object in the test image, and
the pose of the corresponding template can be regarded as
the initial pose of the target object. After the initial pos-
ture of the target object is obtained, the precise posture of
the target object can be further solved by the ICP algo-
rithm [19]. Fanelli et al. [20, 21] proposed the method of
random forests. This method improves the matching effi-
ciency by dividing the template and training the random
forest. However, the size and number of template image
blocks of this method are difficult to grasp, and its imple-
mentation is more complex. Zhang et al. [22] proposed
a cascading template matching method, and in order to
solve the problem of sensitivity to template scale, scale-
independent technology was proposed. However, there is
a zooming operation in this method. If the zooming is
serious, the image information may be lost seriously.

In summary, considering the requirements of industrial
reliability, real-time performance, and rapid training of
newly added objects, the LineMOD algorithm is still the
most suitable method among these methods, but the al-
gorithm is sensitive to the depth of the template. As can
be seen from Table 1, when the depth of the template is
similar to the depth of the target object in the test image,
the LineMOD algorithm has a high pose estimation accu-
racy rate; otherwise, the pose estimation accuracy of this
algorithm decreases seriously. This paper proposes an im-
proved solution to the depth-sensitive problem of the tem-
plate of LineMOD algorithm.

3. Proposed Method

In order to improve the recognition accuracy, the
LineMOD algorithm needs to train the template at vari-
ous depths of the target object. Since the LineMOD al-
gorithm needs to traverse all the templates of the target
object during template matching, the speed of the algo-
rithm will decrease as the depth of the object template in-

creases. If the depth of the target object in the scene varies
in a large range, the number of templates will be greatly
increased by training the templates at various depths of
the target object, and the speed of the LineMOD algo-
rithm will inevitably decrease. Aiming at this problem
of LineMOD algorithm, this paper improves the template
invocation mode of this algorithm when template match-
ing, and proposes a template invocation strategy based on
Scene-Patch. The strategy mainly includes three key tech-
nologies: multi-scale template training method, scene im-
age region division based on depth map, and coarse posi-
tioning of objects, which enables the algorithm to select
the template specifically when the template depth type in-
creases. Therefore, the algorithm can still quickly identify
the target object in the scene when the depth of the target
object changes in a wide range.

3.1. Multi-Scale Template Training
The templates trained at multiple depths are called

multi-scale templates. Since the template depth is a dis-
crete quantity, it is impossible to train the templates at all
depths when training multi-scale templates. Therefore, it
is necessary to determine the step size of the depth change
and the depth range to be covered when training the tem-
plate. The step size of the depth change can be set accord-
ing to the size of the target object. In practical application,
the distance between the target object and the camera is a
variable within a certain range. In the actual scene, the
maximum and minimum depth of the target object in the
scene image can be determined, thus the depth range that
the template needs to cover can be determined. The train-
ing method of the multi-scale template is as follows.

Determine the maximum and minimum depth that the
target object can reach in the actual scene, denoted as
Dmax and Dmin, then the depth range covered by the tem-
plate is [Dmin,Dmax]. The radius of the circumscribing
sphere of the target object is denoted as r, and several
depth layers are set in steps size of r, and the depth of
each depth layer is denoted as Di, where i ∈ (1,2, . . . ,m),
Dmin ≤ Di ≤ Dmax, m = (Dmax−Dmin)/r. Train the tem-
plate sequences at the corresponding depths of all the
depth layers, then a total of m template sequences can be
obtained. The depth of the template in each template se-
quence is the same, and the depth is equal to the depth Di
of the corresponding depth layer. The process of multi-
scale template training is shown in Fig. 2.

3.2. Scene Image Region Division Based on Depth
Map

The purpose of the scene image area division based on
the depth map is to divide the scene image into several
areas according to the depth value of each pixel of the
scene image, and the depth value in each area is within an
approximate range. In the subsequent template matching
operation in each scene image area, the template trained
at this depth can be targeted according to the depth of the
corresponding depth layer of each scene image area, and
only the template trained at this depth can be matched.
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Fig. 2. Multi-scale template training flowchart.

In this way, it does not need to traverse all templates of
the target object, but also ensures the normal use of lin-
ear storage acceleration technology. The strategy of scene
image region division based on depth map is described as
follows.

Set the initial points at the same interval on the scene
depth map, denoted as ci, i ∈ (1,2, . . . ,n), the size of n de-
pends on the size of the scene image, and the radius of the
circumscribing sphere of the target object is denoted as r.
Taking each initial point as the center, spread the range
of the surrounding area in a breadth-first search strategy.
When the maximum depth value βmax and the minimum
depth value βmin in the area satisfy Eq. (1), the diffusion is
stopped. At this time, the area to which each initial point
diffuses during the diffusion process is a divided scene
image area, denoted as Ci, i ∈ (1,2, . . . ,n).

βmax−βmin ≥ 2r. . . . . . . . . . . . . (1)

In this way, the scene image is divided into several re-
gions with approximately equal depths. The color image
is divided in the same way according to the division re-
sult of the depth image. After the scene image is divided
into several areas Ci with substantially the same depth,
there is a lot of overlap between the image areas. If tem-
plate matching is performed directly on these image areas,
many repeated matching operations will be generated,
which greatly reduces the speed of the algorithm. There-
fore, in order to integrate each region block of the scene
image, it is also necessary to merge the region blocks of
the scene image. When merging scene image area blocks,
first calculate the average depth of each scene area block
as di

avg, attach each scene image area block to a depth
layer that minimizes the difference between di

avg and Di.
Then the scene image blocks attached to the same depth
layer are merged to form a new scene image block. In
each new scene image area block, there may be multiple
small area blocks that are not connected to each other. If
the scene images are not connected, subsequent template
matching operations cannot be performed. Therefore, it is
necessary to separate the unconnected area blocks in each
new scene image area. After separation, the final scene

image area blocks are recorded as Wi, i ∈ (1,2, . . . ,m).
Each scene image area block corresponds to the depth
layer to which it is attached, and its depth is represented
by the depth of the depth layer. When template match-
ing is carried out on each scene image area block later,
the template under this depth can be directly called. The
scene RGB image is divided in the same way according
to the division result of the depth image.

3.3. Coarse Positioning of Objects
After the scene image is divided into blocks whose

depth difference is within a certain range according to its
depth value, there are many area blocks in which the tar-
get object obviously does not exist. Inspired by [22], this
section proposes a filtering method based on depth edge
detection, which can not only filter out the scene image
block which obviously does not contain the target object,
but also locate the possible position of the target object in
the reserved scene image block.

In a certain area block W of the scene image, the detec-
tion points are set with a fixed step, each detection point
is denoted as wi, i ∈ (1,2, . . . ,n), where n represents the
number of detection points, and its size is determined by
the size of the area block and the sampling step of the de-
tection point, the actual depth of each detection point is
denoted as zi, i ∈ (1,2, . . . ,n). According to the depth D
corresponding to the area block W, the template of the tar-
get object trained at this depth is retrieved. The size li of
the target object imaged at the actual depth of the detec-
tion point wi can be obtained from Eq. (2):

li = f · R
zi

, . . . . . . . . . . . . . . . (2)

where f is the focal length of the camera and R is the di-
ameter of the circumscribing sphere of the target object.
When the detection point wi is on the target object in the
scene, li is just the side length of the largest 2D bound-
ing box of the target object. Similarly, the size L of the
template image with the depth D can be obtained from
Eq. (3):

Ł = f · R
D

. . . . . . . . . . . . . . . (3)

The test image block with the detection point wi as the
center and li as the side length is scaled to the same size
as the template in the proportional relationship of Eq. (4).
The main purpose of this operation is to scale the imaging
of the target object at the depth of each inspection point in
the scene image to the size imaged by the template at the
depth D, in preparation for the coarse positioning of the
object. Although there are image zoom operations here,
the depth values contained in the scene image area blocks
are within a certain range, and the corresponding depths
are not much different from the depth D of the called tem-
plate, even if there is an image zoom operation, the scale
is not too large, and the impact of image scaling can be
ignored.

li
L

=
D
zi

. . . . . . . . . . . . . . . . (4)
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Table 2. The pseudo code for coarse positioning of an object.

Object coarse positioning

Input: the scene image area block W and its corresponding depth D, template T with depth D

Output: there may be a set P{} of target object positions in area W

Parameter: Sampling step size of detection point s, R, η

(w1,w2,. . . ,wn)←(W, s) // Determine the detection points in the area block W

(Nmax, Nmin)←(T, η) // Calculate the maximum and minimum number of deep edges in the template

for i← 1 to n

li ← (wi, R) // Calculate the imaging size of the target object at the detection point

wi ← (li, D, wi) // Zoom the image block at the detection point

Calculate the number of depth edges numi of the image block

if 80% ·Nmin ≤ numi ≤ 150% ·Nmax then

P{}= P{}+ ri // ri is the position of the detection point wi

end for

After scaling the test image block at the detection point
wi to the same size as the template image, in order to
simplify the symbol marking, the test image block cor-
responding to each detection point is still marked with wi,
i ∈ (1,2, . . . ,n). The coarse positioning technique in this
section is based on depth edge detection. In fact, the depth
edge of the image is calculated by the Soble operator. The
depth edge appears at pixels where the calculation result
of the Soble operator is greater than the set threshold. In
this paper, the threshold is set to 30%η , where η is the
side length of the maximum bounding box of the target
object. The maximum and minimum values of the number
of depth edges of the template at depth D are calculated as
Nmax and Nmin, respectively. If the number of depth edges
numi in the image block wi satisfies the relationship (5), it
indicates that there may be a target object at the detection
point wi.

80% ·Nmin ≤ numi ≤ 150% ·Nmax. . . . . . (5)

The detection points that satisfy the relationship (5) are
called target detection points. In this paper, only the area
blocks of the scene image that contain the most target de-
tection points are retained, and the other area blocks are
directly discarded. Since the position of the target de-
tection point in the scene image is known, the possible
position of the target object in the test image is also de-
termined. Subsequently, the template matching operation
will only be performed at the target detection point in the
reserved scene image area block. Avoid a lot of useless
matching, thereby improving the speed of object recogni-
tion. Taking the scene image area block W as an exam-
ple, the pseudo code for coarse positioning of an object is
shown in Table 2.

3.4. Invocation Method of Multi-Scale Template
After the coarse positioning technology of the object,

the target detection point in the scene image can be lo-

cated, and only the test image area block containing the
most target detection points is retained. However, the tar-
get object may exist at the detection point of the target,
so it is necessary to accurately identify the object through
template matching later. When accurate object recogni-
tion is performed, the template matching operation will
be performed only at the target detection points of the re-
maining scene image area blocks to identify the target ob-
ject. When performing template matching at the target
detection point, the template trained at the depth can be
retrieved according to the depth of the depth layer cor-
responding to the scene image area block, and template
matching is only performed with the template trained at
the depth, without traversal all templates of target ob-
jects, which will greatly improve the speed of the algo-
rithm. Therefore, the template invocation strategy based
on scene-patch enables the LineMOD algorithm to be
used in scenes with a wide range of depth changes of tar-
get objects. In the case that the depth of the template is al-
ways similar to the depth of the target object in the scene,
the target object in the scene can be quickly identified,
so as to solve the problem that the LineMOD algorithm is
sensitive to the depth of the template. The flow of the tem-
plate invocation method based on Scene-Patch is shown in
Fig. 3.

4. Experiments

4.1. Introduction to the Data Set

In this paper, we will test the improved strategy on the
LineMOD dataset. This dataset was created by Hinter-
stoisser et al. and has become the most commonly used
dataset for evaluating the performance of object pose esti-
mation algorithms [23]. The LineMOD data set contains
15 kinds of 3D models of non-textured objects. During
the experiment, the template images can be directly ren-

208 Journal of Advanced Computational Intelligence Vol.25 No.2, 2021
and Intelligent Informatics



Detection and Pose Estimation of Texture-Less Objects

Fig. 3. Flowchart of template invocation method based on
Scene-Patch.

Fig. 4. Template images at different depths and their corre-
sponding templates.

dered from the 3D models of these objects, and then the
templates are trained from the template images. In addi-
tion, each object in the data set has more than a thousand
test image sequences, and each test image carries informa-
tion such as the pose of the target object in the test image,
the distance between the target object and the camera, and
camera parameters. The distance between the target ob-
ject and the camera in the test image is called the depth
of the target object in the test image, and the depth of the
target object in the test image of this data set varies from
65–115 cm.

4.2. Multi-Scale Template Training
The biggest difference between this paper and the orig-

inal LineMOD algorithm when training the template is
the different step sizes of depth change. This paper uses
the radius of the circumscribed spherel of the target ob-
ject as the depth change step, and the original LineMOD
algorithm takes a fixed value of 0.1 m as the depth change
step. The template images and corresponding templates
of toy cats in the LineMOD data set collected at differ-
ent depths are shown in Fig. 4. The first three are tem-
plate images collected at different depths, while the last
three are templates trained by their own template images.

The white dots represent feature points in the template.
The other parameter settings when training the template
are respectively:the azimuth step length when acquiring
the template image is 15◦, the pitch angle range is −45◦–
45◦, the step length is 10◦, and the rotation range in the
plane is −45◦–45◦, the rotation angle step is 10◦. Since
the original LineMOD algorithm uses a fixed depth step
when training templates, the number of templates trained
for each object is 11,664. It can be seen from Table 3 that
the number of templates of most objects trained in this pa-
per is greater than the number of templates trained by the
original LineMOD algorithm. As can be seen from Ta-
ble 3, the improved LineMOD algorithm can effectively
solve the depth sensitivity problem, and the object recog-
nition rate has a certain improvement compared with the
original algorithm.

4.3. Test Results and Analysis
This paper first tests the accuracy of the improved

LineMOD algorithm for object pose estimation. In the
experiment of object pose estimation based on LineMOD
algorithm, it is necessary to determine the method to eval-
uate whether the estimated pose is correct or not. This pa-
per uses the evaluation method proposed in [18] to judge
whether a pose estimation result is correct.

Suppose an object model M, which is composed of
points n, denoted as {m1, . . . ,mn}. The object pose es-
timated by the algorithm is denoted as (R, t), and the real
pose of the target object in the scene image is denoted as
(R̄, t̄), then the calculation formula of accuracy s of esti-
mation pose is shown in Eq. (6).

s = avg‖(R ·m+ t)− (R̄ ·m+ t̄)‖. . . . . . (6)

As for the target object with symmetrical geometric struc-
ture or rotating structure, the same template image may
be obtained from different perspectives, so the calcula-
tion method of accuracy s, of pose estimation needs to be
modified, as shown in Eq. (7).

s = avgmin‖(R ·m1 + t)− (R̄ ·m2 + t̄)‖. . . . (7)

If the accuracy of pose estimation satisfies Eq. (8), it indi-
cates that pose estimation is correct.

km ·d > s. . . . . . . . . . . . . . . . (8)

In Eq. (8), km is the control coefficient, which is set as
0.1 in this paper, and is the diameter of the target object’s
packet catching ball.

Finally, the accuracy of pose estimation of the target
object is taken as the evaluation standard. The accuracy
of pose estimation is the ratio between the correct number
of test images estimated by the target object and all the
test images of the target object. The improved LineMOD
algorithm visualizes the pose estimation of the target ob-
ject in some test images in the data set as shown in Fig. 5,
where the calculated pose of the target object in each pic-
ture is expressed in the form of a three-dimensional coor-
dinate axis.

We compare our method to two state-of-the-art meth-
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Table 3. The original LineMOD, Tejani et al. [24] and the improved LineMOD were used to recognize objects in the LineMOD
data set. The recognition rate (%) is as follows.

The Number of depths The total number of template The recognition rate

Target object
Original Tejani et al. Improved Original Tejani et al. Improved Original Tejani et al. Improved

LineMOD [24] LineMOD LineMOD [24] LineMOD LineMOD [24] LineMOD

Little monkey 6 5 11 11664 11664 21384 98.5 97.6 98.6
Vice 6 5 5 11664 11664 9720 99.1 99.1 99.3

Driller 6 5 5 11664 11664 9720 98.2 97.9 98.1
Camera 6 5 7 11664 11664 13608 99.3 99.0 99.5

Watering can 6 5 6 11664 11664 11664 98.7 99.0 98.9
Electric iron 6 5 5 11664 11664 9720 98.3 98.7 99.0
Table lamp 6 5 5 11664 11664 9720 99.0 98.9 98.6
Telephone 6 5 6 11664 11664 11664 97.2 98.2 98.4

Toy cat 6 5 7 11664 11664 13608 99.5 99.4 99.6
Hole puncher 6 5 7 11664 11664 13608 97.6 98.5 98.3

Toy duck 6 5 10 11664 11664 19440 98.1 98.1 98.0
Drinking glass 6 5 9 11664 11664 17496 98.6 97.9 97.5

Bowl 6 5 7 11664 11664 13608 99.8 98.9 98.6
Egg box 6 5 7 11664 11664 13608 99.6 98.8 99.8

Glue 6 5 7 11664 11664 13608 97.3 97.9 98.1

Fig. 5. Under the heavy clutter background of local oc-
clusion, 15 textureless 3D objects with different attitudes
were simultaneously detected by the LineMOD algorithm
before and after the modification. Each detected object is
augmented with its 3D model. We also showed the corre-
sponding coordinate system.

ods, namely original LineMOD [18] and the method of
Tejani et al. [24]. Tejani et al. [24] adapted the state-of-
the-art template matching feature, LineMOD [18], into a
scale-invariant patch descriptor and integrated it into are-
gression forest using a novel template-based split func-
tion. In training, rather than explicitly collecting repre-
sentative negative samples, their method was trained on
positive samples only and they treated the class distribu-
tions at the leaf nodes as latent variables. During the infer-
ence process they iteratively updated these distributions,
providing accurate estimation of background clutter and
foreground occlusions.

As shown in Table 4, the improved LineMOD al-
gorithm has an average pose estimation accuracy rate
of 95.8% on the LineMOD dataset, while the original
LineMOD algorithm has an average pose estimation accu-
racy rate of 95.3% on the LineMOD dataset, the method
of Tejani et al. [24] has an average pose estimation ac-
curacy rate of 95.4% on the LineMOD dataset. The im-
proved LineMOD algorithm improves the average pose
estimation accuracy of the dataset by 0.5% compared
with the original LineMOD algorithm and 0.4% com-
pared with the method of Tejani et al. [24].

In terms of speed, in the environment where the com-
puter hardware is configured with an Intel core i7 quad-
core processor and 8G of running memory, the average
time required for the original LineMOD algorithm to
complete the object pose estimation of a test image of the
LineMOD dataset is 0.2 s, the average time required for
the improved LineMOD algorithm to complete the object
pose estimation for a pair of test images in the LineMOD
data set is 0.15 s, the average time required for the method
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Table 4. The original LineMOD, Tejani et al. [24] and the improved LineMOD were used to estimate the pose of objects in the
LineMOD data set. The accuracy rate (%) and time of the estimation are as follows.

The accuracy rate (%) The time (s)

Target object Original Tejani et al. Improved Original Tejani et al. Improved
(number of test images) LineMOD [24] LineMOD LineMOD [24] LineMOD

Little monkey (1235) 94.6 95.5 95.3 0.199 0.183 0.149
Vice (1214) 97.3 97.7 98.1 0.194 0.195 0.146

Driller (1187) 91.5 92.1 92.6 0.191 0.194 0.143
Camera (1200) 96.1 96.3 98.5 0.192 0.187 0.149

Watering can (1195) 95.6 94.6 96.7 0.191 0.186 0.146
Electric iron (1151) 95.9 96.1 98.4 0.189 0.175 0.138
Table lamp (1226) 94.5 95.5 94.3 0.202 0.155 0.147
Telephone (1224) 93.1 91.8 95.1 0.205 0.176 0.148

Toy cat (1178) 98.6 96.6 97.9 0.192 0.166 0.141
Hole puncher (1236) 93.2 95.8 92.6 0.211 0.193 0.155

Toy duck (1253) 94.5 96.1 96.0 0.215 0.172 0.158
Drinking glass (1239) 96.8 95.5 95.8 0.198 0.187 0.157

Bowl (1232) 99.0 98.6 94.8 0.203 0.192 0.148
Egg box (1252) 99.2 96.4 98.2 0.219 0.201 0.169

Glue(1219) 90.6 92.7 93.0 0.199 0.188 0.156
The average (18241) 95.3 95.4 95.8 0.2 0.18 0.15

of Tejani et al. [24] is 0.18 s. As can be seen we outper-
form both state-of-the-arts in both datasets. The depth of
the target object in the test image of the LineMOD dataset
is not constant, and the variation range is 65–115 cm.
Therefore, it is necessary to train templates at various
depths to ensure the accuracy of the algorithm. It can be
seen from Section 4.2 that the improved LineMOD algo-
rithm has trained more types of templates for most ob-
jects in the LineMOD data set. The number of templates
trained is greater than the number of templates trained by
the original LineMOD algorithm and the method of Tejani
et al. [24]. When the number of templates increases, the
improved LineMOD algorithm’s pose estimation speed is
faster than the other two methods. This is because the
other two methods need to traverse all templates of the
target object when they perform pose estimation for the
target object, and the improved LineMOD algorithm can
specifically call the template at the corresponding depth
for template matching, which greatly improves the speed
of the algorithm, so the speed of the improved LineMOD
algorithm will not be affected when the depth of the tar-
get object template increases. Furthermore, when the
depth of the target object in the scene varies in a large
range and more templates need to be trained, the improved
LineMOD algorithm can still quickly estimate the pose of
the target object, thus solving the problem that the other
two methods are sensitive to the depth of the template.

5. Conclusions

The LineMOD algorithm can realize the recognition
and pose estimation of texture-less objects in a messy
background. It can adapt to the needs of different scenes
by adding different templates, and has the advantages of
fast speed and high precision. At present, it is still widely
used in the field of pose estimation of texture-less ob-
jects in industry. However, this algorithm has the prob-
lem of depth sensitivity to the template, which makes it
difficult to achieve satisfactory results in some special
industrial scenarios. This paper proposes corresponding
improvement schemes for the defects of the LineMOD
algorithm, improves the template invocation method of
the algorithm, and proposes a template invocation strat-
egy based on Scene-Patch, which can make the LineMOD
algorithm in scenes where the depth of the target object
varies widely and the depth of the target object in the
scene is always the same as the depth of the template, the
target object can still be quickly and accurately identified.
Experiments show that this strategy can solve the prob-
lem of LineMOD algorithm’s sensitivity to the depth of
the template.
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